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Model of Ferromagnetism:

•Atoms arranged in various lattice types:
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•Classical vector represents atom’s
magnetic moment:
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~s = ±1ẑ

•“Global Coupling” ⇒ Every atom interacts with every
other atom:
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R

strength of interaction
with red site
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•Global coupling decays exponentially with distance:

J
[
~d

]
= J exp

−d ·R
ρ

 ,

where ρ/R is the characteristic length scale.
•The system energy depends on the coupling:

E = −
∑
i>j

J
[
~d

]
~si · ~sj,

where atoms are indexed by i and j.
•Ferromagnetic interactions (↑↑) are more stable than

nonmagnetic (↑↓).

Computer Simulation:

•Goal: determine the density of states (g[E]): the number of
spin configurations producing an energy, E.

• In an unbiased random walk in energy space, realized by
randomly flipping spins, the histogram of the energy dis-
tribution (h[E]) converges to the density of states (g[E]),
but too slowly to be practical.

•When the random walk is biased inversely to g[E] so that
h[E] becomes flat, g[E] is constructed to within an error ∝
ln[f ] if at each energy visited, g[E] is redefined as g[E]× f .
If f is incrementally reduced to = 1, g[E] becomes exact.

•Random walk acceptance bias:

P [E1 → E2] = min

g[E1]

g[E2]
, 1


•Schematic of algorithm (Wang-Landau Monte Carlo):

ENew → ENow

{i, j}New → {i, j}Now

s[{i, j}New] × = −1

Record g[E]

Yes No

Yes No

No Yes

h[En] = 0 for all n
g[En] = 1 for all n

Initial
Conditions

:

:Initialize
Spins s[i, j] = +1 or −1 chosen randomly

Choose new site

Calculate current energy
and energy if spin is flipped

(ENow and ENew)

Calculate transition probability
P[ENow → ENew]

Is P[ENow → ENew] > random[0,1]?

h[ENew]+ = 1 h[ENow]+ = 1
g[ENow]× = f

g[ENew]× = f

Is histogram flat?

f → f1/2

Is f > fMin?

h[En] = 0 for all n

•Given g[E], the partition function is readily evaluated:

Z =
∑
n

g[En] exp[−En/(kBT )],

from which, thermodynamic observables are derived.

Project Goals:

1. Reproduce the experimentally-observed ferromagnetic → nonmagnetic
phase transition, occurring as the temperature increases.

2. Determine the effect of lattice structure and coupling length (ρ/R) on the
stability of the ferromagnetic phase.

Density of States: generated by computer simulation.

•Example data:
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•Conclusion: When ρ/R is large, the coupling is global and the density of
states includes more negative (more stable) energy levels.

Heat Capacity: elucidates the phase transition.

•Heat capacity is derived from the density of states:

CV =
〈E2〉−〈E〉2

kBT 2 , where 〈E〉 =
∑

n En·g[En]·exp[−En/(kBT )]∑
n g[En]·exp[−En/(kBT )]

•Peak in the heat capacity provides a clear indicator of the phase transition
temperature, kBTC/J :

↓
kBTC/J temperature
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•Conclusion: As ρ/R increases, the phase transition temperature increases,
thereby stabilizing the ferromagnetic phase.

Ferromagnetic Stability:

•kBTC/J gives a direct indication of how the ferromagnetic
stability depends on the coupling:
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•Conclusion: kBTC/J increases predictably as ρ/R increases
for all lattices. Increased ρ/R implies ferromagnetic stability.

•Plots of kBTC/J versus ρ/R (above) show an inflection point
(≡ ρ∗/R), which increases linearly with the lattice edge size:

Nedge

in
fle

ct
io

n
po

in
t

lattice edge size

ρ∗
/R

•Conclusion: Inflection point occurs when the coupling
length is of the same order as the system size. These edge
effects are destabilizing.

Future Work:
1. Improve quality of g[E] calculation (stricter convergence

rules) to eliminate noise in inflection point data.

2. Study larger systems to further explore asymptotic limits of
inflection points.

3. Explore more complicated coupling potentials (non-
monotonic), that may better approximate real magnets.


