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Chapter 1

Sampler

1.1 A New Science

Twentieth century physics may be remembered for three great knowledge rev-
olutions: relativity, quantum mechanics, and chaos.

Chaos, or more generally nonlinear dynamics, was anticipated by math-
ematician Henri Poincaré [11] at the dawn of the century. It blossomed in the
twenty years 1960-1980, facilitated in part by the availability of cheap and fast
computers, and thanks to the efforts of researchers like meteorologist Edward
Lorenz [6] and physicist Mitchell Feigenbaum [3].

Nonlinear dynamics includes a rich variety of fascinating behavior. While
the output of a linear system is simply proportional to the input, the response
of a nonlinear system may vary widely as the input varies. This can lead to the
extreme sensitivity to initial conditions that characterizes chaotic dynamics.

Nonlinear dynamics is ubiquitous. Linear systems, although simpler to ana-
lyze, are the exception rather than the rule (everywhere, that is, except in typ-
ical introductory physics courses). In this regard, the mathematician Stanislaw
Ulam is purported to have said, “Studying nonlinear dynamics is like studying
nonelephant animals”.

Nonlinear dynamics is an interdisciplinary science. Applications abound in
mathematics, physics, biology, engineering, and economics, among other dis-
ciplines, and ideas from researchers in one area cross fertilize with ideas from
researchers in other areas.

The new science of nonlinear dynamics has wrested an important insight
from nature: Even simple nonlinear systems can exhibit very complicated chaotic
motion, which is nonperiodic yet deterministic and extremely sensitive to
initial conditions.

Conversely, irregular phenomena need not require complicated or stochastic
modeling equations. Simple systems need not behave in complex ways. Complex
behavior may not require complex causes. Yet, diverse nonlinear systems often
share chaotic dynamics with common features. There is universality in chaos.

13
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1.2 Cellular Automata

Broadly construed, a dynamical system is one that evolves according to a set
of rules. For cellular automata, space and time are discrete. For example, the
updates

(1.1)

define Wolfram’s Rule 110. Figure 1.1 is a typical evolution from random ini-
tial conditions. Rule 110 is Turing-complete and hence is computationally
universal.

Figure 1.1: Example evolution of cellular automaton Rule 110.
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1.3 Billiards

When a ball collides elastically with a frictionless wall, the normal component
of its velocity reverses, so the simple map

v‖ ← +v‖, (1.2a)

v⊥ ← −v⊥ (1.2b)

determines its dynamics. If the walls are circular or rectangular, the motion
is periodic. However, more complicated geometries can produce a mix of order
and chaos, as in Fig. 1.2, where each color in the sectional plot records the
angular location θ and tangential momentum pθ of each collisions with the outer
circle. Rows of dots at the top and bottom of the section correspond to orbits
that skim along the outer circle, either clockwise or counterclockwise, without
colliding with the inner circle.

Quantum versions of classical billiards manifest the classically chaotic or-
bits in the statistics of their energy eigenvalue separations and manifest the
classically periodic orbits in “scars” in their eigenfunctions.

Figure 1.2: Point particle bouncing elastically between two circles (left) can
execute regular or irregular motion, which can be summarized in a sectional
plot of tangential momentum pθ versus angular location θ for the nth collision
(right), where each color corresponds to a different orbit.
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1.4 Logistics Map

The logistics map is a simple biological model of population growth. It models
the evolution of a population in a limited environment with linear growth and
quadratic die-off according to the iterated map

x← µx(1− x), (1.3)

or difference equation
xn+1 = µxn(1− xn), (1.4)

where x represents the normalized population and n indicates the generation.
The normalized population exhibits an extraordinary range of varied and subtle
behavior as the growth parameter µ changes, as in Fig. 1.3.

Figure 1.3: Logistics evolution exhibits both periodic and chaotic evolution as
the growth parameter µ changes.
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1.5 Lorenz Flow

The Lorenz flow is a simple model of a convecting fluid. It was invented and first
studied by meteorologist Edward Lorenz [6] in the 1960s. Lorenz (not Lorentz)
considered a fluid under combined gravity and temperature gradients described
by the system of first-order differential equations

ẋ = −σx+ σy, (1.5a)

ẏ = +ρx− y − xz, (1.5b)

ż = −βz + xy. (1.5c)

For some parameters the fluid motion is irregular and never repeats, as in
Fig. 1.4.

Figure 1.4: Chaotic cycling of the Lorenz weather model in its {x, y, z} state
space. Rainbow hues code time, from red to violet.
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1.6 3-Body Problem

The positions ~ri = {xi, yi, zi} of n point masses mi interacting via Newtonian
gravity obey the system of second-order differential equations

mi~̈ri = −
∑
j 6=i

Gmimj

r2ij
r̂ij = −

∑
j 6=i

Gmimj

‖~ri − ~rj‖3
(~ri − ~rj) , (1.6)

where the over-dots denote time differentiation, the indices i, j ∈ {1, 2, 3, . . . , n},
and the unit vector r̂ = ~r/r. Henri Poincaré famously discovered [11] extreme
sensitivity to initial conditions or chaos in these orbits, as suggested by Fig. 1.5.

Figure 1.5: Asteroid released from rest directly above the orbit of two binary
stars. Rainbow hues code time, from red to violet.
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1.7 Nonlinear Wave Equation

The nonlinear Sine-Gordon partial differential equation

�2ϕ = ∂2xϕ− ∂2t ϕ = sinϕ (1.7)

describes the continuum limit of a linear array of pendulums rotated by angles
ϕ from their stable equilibria and coupled by torsional springs in a gravitational
field. For small angles, sinϕ ∼ ϕ � 1, and it becomes the linear Klein-
Gordon equation, which describes spinless relativistic quantum particles or
wave propagation in a dispersive medium. By contrast, the classical wave
equation

�2ϕ = ∂2xϕ− ∂2t ϕ = 0 (1.8)

describes wave propagation in a dispersionless medium. When nonlinear soli-
tons collide, they interact nontrivially instead of merely superposing, as in
Fig. 1.6 (bottom), where a soliton collides with a stationary breather and per-
manently shifts it. In this way, soliton or breather-like solutions to nonlinear
wave equations can model atoms.

Figure 1.6: Spacetime contour plots of solitary solutions or solitons. Classical
waves obey a linear wave equation (top), and trivial solitons pass through each
other unaffected. Sine-Gordon solitons obey a nonlinear wave equation (bot-
tom), support both propagating and nonpropagating modes, and collide with
an interaction that shifts the stationary breather mode.
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1.8 Navier-Stokes

The velocity ~v = {vx, vy} and pressure p of an incompressible, divergence-free

~∇ · ~v = 0 (1.9)

2D fluid flow obey the Navier-Stokes force-per-volume partial differential
equation

ρ

(
∂~v

∂t
+ ~v · ~∇~v

)
= −~∇p+ µ∇2~v, (1.10)

where ρ is density and µ is viscosity. As one of the Clay Mathematics Institute’s
Millennium Problems, one million dollars is available for a proof of existence and
uniqueness of solutions of this equation.

Place a circular obstacle in the fluid flow. At low speeds, the flow is smooth
and laminar. At intermediate speeds, vortices develop downstream, as in Fig. 1.7,
and begin to shed, creating a von Kármán vortex street. At high speeds,
downstream of the cylinder becomes turbulent. According to Lewis Fry Richard-
son [12],

Big whorls have little whorls
Which feed on their velocity,
And little whorls have lesser whorls
And so on to viscosity.

Figure 1.7: Fluid flow behind a cylinder is laminar for low speeds, vortex shed-
ding for intermediate speeds (shown), and turbulent for high speeds. Colors

code vorticities ~∇× ~v, with blue positive and red negative.
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Problems

1. Rule 110. Hand simulate Wolfram’s Rule 110 on 16 × 16 quad ruled
paper (or similar). Continue the investigation on a larger scale using
Mathematica. Try different initial conditions.

2. Classical Wave Equation. Differentiate with the chain rule to verify
that the linear classical wave Eq. 1.8 has solutions

ϕ[x, t] = f [x− t] + g[x+ t] (1.11)

for any functions f [•] and g[•], which are superpositions of waves of any
shapes moving in both directions at velocities ±1.

3. Sine-Gordon Equation. Differentiate with the chain rule to verify that
the nonlinear Sine-Gordon wave Eq. 1.7 has soliton and breather solu-
tions

ϕ[x, t] = 4 arctan

[√
1− ω2

ω2

cos
[
ω(t− vx)/

√
1− v2

]
cosh

[√
1− ω2(x− vt)/

√
1− v2

]] , (1.12)

with frequency ω and velocity v. (Hint: Use Mathematica’s TrigExpand
and Simplify assuming |ω| < 1 and |v| < 1.)
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Chapter 2

Maps & Flows

As in introduction to nonlinear dynamics, first focus on two canonical examples,
the logistics map and the Lorenz flow.

2.1 Logistic Map

The logistics map is a simple biological model of population growth. It has a
long history, but it was popularized and studied in the 1970s by biologist Robert
May [10] and physicist Mitchell Feigenbaum [3]. It models the evolution of a
population in a limited environment with linear growth and quadratic die-off.
Represent it as the map

x← µx(1− x), (2.1)

or difference equation

xn+1 = µxn(1− xn), (2.2)

where x is the normalized population and n is the generation. A plot of the left
side versus the right, for a fixed value of the parameter µ, results in a parabola,
as in Fig. 2.1. What happens to iterates of the map as the parameter µ varies?

0
0
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0.2

0.4

0.6

0.8

1

Figure 2.1: A parabola defines the quadratic logistics map.

23
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In honor of Robert May [10], suppose the map represents the population of
mayflies, as in Fig. 2.2. For small µ, after an initial transient, and for almost all
initial conditions, iterates of x are attracted to a fixed point of 0.5; the mayflies’
population reaches a steady state of half its maximum. Larger µ results in
a period-2 steady state; the population alternates between large generations
(which overtax the mayflies’ resources) and small generations (which under use
the mayflies’ resources). Still larger µ results in a period-4 steady state, a period-
8 steady state, and so on, in a period-doubling cascade. At about µ = 3.6, the
period of the orbit is infinite, and the population of mayflies never settles down
but varies randomly from one generation to the next.

Figure 2.2: Logistics map period-2 (left) and period-∞ (right) orbits.

In exasperation, May purportedly challenged his graduate students to fig-
ure out what happens next, as µ is increased further. Surprisingly, at about
µ = 3.84, a period-3 orbit emerges from chaos, as in Fig. 2.3. In the 1970s,
mathematicians Tien-Yien Li and James Yorke would coin chaos as a new sci-
entific term in the article “Period Three Implies Chaos” [5], and Feigenbaum [3]
would uncover a geometrical universality underlying the period-doubling route
to chaos.

Figure 2.3: Logistics map period-3 (left) and period-∞ (right) orbits. Some
early computers used the latter orbit as a pseudo-random number generator.
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2.2 Lorenz Flow

The Lorenz flow is a simple model of a convecting fluid. It was invented and first
studied by meteorologist Edward Lorenz [6] in the 1960s. Lorenz considered a
fluid under combined gravity and temperature gradients, as in Fig. 2.4

Figure 2.4: In Rayleigh-Bénard convection, a fluid circulates between a hot
bottom plate and a cold top plate.

The fluid absorbs heat at the bottom hot plate, becomes buoyant and rises,
releases the heat to the cold top plate, becomes dense and descends. This is the
mechanism behind Rayleigh-Bénard convection. Lorenz “boiled” the prob-
lem down to a system of three ordinary differential equations in three unknowns,

ẋ = −σx+ σy, (2.3a)

ẏ = +ρx− y − xz, (2.3b)

ż = −βz + xy. (2.3c)

The velocity of the convecting fluid can be derived from the variable x, while the
vertical temperature difference across the fluid is proportional to the parameter
ρ. What happens to the dynamics as ρ varies?

For small ρ, the temperature differential does not induce sufficient buoyancy
for the fluid to overcome viscosity, and no fluid motion results. For larger
ρ, the buoyancy of the heated fluid generates steady convection, clockwise or
counterclockwise, depending upon the initial conditions, as in Fig. 2.5. This
steady cellular flow spontaneously breaks the space-translation symmetry
of the system. At even higher ρ, the fluid in the fast-turning convection rolls
have little time to release their heat to the cold top plate; consequently, they can
start descending and find themselves lighter than the surrounding fluid, making
a reversal possible. This irregular motion persists for all time, never repeating
exactly, thereby spontaneously breaking the time-translation symmetry of
the system.
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1.5

Figure 2.5: Lorenz flow x-coordinate as parameter ρ increases from no flow
(top left) to steady-state circulation (bottom left) to chaotic flow (top right)
exhibiting extreme sensitivity to initial condition (bottom right), where blue
and red time series diverge even with virtually the same start.

Figure 2.6: Chaotic Lorenz flow z-coordinate for ρ = 30 (left) and Lorenz map
of successive maxima (right) demonstrates order within chaos.
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Furthermore, Lorenz demonstrated that this deterministic nonperiodic flow
also exhibits extreme sensitivity to initial conditions, the third essential ingre-
dient of chaos. In a lecture in 1972, Lorenz coined the phrase the butterfly
effect when he wondered if the flap of a butterfly’s wings in Brazil could initiate
a tornado in Texas [7].

However, Lorenz also found order within chaos. He located successive
maxima in the z-component of the flow and plotted each maximum against the
previous maximum, as in Fig. 2.6. Instead of a featureless blob, he found a
curve (with a slight thickness), thereby reducing a 3D flow to a 1D map, and
enabling him to use the current maximum to predict the next maximum.
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Problems

1. Logistics Time Series Create a Mathematica manipulator and use it
study the logistics time series, as in Fig. 2.2.

2. Lorenz Time Series Create a Mathematica manipulator and use it study
the Lorenz time series, as in Fig. 2.5.



Chapter 3

1D Maps

Fascinating in themselves, one-dimensional (1D) maps are also useful in analyz-
ing flows.

3.1 Definition

Maps are defined by difference equations, like

~xn+1 = ~fp[~xn], (3.1)

where p is a parameter. For simplicity, sometimes omit the indices labeling
successive iterations and write

~x← ~f [~x ]. (3.2)

The dimension of the map is the dimension of the vector ~x.

3.2 Linear Map

The most general 1D linear map can be expressed as the 2-parameter difference
equation

xn+1 = Axn +B. (3.3)

By scaling and translating x appropriately with x← σx+ δ, reduce this to the
1-parameter map

xn+1 = Axn. (3.4)

This difference equation is explicitly solved by

xn = Anx0. (3.5)

The origin x0 = 0 is a fixed point for the map. The fixed point is stable for
|A| < 1, and it is an attractor to which all iterates converge. The fixed point is
unstable for |A| > 1, and it is a repellor away from which all iterates diverge
to infinity.

29
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3.3 Cobwebs

A good way to graphically analyze 1D maps is the cobweb construction. Su-
perimpose a 45◦ line on a plot of a map f [x]. Draw a vertical line from the
initial iterate x0 to f [x0], then alternate drawing horizontal lines to the 45◦ line
to find xn and vertical lines back to f [xn]. Figure 3.1 illustrates this “vertical
to the curve and horizontal to the diagonal” procedure for linear maps.
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Figure 3.1: Cobweb construction for steep linear map, where iterates diverge
to infinity (top); cobweb construction for shallow linear map, where iterates
converge to zero.

3.4 Quadratic Map

The most general 1D quadratic map can be expressed as the 3-parameter map

xn+1 = Ax2n +Bxn + C. (3.6)

By scaling and translating x appropriately with x← σx+ δ, reduced this to the
1-parameter map

xn+1 = x2n + C, (3.7)

which is simplest and fastest for numerical calculations or

xn+1 = µxn(1− xn), (3.8)

which is best for graphical illustration and is often called the logistics map.
The Fig. 3.2 cobweb constructions elucidate some of the rich behavior of this
well-studied map.
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Origin is a stable period-1 (fixed point attractor).

Origin becomes an unstable repellor.

A 2-cycle attracts almost all orbits.

Aperiodic orbit, characteristic of chaos.
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Figure 3.2: Cobwebs and time series for the quadratic map for 0.8 ≤ µ ≤ 3.7.
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3.5 Bifurcations

3.5.1 Overview

A famous picture summarizes the intricate asymptotic behavior of iterates of
the logistics map. For each µ, iterate the map many times until the orbit settles
down to some attracting set, and plot these points. The Fig. 3.3 bifurcation
diagram, sometimes called Feigenbaum’s fig tree (“feigen baum” = “fig tree”),
summarizes these qualitative changes.

Figure 3.3: Logistics map asymptotic invariant sets bifurcate as the parameter
µ varies from 0 to 4 (top); exact structure of stable and unstable manifolds
(bottom).

3.5.2 Stability

Suppose that x∗ is a fixed point of a map f , so f [x∗] = x∗. What is the stability
of x∗? Are orbits that start nearby x∗ attracted to or repelled from x∗? Let

xn = x∗ + ξn, (3.9)

and expand
xn+1 = f [xn] (3.10)

in a Taylor series about x∗ to get

ξn+1 = f ′[x∗]ξn +O[ξ2n]. (3.11)
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From above, this linear map is stable provided the absolute value of the slope
of the map at the fixed point is less than unity, |f ′[x∗]| < 1, and unstable if this
slope is greater than unity, |f ′[x∗]| > 1. (Higher order terms in the Taylor series
expansion determine the stability in the special case of unit slope, |f ′[x∗]| = 1.)

3.5.3 Period-1 (Fixed Point)

First investigate the fixed points of the logistics map. Solve

x∗ = fµ[x∗] = µx∗(1− x∗) (3.12)

to find
x∗ = 0 (3.13)

or
x∗ = 1− 1/µ. (3.14)

Now solve
1 > |f ′[x∗]| = µ(1− 2x∗) (3.15)

at each of these points to find that x∗ = 0 is stable for µ < 1 and x∗ = 1− 1/µ
is stable for 1 < µ < 3, as in Fig. 3.3.

3.5.4 Period-2 (2-Cycle)

At µ increases through 3 a stable fixed point bifurcates into a stable 2-cycle as
the fixed point becomes unstable. A 2-cycle x± of the map, namely f [x±] = x∓
or

f [x+] = x−, (3.16a)

f [x−] = x+, (3.16b)

consists of two fixed points of the twice nested map,

f
[
f [x±]

]
= x±, (3.17)

as illustrated by Fig. 3.4, where xn+2 = f
[
f [xn]

]
.

Investigate the 2-cycle of the map by studying the fixed point of the twice
nested map. Solve

x± = f
[
f [x±]

]
= µ

(
µx±(1− x±)

)(
1− µx±(1− x±)

)
(3.18)

to find the equations for its two branches

x± =
(µ+ 1)±

√
(µ− 3)(µ+ 1)

2µ
. (3.19)

Because, x± = 2/3 = x∗ at µ = 3, the bifurcation is continuous. Next solve

1 >

∣∣∣∣ ddxf[f [x±]
]∣∣∣∣ = f ′

[
f [x∓]

]
f ′[x±] = f ′[x∓]f ′[x±] = µ(1− 2x∓)µ(1− 2x±)

(3.20)
to find that the x± 2-cycle is stable for 3 < µ < 1 +

√
6, as in Fig. 3.3.
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Just before the bifurcation, one stable fixed point exists.

At the bifurcation, notice the tangency.

After the bifurcation, one stable 2-cycle exists.

Figure 3.4: Logistics 2-cycle emerges as µ passes through 3.

3.5.5 Superstable Orbits

Superstable orbits pass through the critical point where the slope of the map
vanishes. Stability of the fixed point x∗ requires 1 > |f ′[x∗]|; superstability
requires that this be minimized by 0 = |f ′[x∗]. Stability of a period n-cycle
requires

1 >
∣∣fn′[x1]

∣∣ =
∣∣f ′[xn]f ′[xn−1] · · · f ′[x1]

∣∣; (3.21)

superstability requires that this be minimized by

0 = fn′[x1] = f ′[xn]f ′[xn−1] · · · f ′[x1], (3.22)

and this happens if any iterate of the orbit is a critical point, f ′[xi] = 0.
The superstable orbits shape the bifurcation diagram as nearby orbits stay

close by, at least for a while, due to the vanishing derivative. The results are
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crests of high density that sweep through the bifurcation diagram, as illustrated
by Fig. 3.5.

Figure 3.5: First five iterates of superstable orbits (red) outline bifurcation
diagram (blue).

3.6 Universality

3.6.1 Overview

The logistics map shares qualitative (or topological) features as well as quan-
titative (or metrical) features in common with a whole class of unimodal maps
with quadratic maxima. These include the sine map f(x) = µ sinx but not the
quartic map f(x) = µ− x4. Next investigate some of these universal features.

3.6.2 Sharkovsky Ordering

In the 1970s, Li and Yorke published a famous article entitled “Period-3 Implies
Chaos” [5]. They established a remarkable result, independently obtained by
Sharkovsky in the 1960s [14]. Consider the following ordering of the natural
numbers, visualized by Fig. 3.6,

1 ≺ 2 ≺ 22 ≺ 23 ≺ · · ·
· · ·
· · · ≺ 9× 23 ≺ 7× 23 ≺ 5× 23 ≺ 3× 23

· · · ≺ 9× 22 ≺ 7× 22 ≺ 5× 22 ≺ 3× 22

· · · ≺ 9× 2 ≺ 7× 2 ≺ 5× 2 ≺ 3× 2

· · · ≺ 9 ≺ 7 ≺ 5 ≺ 3, (3.23)
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where x ≺ y means x precedes y, so 3 is the last element in the sequence. If
a continuous map f of an interval onto itself has a periodic point with period
n, then f also has a periodic point of period m ≺ n. An immediate corollary is
that if the map has a period-3 orbit, it also has a period-∞ orbit, a necessary
ingredient of chaos. Because almost all of these orbits are unstable, as in Fig. 3.3,
they cannot be experimentally observed. However, these unstable orbits can
influence the dynamics. Furthermore, because each unstable orbit is typically
born in a pitchfork bifurcation, the stable periodic orbits first appear in the
reverse order of the U-sequence. For example, the logistics map first undergoes
a period doubling cascade to a chaotic accumulation point µ ≈ 3.57, afterwards
periodic windows first appear culminating in the large period-3 window at µ ≈
3.83.

Figure 3.6: Raster pattern of 210 squares colored according to the Eq. 3.23
Sharkovsky ordering. Gray squares represent powers-of-two and darken with
increasing power; colored squares represent power-of-two multiples of odd num-
bers and redden with increasing powers and brighten with increasing odd num-
bers.

3.6.3 Feigenbaum Scaling

In the 1970s, Feigenbaum studied the self-similarity of the bifurcation diagram:
the entire diagram is contained in small pieces of it! Using just a programmable
calculator, he noticed that the bifurcations converge geometrically with the same
ratio for different maps with quadratic maxima [3].

Feigenbaum discovered two universal numbers to quantify this convergence.
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Figure 3.7: Scaling of first two quadratic map bifurcations.

The first describes the frequency of the parameter convergence

δ ≡ lim
n→∞

∆µn
∆µn+1

= 4.669 . . . , (3.24)

while the second describes the size branch splittings

α ≡ lim
n→∞

∆xn
∆xn+1

= 2.5029 . . . , (3.25)

as in Fig. 3.7. The first few bifurcations only approximate these limits.
Many real physical systems undergo period-doubling cascades to chaos. Ex-

periments on fluid, electrical, optical, acoustic, and other systems estimate
Feigenbaum’s δ from the first few bifurcations, and typically agree with the
theoretical value to 20% or less. This is astonishing, given the complexity of
these systems and the simplicity of 1D maps. Somehow these diverse physical
systems share common geometries in the abstract phase spaces of their dynam-
ics.
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Figure 3.8: Successive translation and dilation of the logistics map.

3.6.4 Renormalization

To understand Feigenbaum scaling, first understand map scaling, as in Fig, 3.8.
Translate the logistics map xn+1 = f [xn] (left) by 1/2 by writing xn+1 = f [xn+
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1/2]−1/2 (middle). Dilate the translated map by 2 by writing xn+1 = 2f [xn/2]
(right). Note the combination of direct and inverse operations (addition and
subtraction, multiplication and division).

Estimate Feigenbaum’s α using a renormalization technique. (Estimating
δ is similar but more difficult.) Renormalization techniques rely on size scaling,
or similarity under magnification. Such methods are very important in the
theory of phase transitions and quantum field theory.

Figure 3.9: Schematic bifurcation diagram and first few super stable cycles.

Since α is the same for all unimodal maps with quadratic maxima (as expe-
rience shows), consider a generic map fµ[x] centered about the origin, so that
f ′µ[0] = 0. Focus on the superstable 2n-cycles at µn, as in Fig. 3.9. The dis-
tances dn from the origin to the next nearest iterate of the cycle converge to
α.

Next consider the return maps for the first few super stable cycles. Notice
how the maps f2

n−1

µn
are similarly parabolic near the origin, as in Fig. 3.10.

Express this shrink-flip self-similarity algebraically with the scaling relation

fµ1 [x] ∼ −αf2µ2
[−x/α] (3.26)

and
f2µ2

[x] ∼ −αf4µ3
[−x/α] (3.27)

and
f4µ3

[x] ∼ −αf8µ4
[−x/α] (3.28)

and more generally

f2
n−1

µn
[x] ∼ −αf2

n

µn+1
[−x/α]

= −αf2
n−1

µn+1

[
f2

n−1

µn+1
[−x/α]

]
, (3.29)

where α > 1. In the limit as n → ∞, µn ∼ µn+1 → µ∞ and these scaling
relations converge to

g[x] = −αg
[
g[−x/α]

]
, (3.30)
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Figure 3.10: The curves inside the thick black boxes are similar, thereby facili-
tating renormalization.

where g[x] ≡ limn→∞ f2
n−1

µn
[x] is a universal function depending only upon the

details of the map fµ[x] near the origin.

Solve this functional equation simultaneously for the function g and the
scaling factor α; the function g is itself an unknown! Evidently, g[x] is parabolic
near the origin but infinitely wiggly elsewhere. It is symmetric g[−x] = g[x]
and may be normalized by scaling to g[0] = 1. Seek a power series solution of
the form

g[x] = 1− kx2 +O[x4] (3.31)

for x � 1. Into Eq. 3.30, substitute, expand, and discard terms of O[x4] and
higher to find

1− kx2 ∼ −α

(
1− k

(
1− kx2

α2

)2
)
∼ (k − 1)α− 2k2

α
x2. (3.32)



40 CHAPTER 3. 1D MAPS

Equate xn coefficients

1 = (k − 1)α, (3.33a)

−k = −2k2

α
(3.33b)

to find
k =

α

2
(3.34)

and
α2 − 2α− 2 = 0, (3.35)

so

1 < α = 1 +
√

3 ≈ 2.73, (3.36a)

k =
1 +
√

3

2
≈ 1.37. (3.36b)

Retaining more terms improves the scaling factor estimate to α = 2.5029 . . . .

3.7 Nonquadratic Maps

Not all unimodal maps have quadratic maxima. In fact, consider the map
resulting from the function

fµσ = µ− σe−1/|x|. (3.37)

This map is much flatter at x = 0 then the quadratic map: not only does its
first derivative vanish there, all of its derivatives vanish there! Consequently,
its bifurcation diagram is qualitatively different, as in Fig. 3.11.

Figure 3.11: “Flat” unimodal map (left) and its bifurcation diagram (right) for
σ = 4.
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Problems

1. Real Mandelbrot Map. Use Mathematica to analyze the map

xn+1 = x2n + C. (3.38)

Include sample time series, cobweb constructions, periodic points and sta-
bility analyses for the first few bifurcations, and estimates of Feigenbaum’s
α and δ.

2. Sine Map. Use Mathematica to analyze the map

xn+1 = r sin[πxn] (3.39)

for 0 ≤ xn ≤ 1. Include sample time series, cobweb constructions, periodic
points and stability analyses for the first few bifurcations, and estimates
of Feigenbaum’s α and δ. What happens on different intervals, like −1 ≤
xn ≤ 1?

3. Tent Map. Use Mathematica to analyze the map

xn+1 =

{
Axn, 0 ≤ xn ≤ 1/2
A(1− xn), 1/2 ≤ xn ≤ 1

}
. (3.40)

Include sample time series, cobweb constructions, periodic points and sta-
bility analyses for the first few bifurcations, and estimates of Feigenbaum’s
α and δ (if they exist).

4. Feigenbaum α. Improve the Eq. 3.36a Feigenbaum α estimate by re-
taining more terms in the power series solution to the renormalization
functional equation.



42 CHAPTER 3. 1D MAPS



Chapter 4

2D Maps

Consider two ways to generalize the quadratic map from 1D to 2D. Mathemati-
cian Benoit Mandelbrot and astrophysicist Michel Hénon first studied these
generalizations in the 1960s and 1970s.

4.1 Mandelbrot Map

Consider making the quadratic map complex. Namely,

z ← z2 + µ (4.1)

or
zn+1 = z2n + µ ≡ f [zn], (4.2)

where z = x + iy and µ are complex numbers. Decompose this map into real
and imaginary parts to obtain the real 2D map

xn+1 = x2n + y2n + Reµ ≡ fx[xn, yn], (4.3a)

yn+1 = 2xnyn + Imµ ≡ fy[xn, yn]. (4.3b)

Successively applying this Mandelbrot map to a unit circle in the complex
plane contracts it to fixed point, as in Fig. 4.1, which provide some intuition for
its behavior

The first step in analyzing the Mandelbrot map is to look for fixed points.
Set z = f [z] and find

z± =
1±
√

1− 4µ

2
. (4.4)

The next step is to determine the stability of the fixed points. In 1D, a fixed
point is stable if the magnitude of the derivative of the map at the fixed point
is less than unity. In 2D, arrange the four different partial derivatives in the
Jacobian matrix

J =
∂ ~f

∂~r
=

∂xfx ∂yfx
∂xfy ∂yfy

= 2
x −y
y x

. (4.5)
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Figure 4.1: For fixed µ, successive Mandelbrot mappings z ← z2 + µ contract
the complex unit circle onto a zero-dimensional fixed point.

The absolute value of the determinant of the Jacobian matrix is the ratio of
infinitesimal areas after and before the mapping. If this ratio is less than unity,
the map is said to be contracting or dissipative. Since

1 > |det J | = 4x2 + 4y2 = 4|z|2, (4.6)

the Mandelbrot map is sometimes contracting, if |z| < 1/2, and sometimes ex-
panding, if |z| > 1/2, depending upon the location of the iterate in the complex
plane.

In 2D, a fixed point is stable if the magnitudes of the eigenvalues of the Ja-
cobian matrix, evaluated at the fixed point, are less than unity. The eigenvalues
are solutions to Jz = λz. Evaluate the characteristic equation det[J − λI] = 0
for λ to find

λ = 2(x± iy) =

{
2z
2z∗

}
. (4.7)

For stability of the Eq. 4.4 fixed points z±, demand 1 > |λ|, so they lose their
stability along the curve defined by 1 = |λ| = |2z±| = |2z∗±| or

eiϕ = 2z± = 1±
√

1− 4µ. (4.8)

Square both sides, solve for µ, and decompose into real and imaginary parts to
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obtain

Reµ =
2 cosϕ− cos 2ϕ

4
, (4.9)

Imµ =
2 sinϕ− sin 2ϕ

4
, (4.10)

which is the parameterized representation of the Fig. 4.2 origin-enclosing car-
dioids. If the parameter µ lies inside the cardioid, the corresponding fixed point
is stable, and iterates of the map will spiral in toward it.

Figure 4.2: Mandelbrot fixed point is stable and orbit (successive iterates) spirals
inward to it (top); fixed point is marginally stable and the inward spiral is very
slow (middle); fixed point is unstable and orbit spirals outward to infinity.

4.2 Mandelbrot Set

Benoit Mandelbrot studied the complex quadratic map circa 1980 while at
I.B.M. using early computer graphics [9]. The beautiful pictures he produced
have become a dramatic visual paradigm for nonlinear dynamics (even if their
physical relevance is unclear). In particular, he studied the following set. For
each point in the complex plane µ, iterate the complex quadratic map start-
ing from the origin. The point µ is in the Mandelbrot set if and only if the
sequence

0 ≺ µ ≺ µ2 + µ ≺ (µ2 + µ)2 + µ ≺ ((µ2 + µ)2 + µ)2 + µ ≺ . . . (4.11)
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remains bounded. More formally,

M =
{
µ :
∣∣f∞µ [0]

∣∣ <∞} . (4.12)

The diverging points can be colored or raised according to how quickly they
reach infinity, as in Fig. 4.3. (In fact, if the iterates get beyond |z| = 2, they
will diverge.)

Figure 4.3: Mandelbrot sets where color (left) and height (right) code escape
“times” (number of iterates Ne to exceed |z| = 2 units from the origin).

The body of the Mandelbrot set is simply the cardioid we calculated above.
(Indeed,“mandel brot” means “almond bread” or, with some artistic license,
“ginger bread man”.) The body corresponds to stable fixed points, or 1-cycles,
while the bulbs correspond to different stable n-cycles. Successive bulbs decrease
in size geometrically according to the Feigenbaum scaling and correspond to
bifurcating sequences of orbits.

Mathematicians John Hubbard and Adrien Douady proved [2] that the
boundary of the Mandelbrot set is as complicated as it can be: although the
boundary has area zero, it has dimension two, and it is completely connected.
(An ordinary Euclidean object, like a disk, has a boundary with area zero and
dimension one.)

In the 1910s, mathematicians Gaston Julia and Pierre Fatou studied related
sets and even without the aid of computer graphics glimpsed some of their
complexity. Fix the complex parameter µ, and iterate the complex quadratic
map starting from each point z0 in the complex plane. The point z0 is in a
Julia set if and only if the sequence

z0 ≺ z20 + µ ≺ (z20 + µ)2 + µ ≺ ((z20 + µ)2 + µ)2 + µ ≺ . . . (4.13)

remains bounded. More formally,

Jµ =
{
z0 :

∣∣f∞µ [z0]
∣∣ <∞} . (4.14)

Connected Julia sets are sometimes referred to as Julia lace, and unconnected
Julia sets are sometimes referred to as Fatou dust. Fatou dust has the in-
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teresting property that no two pieces are “together”, yet no piece is “alone”.
Investigate such sets later.

4.3 Generalized Mandelbrot Sets

Interesting generalizations of the Mandelbrot set result by considering maps
derived from functions like

fσ[z] = zσ + µ, (4.15)

where the exponent σ may be positive or negative, rational or irrational, real or
complex. Figure 4.4 is one example.

Figure 4.4: Generalized Mandelbrot set with exponent σ = 4.

4.4 Hénon Map

Consider the 1D map
xn+1 − bxn−1 = 1− ax2n. (4.16)

If b = 0, then this is equivalent to the logistic map. Otherwise, if yn ≡ bxn−1,
it is equivalent to

xn+1 = 1 + yn − ax2n, (4.17a)

yn+1 = bxn. (4.17b)

This famous 2D map was first studied by theoretical astronomer Michel
Hénon [4]. He designed it to incorporate the folding and stretching transforma-
tions that mathematician Stephen Smale had demonstrated were at the core of
chaotic dynamics. Figure 4.5 illustrates these transformations by successively
applying the map to points along a unit circle, for the canonical parameter
values a = 1.4, b = 0.3.

The final or asymptotic set is more than a line but less than a plane. It
has a self-similar structure that can be assigned a fractional dimension of about
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Figure 4.5: Successive mappings fold and stretch a unit circle onto the Hénon
“horseshoe”.

1.26. Such an asymptotic set is called a strange attractor. The self-similar
“1-2-3” structure is preserved at all magnifications, as illustrated in Fig. 4.6.

Figure 4.6: Hénon self-similar structure is preserved at all magnifications.

Furthermore, orbits on the attractor exhibit extreme sensitivity to initial
conditions, with nearby points diverging exponentially, a necessary condition
for chaos. For example, starting with two points, initially very close together,
say {0.5, 0.2)} and {0.5001, 0.2)}, after just 25 iterations of the Hénon mapping
the points are as far apart as they can be and still be on the attractor, as in
Fig. 4.7.

To compare with the Mandelbrot map, note that the fixed points of the
Hénon map are

x± =
b− 1±

√
(b− 1)2 + 4a

2a
, (4.18a)

y± = bx±. (4.18b)

The Jacobian matrix of partial derivatives

J =
∂ ~f

∂~r
=

∂xfx ∂yfx
∂xfy ∂yfy

=
−2ax 1
b x

. (4.19)

The absolute value of the determinant of the Jacobian matrix

1 > |det J | = | − b| = |b|. (4.20)



4.4. HÉNON MAP 49

Figure 4.7: Hénon divergence of nearby orbits, with and without the attractor.

Thus, the Hénon map is always contracting if |b| < 1, as it is for the canonical
parameter values a = 1.4, b = 0.3.

Examine the eigenvalues of the Jacobian to find that the fixed point {x+, y+}
is unstable for a > 3(b−1)2/4, while the fixed point {x−, y−} is always unstable.
If b = 0.3 is fixed and a varies from 0 to 1.4, the map undergoes a periodic-
doubling cascade to chaos.
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Problems

1. Julia Sets. Use Mathematica to create and explore the Eq. 4.13 Julia
sets.

2. Standard Map. Use Mathematica to explore the Chirikov standard map

θn+1 = θn + pn+1, (4.21a)

pn+1 = pn +K sin θn, (4.21b)

where θn and pn are modulo 2π. The map models a kicked rotator at
angle θ with momentum p. Unlike the Hénon map, which is area con-
tracting, the standard map is area preserving. It generates periodic
and chaotic orbits for different initial conditions {θ, p} at the same pa-
rameter K. (Hint: Create a ListPlot of a NestList of a compiled vector
{θ, p} variation of Eq. 4.21 Mod 2π.)



Chapter 5

Nonlinear Pendulum

The linear (small angle) pendulum is a canonical example of introductory physics
and makes possible time-keeping, while the nonlinear (large angle) is a paradigm
of nonlinear dynamics.

5.1 Flows

Flows are defined by differential equations like

d~x

dt
= ~̇x = ~f [~x]. (5.1)

The dimension of the flow is the dimension of the vector ~x An important source
of flows are the Newtonian, Lagrangian, and Hamiltonian formulations of
classical mechanics. Introduce tools for the analysis of flows by first examining
in detail the case of the nonlinear pendulum.

5.2 Classical Analysis

5.2.1 Small Angles

Consider a simple pendulum of mass m suspended from a massless rod of length
`. Let θ be the angle the rod makes with downward, as in Fig. 5.1.

According to Newton’s Second Law, with respect to the pivot, the torque
on the pendulum

− `mg sin θ = τ = Iα = m`2θ̈ (5.2)

so

θ̈ +
g

`
sin θ = 0. (5.3)

This nonlinear differential equation cannot be solved in terms of finite number
of common named functions (like polynomials, trigonometrics, exponentials and
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Figure 5.1: Simple pendulum of length ` and mass m in a gravity field ~g.

logarithms). However, neglecting the nonlinear terms in the sine infinite series

sin θ = θ − θ3

3!
+
θ5

5!
− θ7

7!
+ · · · (5.4)

for small angles θ � 1 simplifies the equation to

θ̈ +
g

`
θ = 0, (5.5)

which famously has the sinusoidal solution

θ = θi sin[ωt+ ϕi] (5.6)

if the natural frequency ω0 =
√
g/`. The amplitude θi and phase shift ϕi

depend on the initial angle and angular velocity. For small angles, the frequency
and period T0 = 2π/ω are independent of amplitude, and this makes possible
timekeeping by pendulum-based clocks.

5.2.2 Large Angles

Recapitulate the classical analysis of the nonlinear pendulum for large angles
beginning with the motion equation

θ̈ + ω2
0 sin θ = 0. (5.7)

Multiply both sides by θ̇ from the right to get

0 = θ̈ θ̇ + ω2
0 sin θ θ̇ =

(1

2
θ̇2 − ω2

0 cos θ
)

˙ (5.8)

and integrate the product to find the non-dimensional energy motion con-
stant

ε =
1

2
θ̇2 − ω2

0 cos θ = constant ≡ −ω2
0 cos θm, (5.9)
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where θm is the maximum angular deflection of the pendulum. (At this turning
point, the angular velocity θ̇ momentarily vanishes.) This differential equation
is separable. Solve for

dθ

dt
= θ̇ = ±ω0

√
2(cos θ − cos θm) (5.10)

where the different signs handle clockwise and counterclockwise rotations. In-
tegrate

ω0dt =
1√

2(cos θ − cos θm)
. (5.11)

to find

ω0t =

∫ θ

0

dθ′
1√

2(cos θ′ − cos θm)
. (5.12)

Use the half-angle formula cos θ = 1− 2 sin2[θ/2] to rewrite as

ω0t =
1

2

∫ θ

0

dθ′
1√

sin2[θm/2]− sin2[θ′/2]
. (5.13)

Implicitly define a new angle ϕ by

sin[θ/2] = sin[θm/2] sinϕ = k sinϕ, (5.14)

where ϕ ∈ [−π, π] when θ ∈ {−θm, θm}, to get

ω0t =
1

2

∫ ϕ

0

k cosϕ′ dϕ′

cos[θ′/2]/2

1

k cosϕ′

=

∫ ϕ

0

dϕ′
1√

1− k2 sin2 ϕ′

= am−1[ϕ, k2], (5.15)

which inverts to the Jacobi amplitude elliptic function

ϕ = am[ω0t, k
2]. (5.16)

Beginning with Eq. 5.14, solve for

θ = 2 arcsin [k sinϕ]

= 2 arcsin
[
k sin

[
am
[
ω0t, k

2
]]]

= 2 arcsin

[
sin [θm/2] sin

[
am
[
ω0t, sin

2 [θm/2]
] ]]

= 2 arcsin

[
sin [θm/2] sn

[
ω0t, sin

2 [θm/2]
] ]
, (5.17)

where the elliptic function sn[x, y] = sin am[x, y]. This provides angle versus
time when released from rest, {θ[0], θ̇[0]} = {θm, 0}. Unfortunately, finding
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Figure 5.2: Pendulum time series for three different amplitudes.

integration constants for arbitrary initial conditions requires solving systems of
nonlinear equations, which is not always possible, making numerical techniques
sometimes necessary (and desirable). Figure 5.2 plots angle θ versus time t for
different maximum angles θm.

For small angles, the oscillations are nearly sinusoidal and the pendulum
periods are insensitive to amplitude. But for large angles, the oscillations are
not sinusoidal and the periods increase with amplitude. From Eq. 5.15, the
period

ω0T = 4

∫ π/2

0

dϕ
1√

1− k2 sin2 ϕ
= 4K[k2] = 4K

[
sin2[θm/2]

]
, (5.18)

where K[•] is the complete elliptic integral of the first kind. Expand the
integrand in the power series

1√
1− k2 sin2 ϕ

= 1 +
1

2
k2 sin2 ϕ+

3

8
k4 sin4 ϕ+

5

16
k6 sin6 ϕ+ · · · (5.19)

and integrate term-by-term to get

ω0T

2π
= 1 +

1

4
k2 +

9

64
k4 +

25

256
k2 + · · · . (5.20)

Substitute k = sin[θm/2], expand each k term in a θm power series, and collect
θm terms to find

T

T0
= 1 +

1

16
θ2m +

11

3072
θ4m +

173

737 280
θ6m + · · · . (5.21)

Figure 5.3 plots the period versus the maximum angle. The plot diverges near
θm = π when the pendulum inverts.
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Figure 5.3: Ideal stiff pendulum period diverges as maximum angle θm → π
when pendulum inverts.

5.3 Qualitative Analysis

At the end of the nineteenth century, beginning with Henri Poincaré, and con-
tinuing throughout the twentieth century, qualitative geometric techniques have
become increasingly important in the analysis of dynamical systems. Consider
the Eq. 5.9 pendulum nondimensional energy

ε =
1

2
θ̇2 + V [θ] (5.22)

in units where ω2
0 = 1. Assume the potential energy

V [θ] = 1− cos θ (5.23)

so that V [0] = 0. If the motion is bounded, the intersections of the potential
function and the constant energy are the turning points of the motion, as in
Fig. 5.4.

Write the pendulum second-order differential equation as two first-order dif-
ferential equations

ω̇ = − sin θ, (5.24a)

θ̇ = ω. (5.24b)

This differential system describes a flow in the 2D state space {θ, ω} of the
pendulum. The flow is like that of an incompressible fluid; curves of constant
energy never cross and state space areas are preserved. Fixed points of the
flow are the stable and unstable (inverted) equilibrium configurations of the
pendulum. Near the stable points, the flow is elliptical. Near the unstable
points, the flow is hyperbolic. The elliptic and hyperbolic points alternate in
the common pattern ◦ × ◦ × ◦.

The Fig. 5.4 blue curves correspond to libration of the pendulum back-and-
forth through small angles, bounded closed orbits of low energy. The Fig. 5.4
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Figure 5.4: Pendulum potential energy (top) and state space (bottom). Flows
include rotation (red), libration (blue), and separatrix (green).

red curves correspond to rotation of the pendulum end-over-end, unbounded
open orbits of high energy.

Addition of a viscous torque τ = −γω damps the motion of the pendulum
and dramatically changes its state space flow, as in Fig. 5.5. State space volumes
now decrease to zero as orbits spiral in to the stable fixed points, 0D attractors
of the 2D states space. In higher dimensions, the inclusion of dissipation can
produce strange attractors of fractional dimension.
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Figure 5.5: Pendulum state space flow with small (left) and large (right) viscos-
ity.
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5.4 Numerical Analysis

Most differential systems cannot be integrated exactly in terms of a finite num-
ber of elementary functions. Consequently, numerical methods are vital to the
modern study of dynamical systems. Indeed, it is the widespread availability of
fast and cheap computers that fueled the revolution in nonlinear dynamics.

Furthermore, the real content of Newton’s Second Law is arguably an
algorithm for evolving a dynamical system forward in time. For example,
Euler-Cromer (or semi-implicit Euler) integration [1] of Newton’s second law

Fx = max = mẍ (5.25)

is equivalent to the algorithm

(5.26)

provided the time step dt is sufficiently small. Given an initial condition
{x0, v0}, use this simple first-order Runge-Kutta technique to evolve the
system forward in time. Each time step makes an error O[dt2], so eventually
the calculated orbit may diverge significantly from the true orbit. Many more
accurate – and complicated – algorithms are available, but the Euler-Crmer
algorithm is simple and for bounded orbits is stable. (The key to the stability,
as Cromer noted, is to update the velocity before the position.)

5.5 Forced Damped

Much of the phenomena and many of the techniques of nonlinear dynamics can
be related to a sinusoidally forced damped pendulum described by

θ̈ = − sin θ − γθ̇ +A cos[2πt/T + δ]. (5.27)

The dynamics of the unforced pendulum generates 2D flows in the {θ, ω} state
space, but forcing adds another dimension. Figure 5.6 graphically summarizes
its behavior by “strobing” the motion once each forcing period to create a
Poincaré section of the 3D flow. The forced undamped pendulum exhibits
conservative chaos while the forced damped pendulum exhibits dissipative
chaos.



58 CHAPTER 5. NONLINEAR PENDULUM

Forced undamped pendulum section

Forced damped pendulum section

Figure 5.6: Pendulum state space sections: undamped sinusoidally forced (top)
and damped sinusoidally forced (bottom) strobed once per forcing period. Lo-
cation of fixed point (red) rotates about the origin with the phase shift δ of the
forcing.
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Problems

1. Pendulum Correction. Consider a nonlinear pendulum released from
rest at an angle θm. Use Mathematica to provide the intermediate steps
to the Eq. 5.21 derivation of its period T , and extend the series to higher
orders. Overlay plots {θm, T} with different numbers of series terms, and
check for convergence.

2. Custom Function. Inspired by the Jacobi and Elliptic special functions
of the nonlinear pendulum problem, create your own function! For exam-
ple, invent a second-order nonlinear differential equation, unusual enough
that prior use is unlikely, and numerically study its solutions as you vary
the initial conditions. Name your function and choose a symbol for it.
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Chapter 6

1D Flows

Even the simplest nonlinear differential equations often cannot be solved in
terms of a finite number of elementary functions. However, qualitative tech-
niques can unveil their behavior.

6.1 Fixed Points

Flows on a line are governed by differential equations of the form

ẋ = f [x]. (6.1)

Flows are controlled by fixed points, also called equilibria or stationary
states. In 1D, fixed points f [x] = 0 correspond to vanishing velocities ẋ =
0, which divide space into noninteracting regions. Classify the fixed points
according to their stability. A sufficient condition that the fixed point x∗ is
stable is the derivative λ ≡ f ′[x∗] < 0. Such points are also called sinks,
attractors, or nodes. A sufficient condition that the fixed point is unstable
is λ > 0. Such points are also called sources or repellors. These generic
cases are indicated in the Fig. 6.1 velocity field diagrams, along with special
cases where λ = 0. Such nongeneric cases require the coincidence that both
f [x] and its derivative vanish simultaneously. They are structurally unstable
because such coincidence can typically be destroyed by small parameter changes.
Structurally unstable fixed points are not observed experimentally because of
noise and uncertainty. However, such points can still demarcate different classes
of system behavior.

6.2 Lyapunov Exponent

Analyze the flow about a fixed point x∗ by expanding f [x] = 0 in a power series

f [x] = f [x∗] + (x− x∗)f ′[x∗] + · · · . (6.2)

61
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Figure 6.1: Velocity fields near stable (top), bistable (middle), and unstable
(bottom) fixed points. Black circles represent stability and white circles repre-
sent unstabilty.

Nearby x∗ write

d

dt
(x− x∗) = f [x]− f [x∗] ∼ (x− x∗)λ, (6.3)

where λ = f ′[x∗] is the slope of the velocity curve. Thus

d

dt
δx ∼ δx λ, (6.4)

where δx = x− x∗. Solve to find

δx = δx0e
λt = δx0e

t/τ . (6.5)

If λ < 0, then the trajectory is exponentially attracted to the stable fixed point.
If λ > 0, then the trajectory is exponentially repelled from the stable fixed point.
λ is the fixed-point’s Lyapunov exponent, and τ = 1/λ is its e-folding time.
If the exponential base is 2 and the time t is in seconds, then the Lyapunov
exponent is in bits-per-second.

If λ = 0, higher-order terms in the power series indicate a nonexponential
or “critically slow” motion near the fixed point.
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Figure 6.2: Limit point (top), transcritical (middle), and pitchfork (bottom) bi-
furcations. Solid lines represent stability and dashed lines represent unstability.

6.3 Bifurcations

6.3.1 Overview

Bifurcations provide models for the transitions of 1D flows ẋ = fµ[x] as a con-
trol parameter µ varies. A bifurcation occurs when the fixed point structure
undergoes a qualitative topological change as a parameter µ varies. The three
classes of bifurcations we will consider are illustrated by Fig. 6.2. Solid lines
denote stable fixed points while dashed lines denote unstable fixed points.

6.3.2 Limit Point

Limit point bifurcations are the basic mechanism by which fixed points are
created and destroyed. The prototypical example or normal form of a limit
point bifurcation is

ẋ = µ− x2. (6.6)

This is the simplest differential equation that exhibits the bifurcation. Figure 6.3
sketches the velocity field for negative, zero, and positive parameter µ. The
velocity function is the inverted parabola µ − x2 = fµ[x]. Geometrically, for
µ < 0, the inverted parabola does not intersect the x axis, and no fixed points
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exist. For for µ > 0, the inverted parabola intersects the x axis (and the velocity
ẋ vanishes) in two places x±√µ, and two fixed points exist, one unstable and
the other stable. For µ = 0 only, the inverted parabola is tangent to the x axis,
and an isolated bistable point exists. Increasing µ through zero from negative
to positive creates a pair of fixed points of opposite stability.
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Figure 6.3: Pair creation limit point bifurcation (left); corresponding velocity
fields (right). Solid lines and black circles represent stability, while dashed lines
and white circles represent unstability.

A couple of different strategies for classifying fixed points exist. One tech-
nique is to inspect the slope of the velocity curve fµ[x] at the fixed point; positive
slope means positive Lyapunov exponent, which means exponential repulsion
from an unstable point; negative slope means negative Lyapunov exponent,
which means exponential attraction to a stable point. Of course, this test fails
if the slope vanishes. However, another technique is to sketch the velocity field
on either side of a fixed point to determine its stability. Note how the velocities
flip-flop crossing a stable or unstable point.

A complementary normal form is

ẋ = µ+ x2. (6.7)

Note the sign change. Figure 6.4 sketches the velocity field for negative, zero,
and positive parameter µ. The velocity function is the upright parabola µ+x2 =
fµ[x]. Geometrically, for µ > 0 the upright parabola does not intersect the ẋ
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axis, and no fixed points exist. For µ < 0, the upright parabola intersects the
x axis in two places x = ±√µ, and two fixed points exist, one stable and the
other unstable. For µ = 0 only, the upright parabola is tangent to the x axis,
and an isolated bistable point exists. Increasing µ through zero from negative
to positive, annihilates a pair of fixed points of opposite stability.
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Figure 6.4: Pair annihilation limit point bifurcation (left); corresponding veloc-
ity fields (right). Solid lines and black circles represent stability, while dashed
lines and white circles represent unstability.

6.3.3 Transcritical

Transcritical bifurcations illustrate an exchange of stabilities between fixed points
as a parameter varies. The normal form is

ẋ = µx− x2. (6.8)

Note the extra x factor. Figure 6.5(left) sketches the velocity field for negative,
zero, and positive parameter µ. The velocity function is the inverted shifted
parabola µx− x2 = fµ[x]. Geometrically, for µ < 0, the parabola intersects the
x axis in two places, x < 0 and x = 0, and a pair of fixed points exists, one
unstable and the other stable. For µ > 0, the parabola intersects the x axis in
two places x = 0 and x > 0, and a pair of fixed points exists, one unstable and
the other stable. Increasing µ through zero from negative to positive, exchanges
the stability of these two fixed points.
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A complementary normal form is

ẋ = µx+ x2. (6.9)

Note the sign x change. Figure 6.5(right) sketches the velocity field for negative,
zero, and positive parameter µ. The velocity function is the inverted shifted
parabola µx + x2 = fµ[x]. Geometrically, this is the inverse of the previous
bifurcation.
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Figure 6.5: Complementary transcritical bifurcations and corresponding velocity
fields.

6.3.4 Pitchfork

Pitchfork bifurcations are common in physical problems involving (for exam-
ple) spatial symmetry. Two distinct types exist. The supercritical pitchfork
bifurcation normal form is

ẋ = µx− x3. (6.10)

Note the cubic term. This equation is symmetric under parity inversion, +x→
−x. (Try it.) Figure 6.6(left) sketches the velocity field for negative, zero, and
positive parameter µ. The velocity function is the cubic polynomial µx− x3 =
fµ[x]. For µ < 0, the cubic intersects the x axis only at x = 0, a stable
fixed point. For µ = 0, the cubic intersects the x axis in three places, x = 0 and
x = ±√µ, a pair of stable fixed points separated by a single unstable fixed point.
Increasing mu through zero from negative to positive unstabilizes the origin and
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simultaneously a pair of stable fixed points are born at small amplitudes. In the
engineering literature, this is known as a subtle or soft or safe bifurcation.

A subcritical pitchfork bifurcation is described by the complementary normal
form

ẋ = µx+ x3. (6.11)

Note the sign change. Figure 6.6(right) sketches the velocity field for negative,
zero, and positive parameter µ. The velocity function is the cubic polynomial
µx+x3 = fµ[x]. For µ < 0, the cubic intersects the x axis in three places, x = 0
and x = ±

√
−µ, a pair of unstable fixed points separated by a single stable fixed

point. For µ > 0, the cubic intersects the x axis only at x = 0, an unstable fixed
point. Increasing µ through zero from negative to positive unstablizes the origin
and simultaneously a pair of stable fixed points annihilates. In the engineering
literature, this is known as a catastrophic or hard or dangerous bifurcation.
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Figure 6.6: Complementary pitchfork bifurcations and corresponding velocity
fields.

6.3.5 Broken Pitchfork

Pitchfork bifurcations are structurally unstable. The addition of the constant
λ to a pitchfork normal form

ẋ = λ+ µx+ x3 (6.12)

disconnects the pitchfork bifurcation, as in Fig. 6.7. If λ < 0, then increasing
µ through 0 induces a smooth evolution from the symmetric x = 0 state to the
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negative asymmetric x < 0 state; the disconnected positive asymmetric x > 0
state can only be reached by a discontinuous jump. Positive λ > 0 favors the
positive asymmetric state.

Figure 6.7: Pitchfork bifurcations symmetry-breaking imperfections.

The buckling of an elastic beam is a good physical example. Balance a stack
of books on a vertical plastic ruler. If the load is not too great, then the ruler
remains straight. However, add too many books and the load exceeds a critical
value beyond which the ruler bends left or right. While ideal rulers may exhibit
pitchfork bifurcations, real rulers always have a preferred bending direction,
even at small loads, which break the symmetry of the pitchfork.

6.3.6 Hysteresis

As an example of a higher-order 1D flow, incorporating both a pitchfork bi-
furcation and two limit point bifurcations, that illustrates the phenomenon of
hysteresis, consider the normal form

ẋ = µx+ x3 − x5 = fµ[x]. (6.13)

Note the quintic term. The velocity function fµ[x] is a quintic polynomial that
factors into

fµ[x] = x

(
x−

√
1−
√

1 + 4µ

2

)(
x−

√
1 +
√

1 + 4µ

2

)
(
x+

√
1−
√

1 + 4µ

2

)(
x+

√
1 +
√

1 + 4µ

2

)
. (6.14)

Clearly, µ = 0 and µ = −1/4 are important values. Figure 6.8(left) carefully
sketches the quintic between these values. With a little more analysis, the global
behavior emerges. For µ < −1/4, a single stable fixed point at the origin exists.
For −1/4 < µ < 0, in addition two pairs of stable and two pairs of unstable
fixed points exist – five fixed points altogether, the maximum the quintic can
provide. For 0 < µ, one pair of stable fixed points separated by one unstable
fixed point at the origin exists. At µ = −1/4, limit point bifurcations create
two pairs of stable and unstable fixed points. At µ = 0, a subcritical pitchfork
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Figure 6.8: A subcritical pitchfork with two creation limit point bifurcations.

bifurcation absorbs the unstable fixed points and exchanges the stability of the
origin.

Consider the following scenario, as Fig. 6.9. At µ = 0, place the system in the
negative stable branch. Gradually decrease µ to −1/4, where this stable branch
disappears, forcing the system to jump to the sole remaining stable fixed point
at the origin. Now, gradually increase µ back to 0, where this stable branch
disappears, forcing the system to jump back to the negative (or positive) stable
branch. The system has gone through a hysteresis cycle.

Figure 6.9: Bifurcation diagram (left) and hysteresis cycle close-up (right).
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6.4 Bead on Hoop Example

Apply these techniques to a real system. A famous physical example is the
motion of an overdamped bead sliding on a rotating hoop. Let the bead have
mass m and the hoop have radius R. Assume the hoop is upright and rotates
about a vertical axis with angular velocity ω. Let the bead slide on the hoop
with coefficient of viscosity γ. Locate the position of the bead on the hoop with
the angle θ, as in Fig. 6.10.

Figure 6.10: Forces and accelerations of a bead sliding on a rotating hoop.

In an inertial reference frame, Newton’s Second Law of motion requires

m~a = ~F = ~N +m~g + γ~v‖, (6.15)

where ~N is the normal force of the hoop on the bead. Decompose this vector
equation tangent to the hoop (in the direction of increasing θ) to get

m(−ω2R sin θ cos θ +Rθ̈) = Fθ = 0−mg sin θ − γθ̇. (6.16)

Note how the tangential component of the centripetal acceleration contributes
to this equation (on the left), while the unknown normal force makes no contri-
bution (on the right). Rearrange to get

mRθ̈ + γθ̇ = −mg sin θ +mω2R sin θ cos θ. (6.17)

If the mass m is small or the viscosity γ is large, the inertial term mRθ̈ is
negligible with respect to the viscous term γθ̇. Specifically, assume

γ

m
�
√
g

R
. (6.18)
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where ω0 =
√
g/R is the natural frequency of small oscillations of the bead

about the bottom of the hoop. Physically, this amounts to assuming that the
decay time of such oscillations is much smaller than the period of the oscilla-
tions: the decay time is so short that the oscillations damp out before even one
oscillation has completed. This assumption reduces the problem to the 1D flow

γ

mg
θ̇ = sin θ

(
ω2R

g
cos θ − 1

)
. (6.19)

Rescale the time that appears in the derivative to absorb the constants on the
left hand side and write

θ̇ = sin θ(µ cos θ − 1), (6.20)

where

µ ≡
(
ω

ω0

)2

. (6.21)

This 1D flow has fixed points when θ is 0 and ±π for all µ and, in addition, when
θ is arccos[1/µ] for µ ≥ 1. The Fig. 6.11 sketches the velocity curves and the
bifurcation diagram. Note the supercritical pitchfork bifurcation at µ = 1. This
is made possible mathematically by the invariance of the differential equation
under the parity transformation +θ → −θ and physically by the symmetry of
the hoop.

What does this analysis tell us about the actual behavior of the bead on the
hoop? For slow rotations, when ω < ω0 and µ < 1, the θ = 0 hoop bottom is
a stable equilibrium for the bead, but the θ = 0π hoop top is an unstable
equilibrium. (Physically, small perturbations cause small oscillations about
stable equilibria but cause faraway motion from unstable equilibria.) For fast
rotations, when ω > ω0 and µ > 1, the hoop bottom becomes unstable and two
new stable points are born, symmetrically placed on the hoop about the axis
of rotation, as in Fig. 6.12. As the rotation frequency ω increases, these points
drift farther and farther from the axis, approaching a maximum distance of R
at angles of θ = ±π/2.

In a noninertial reference frame rotating with the hoop, Newton’s Second
Law fails unless we introduce a centrifugal pseudo-force that increases with
distance from the rotation axis. The centrifugal pseudo-force is insufficient to
balance gravity at slow rotations but can balance gravity at fast rotations, where
it amplifies small displacements of the bead from the hoop bottom.

Which fixed point does the bead slide to as the rate of rotation increases
through ω = ω0? Any slight asymmetry in initial conditions chooses one of
the two stable fixed points over the other. This spontaneous symmetry
breaking makes the solution less symmetric than the equation of motion.
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Figure 6.11: Supercritical pitchfork bifurcation of an overdamped bead sliding
on a rotating hoop.

Figure 6.12: Stable and unstable equilibria for slow (left) and fast (right) rota-
tion.
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Problems

1. 1D Flows. Use Mathematica to analyze the 1D flows

(a) ẋ = 1 + µx+ x2,

(b) ẋ = x− µx(1− x),

(c) ẋ = x− µx3.

Plot all the qualitatively different velocity fields. Construct the bifurcation
diagrams.

2. Broken Pitchfork Bifurcation. Use Mathematica to analyze the 1D
flow

ẋ = λ+ µx+ x3. (6.22)

Plot its velocity fields and bifurcation diagrams for positive, zero, and neg-
ative symmetry-breaking term λ. Is the pitchfork bifurcation structurally
stable?
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Chapter 7

2D Flows

Matrices generalize the analysis of 2D flows from 1D flows. Asymptotic behavior
includes limit cycles as well as fixed points but no chaos.

7.1 Fixed Points

7.1.1 Classification

Flows on a plane are governed by differential equations of the form

~̇r = ~v[~r ] (7.1)

or

d

dt

x
y

=
vx
vy

. (7.2)

The state space flow is organized in part by the fixed points ~r∗ for which the
velocity field ~v[~r∗]. Taylor expand the velocity field about these fixed points to
infer the local linearized flow

δ~̇r = Jδ~r, (7.3)

where

J =
∂~v

∂~r
=

∂xvx ∂yvx
∂xvy ∂yvy

(7.4)

is the Jacobian matrix of partial derivatives evaluated at the fixed point ~r∗,
and ~r = ~r − ~r∗ is the relative position with respect to the fixed point.

The Jacobian matrix generalizes the single derivative of the 1D theory. Its
eigenvalues and eigenvectors determine the linearized state space flow. The
Jacobian

J =
a b
c d

(7.5)

75
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has eigenvalues

λ± =
1

2
(τ ±D) (7.6)

and eigenvectors

~v± =
λ± − d
c

=
b

λ± − a
, (7.7)

where J’s determinant

δ ≡ det J = ad− bc = λ+λ−, (7.8)

trace
τ ≡ trJ = a+ b = λ+ + λ−, (7.9)

and discriminant
D ≡

√
τ2 − 4δ = λ+ − λ−. (7.10)

If the eigenvalues are distinct, then the eigenvectors are linearly independent
and the local flow is

δ~r = c+e
λ+t~v+ + c−e

λ−t~v−, (7.11)

where initial conditions determine the constants c±.

Figure 7.1: Three generic fixed points: saddle (left), node (center), spiral (right).

Three generic kinds of local flow characterize the fixed points, as in Fig. 7.1.
If the eigenvalues are real, then the eigenvectors are real also. If the real eigen-
values have different signs, for example λ− < 0 < λ+, then the fixed point is a
saddle point. The corresponding eigenvectors correspond to stable (incoming)
and unstable (outgoing) directions, and the local flow is hyperbolic. This veloc-
ity field is reminiscent of the motion of marbles rolling on a horse’s saddle. If
the real eigenvalues are both negative, for example λ− < λ+ < 0, then the fixed
point is a stable node. The corresponding eigenvectors correspond to fast and
slow stable directions. The local t→ +∞ flow is tangent to the slower direction,
while the distant (linearized) t→ −∞ is tangent to the faster direction. If the
real eigenvalues are both positive, for example 0 < λ− < λ+, then the fixed
point is an unstable node. The node and saddle eigenvectors are tangent
vectors to the full nonlinear flow.

If the eigenvalues are complex, then the eigenvectors are complex also, so
that the state space points are real. Since the eigenvalues are complex conjugate
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pairs, λ± = α± iω, the components of δ~r are linear combination of exp[α± iω],
which is equivalent to a linear combinations of exp[αt] sin[ωt] and exp[αt] cos[ωt]
by Euler’s formula. Thus, the local flow spirals around the fixed point. If the
real part of the eigenvalues is positive, then the fixed point is an unstable spiral
repellor. If the real part of the eigenvalues is negative, then the fixed point is a
stable spiral attractor. A special nongeneric case is when the real part vanishes,
and the local flow circles a center or elliptic point.
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Figure 7.2: Fixed point classification, according to Jacobian’s trace τ and deter-
minant δ (1st row); representative Jacobian matrices (2nd row); corresponding
eigenvalues, shown in complex planes (3rd row); corresponding linearized flows:
nodes (top), spirals (center), saddles (bottom) (4th row).

The trace and determinant of the Jacobian matrix of partial derivatives can
classify the fixed points. Figure 7.2 summarizes the classification in the {τ, δ}
plane. If the linearized analysis predicts a generic local state space flow (saddles,
nodes, or spirals), then the full nonlinear flow will exhibit topologically similar
behavior nearby. However, if the linearized analysis predicts a nongeneric local
state space flow (such as a center), then the full nonlinear flow may or may not
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exhibit similar behavior nearby.

7.1.2 Compound Example

Often the global behavior of a state space flow extrapolates from the local be-
haviors in the vicinities of the fixed points. For example, consider the nonlinear
flow

ẋ = x− y, (7.12a)

ẏ = x2 − 2. (7.12b)

Fixed points are obviously {±
√

2,±
√

2}. The Jacobian is

J [x, y] =
1 −1

2x 0
. (7.13)

Its eigenvalues at {
√

2,
√

2} are (1± i
√

15)/2, an unstable spiral. Its eigenvalues
at {−

√
2,−
√

2} are (−1±
√

17)/2, a saddle with unstable and stable directions
given by the corresponding eigenvectors {(−1±

√
17)/8, 1}. Figure 7.3 plots the

vector field. Note how the local flows dovetail to form the global flow.

Figure 7.3: 2D velocity field of state space flow, with saddle and unstable spiral.

7.1.3 Homoclinic & Heteroclinic Orbits

Newton’s Second Law of motion is a rich source of many important flows. The
nonlinear double-well nonlinear-spring equation

ẍ = x− x3 (7.14)

is equivalent to the 2D flow

ẋ = y, (7.15a)

ẏ = x− x3. (7.15b)
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Linearizaton predicts a saddle at {0, 0} and two centers at {±1, 0}. Because
the flow is invariant under the transformation {y, t} → {−y,−t}, every orbit in
the upper half plane has a time-reversed mirror-reflected orbit in the lower half
plane. This symmetry ensures that the linear centers are also nonlinear centers.

Figure 7.4(left) plots the flow. Homoclinic orbits connect the unstable
directions of the saddle to its stable directions and separate the state space flow
into three distinct regions. These separatrices require infinite time to traverse.

Newton’s Second Law also provides a familiar example, now viewed in a new
light. The nonlinear pendulum equation

ẍ = − sinx (7.16)

is equivalent to the 2D flow

ẋ = y, (7.17a)

ẏ = −sinx. (7.17b)

Linearizaton predicts saddles at {±π, 0} and a center at {0, 0}. Because the
flow is invariant under the parity transformation {x, y → {−x,−y}}, it must
be both left-right and top-bottom symmetric. This symmetry ensures that the
linear center at the origin is also a nonlinear center.

Figure 7.4(right) plots the flow. Heteroclinic orbits connect the unstable
directions of one saddle to the stable directions of another saddle (and vice
versa) and separate the state space flow into distinct regions (of rotation and
libration). These separatrices require infinite time to traverse.

0

Figure 7.4: Homoclinic orbits connect stable and unstable directions of same
saddle (left). Heteroclinic orbits connect stable and unstable directions of dif-
ferent saddles (right).
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7.2 Limit Cycles

7.2.1 Overview

In 1D state spaces, fixed points alone organize that state space flow. However,
2D state spaces admit another possibility, namely isolated closed trajectories
called limit cycles. Limit cycles may be stable or unstable (or bistable). Stable
limit cycles can model systems that exhibit self-sustained oscillations, like heart
beats. Limit cycles are inherently nonlinear and are qualitatively distinct from
linear centers (elliptic fixed points). A center is a family of closed nonisolated
orbits whose amplitudes depend upon initial conditions. A limit cycle is a closed
isolated orbit whose amplitude (and frequency and waveform) depends on the
system and not on the initial conditions.

7.2.2 Limit Cycle Example

Consider the 2D flow.

ẋ = x− y − x3 − xy2, (7.18a)

ẏ = x+ y − x2y − y3. (7.18b)

A fixed point is the origin. The Jacobian

J [x, y] =
∂xẋ ∂yẋ
∂xẏ ∂y ẏ

=
1− 3x2 − y2 −1− 2xy

1− 2xy 1− x2 − 3y2
(7.19)

at the origin is

J [0, 0] =
+1 −1
+1 +1

, (7.20)

which has eigenvalues λ± = 1 ± i. Thus, the origin is an unstable spiral – but
with a surprise. Converting to polar coordinates to further analyze the spiral
motion is natural. Let

x = r cos θ, (7.21a)

y = r sin θ, (7.21b)

and the 2D flow becomes

ṙ cos θ − r sin θ θ̇ = r cos θ − r sin θ − r3 cos θ, (7.22a)

ṙ sin θ + r cos θ θ̇ = r cos θ + r sin θ − r3 sin θ, (7.22b)

which simplifies to

ṙ = r − r3, (7.23a)

rθ̇ = r (7.23b)



7.2. LIMIT CYCLES 81

or

ṙ = r(1− r)(1 + r), (7.24a)

θ̇ = 1. (7.24b)

The radial and angular dynamics are uncoupled! Integrate the θ equation imme-
diately to get θ = θ0 + t, which represents rotation at constant angular velocity.
The r equation is a nonlinear 1D flow with (unsurprisingly) an unstable fixed
point at r = 0 but also a stable fixed point at r = 1. In the {x, y} plane, this
stable radial fixed point corresponds to a stable limit cycle that separates the
unstable spiral at the origin from infinity, as in Fig. 7.5.

Figure 7.5: Example stable limit cycle at r = 1.

7.2.3 Poincaré-Bendixson Theorem

In 2D state space, are there any asymptotic sets other than fixed points and
limit cycles? The Poincaré-Bendixson theorem says no. Specifically, sup-
pose a state space trajectory is confined to a finite region in a 2D state space.
Then, as t → ∞, the trajectory either approaches a fixed point or a limit cy-
cle. The proof relies on the No-Intersection theorem of ordinary differential
equations. (State space trajectories cannot intersect themselves.)

The Poincaré-Bendixson theorem holds only in 2D, because only in 2D does
a closed curve separate space into an “inside” and an “outside”. An important
consequence is that in 2D, only two types of attractors exist: 0D attractors
(fixed or limit points) and 1D attractors (limit cycles). In particular, no chaotic
attractors exist in 2D.
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7.3 Bifurcations

7.3.1 Overview

Bifurcations in 2D state space generalize bifurcations in 1D state space. Once
again, a signature of a bifurcation is qualitative change in the state space flow
as a parameter varies. Fixed points can be created or destroyed, stabilized or
destabilized. Similarly, limit cycles can be create or destroyed and spontaneous
oscillations can start or stop.

7.3.2 Fixed Point

Fixed point bifurcations in 2D are analogous to fixed point bifurcations in 1D
with no new surprises. The following simple examples introduce exponentially
damped motion orthogonal to the 1D normal forms. For example, the 2D flow

ẋ = µ− x2, (7.25a)

ẏ = −y (7.25b)

exhibits a saddle-node bifurcation. As the parameter µ decreases through
zero, a saddle and a node coalesce and annihilate. The flow

ẋ = µx− x2, (7.26a)

ẏ = −y (7.26b)

exhibits a transcritical bifurcation. As the parameter µ decreases through
zero, the stable node collides with an unstable node at the origin. The nodes
swap stability, thereby stabilizing the origin. The flow

ẋ = µx− x3, (7.27a)

ẏ = −y (7.27b)

exhibits a pitchfork bifurcation. As the parameter µ decreases through zero,
two stable nodes converge on a saddle at the origin, thereby converting it to a
stable node.
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Figure 7.6: Supercritical Hopf bifurcation: a stable limit cycle appears at µ = 0.
As µ increases, the appearance of a stable limit cycle destabilizes a spiral point.

Figure 7.7: Subcritical Hopf bifurcation: a unstable limit cycle disappears at
µ = 0. As µ increases, the disappearance of an unstable limit cycle destabilizes
a spiral point.
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7.3.3 Limit Cycle

Easily concoct a simple example of limit cycle bifurcation by working in polar
coordinates. Let the radial coordinate be governed by the 1D pitchfork bifur-
cation normal form, and the let the angular coordinate increase at a constant
rate,

ṙ = µr − r3, (7.28a)

θ̇ = 1. (7.28b)

In rectangular coordinates, this becomes

ẋ = µx− y − x3 − xy2, (7.29a)

ẏ = x+ µy − x2y − y3. (7.29b)

Since the angular and radial dynamics are uncoupled, and the angular dynamics
is a trivial constant rotation, all the action comes from the pitchfork bifurcation
of the radial coordinate. Note, however, that here r > 0. The origin is a stable
spiral for µ < 0. However, as µ increase through zero, this spiral destabilizes
and gives birth to a stable limit cycle at r =

√
µ. This is an example of a

supercritical Hopf bifurcation. For µ < 0, perturbations damp out naturally,
while for µ > 0, perturbations grow into stable oscillations, as in Fig. 7.6.

Notice the very slow spiral flow as µ passes through zero. Linearized stability
analysis predicts a nongeneric center point at the origin for µ = 0. However, the
full nonlinear equations exhibit a nonexponential spiral. The linearized analysis
can fail only when it predicts such nongeneric behavior.

Similarly, consider the flow

ṙ = µr + r3, (7.30a)

θ̇ = 1. (7.30b)

Again, the origin is a stable spiral for µ < 0, but now it is accompanied by an
unstable limit cycle at r =

√
−µ. As µ increase through zero, the unstable limit

cycle shrinks to zero and destabilizes the spiral at the origin. This is an example
of a subcritical Hopf bifurcation, as in Fig. 7.7.
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Problems

1. 2D Flows. Use Mathematica to analyze the 2D flows

ẋ = x− y, (7.31a)

ẏ = x2 − 4, (7.31b)

and

ẋ = y − y3, (7.32a)

ẏ = −x− y2. (7.32b)

Find and classify each fixed point. Linearize and plot the local flows. Plot
the global flows.

2. Newton’s Second Law. Analyze the nonlinear pendulum

ẍ = − sinx (7.33)

and nonlinear spring
ẍ = x− x3 (7.34)

flows.

3. Van der Pol Oscillator. Use Mathematica to investigate the 2D flow

ẍ− µ(1− x2)ẋ = −x, (7.35)

where µ controls the nonlinear damping. In the 1920s, this oscillator was
constructed using vacuum tubes. It beat spontaneously like a heart, but
also exhibited irregular “noise”, which was much later understood to be
chaos.
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Chapter 8

3D Flows

Physicist George Gamow wrote a general science book entitled One, Two, Three,
... Infinity, which well describes nonlinear dynamical flows. In nonlinear dy-
namics, 2D state spaces are much richer than 1D state spaces, but 3D spaces are
much richer still. Like infinite dimensional state spaces, 3D state spaces exhibit
strange attracting sets characterized geometrically by fractional dimensions and
characterized dynamically by extreme sensitivity to initial conditions, or chaos.

8.1 Fixed Points

3D flows are governed by differential equations of the form

~̇r = ~v[~r ] (8.1)

or

d

dt

x
y
z

=
vx
vy
vz

. (8.2)

The state space flow is organized in part by the fixed points ~r∗ for which the
velocity field ~v[~r∗]. Taylor expand the velocity field about these fixed points
to infer the local linearized flow

δ~̇r = Jδ~r, (8.3)

where

J =
∂~v

∂~r
=

∂xvx ∂yvx ∂zvx
∂xvy ∂yvy ∂zvy
∂xvz ∂yvz ∂zvz

(8.4)

is the Jacobian matrix of partial derivatives evaluated at the fixed point ~r∗,
and ~r = ~r − ~r∗ is the relative position with respect to the fixed point.
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Node or Attractor (index 0; 3D inset, 0D outset)

Spiral Node or Attractor (index 0; 3D inset, 0D outset)

Saddle (index 1; 2D inset, 1D outset)

Spiral Saddle (index 1; 2D inset, 1D outset)

Saddle (index 2; 1D inset, 2D outset)

Spiral Saddle (index 2; 1D inset, 2D outset)

Repellor (index 3; 0D inset, 3D outset)

Spiral Repellor (index 3; 0D inset, 3D outset)

 

Figure 8.1: Classification of 3D fixed points.

The 3D Jacobian matrix generalizes the single derivative of the 1D theory
and the corresponding 2D matrix of the 2D theory. Its eigenvalues and eigen-
vectors determine the linearized state space flow. Explicit expressions for these
three eigenvalues and eigenvectors are cumbersome and not very useful.

If the eigenvalues λn are distinct, then the eigenvectors ~vn are linearly inde-
pendent and the local flow is

δ~̇r = c1e
λ1t~v1 + c2e

λ2t~v2 + c3e
λ3t~v3, (8.5)

where the constants cn are determined by the initial conditions. Four pairs
of generic local flow characterize the fixed points: nodes or attractors, repel-
lors, and two kinds of saddles. Classify these according to the location of the
eigenvalues in the complex plane.

To help distinguish higher-dimensional saddles, whose stable and unstable
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locally-Euclidean manifolds may have one or two dimensions, introduce the
following terminology. Let the index of a fixed point denote the number of
dimensions of its unstable manifold. Alternately, the index is the number of
eigenvalues of a fixed point whose real parts are positive. Let the inset (or “in-
set”) and outset (or “out-set”) denote, respectively, the sets of all incoming
and outgoing trajectories. Figure 8.1 classifies generic 3D fixed points.

8.2 Limit Cycles

Limit cycles also help organize 3D flows. These can combine with fixed points
in several different ways. Figure 8.2 demonstrates a saddle cycle.

Figure 8.2: Schematic of a saddle cycle in 3D state space.

8.3 Lorenz Flow

8.3.1 Equations

The most famous 3D flow is the Lorenz model of fluid convection

ẋ = −σx+ σy, (8.6a)

ẏ = −y + ρx− xz, (8.6b)

ẋ = −βz + xy. (8.6c)

The derivation of these equations from the Navier-Stokes fluid flow equations is
complicated and not specifically relevant. Take them as given. Notice the two
nonlinear terms xz and xy. The 3D parameter space {σ, β, ρ} is large. Like
Lorenz, focus on σ = 10, β = 8/3, and 0 < ρ < 28. (ρ is proportional to the
experimentally accessible temperature differential in the convection model.)

8.3.2 Obervations

First, the Lorenz flow is invariant under reflections in the z axis. If {x[t], y[t], z[t]}
is a solution, then {−x[t],−y[t],−z[t]} is also solution. Thus, if a solution is not
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itself symmetric, then it must have a symmetric partner.
Second, the Lorenz flow is dissipative. Since the divergence of the flow

~∇ · ~v = ∂xvx + ∂yvy + ∂zvz = −(σ + β + 1) < 0 (8.7)

is always negative, state space volumes must decrease

V̇ =

∫
~∇ · ~v dV = −(σ + β + 1)V < 0 (8.8)

and shrink exponentially to zero like

V [t] = V [0]e−(σ+β+1)t. (8.9)

The flow in the 3D state space must be squeezed onto an attractor of smaller
dimension, and hence zero volume.

Third, a trapping region shows that the Lorenz flow cannot escape to
infinity, but must remain bounded. Consider the sphere defined by

r2 = x2 + y2 + (z − ρ− σ)2. (8.10)

The distance r to the point {0, 0, ρ+ σ} decreases along an orbit provided

0 < (r2) ˙ = 2xẋ+ 2yẏ + 2(z − ρ− σ)ż, (8.11)

which via the Lorentz equations becomes

0 < −σx2 − y2 − βz(z − ρ− σ), (8.12)

and after completing the square and rearranging becomes

σx2 + y2 + β

(
z − ρ+ σ

2

)2

> β

(
ρ+ σ

2

)2

. (8.13)

Hence, r must decrease for all orbits outside this ellipsoid, which is centered on
{0, 0, (ρ+ σ)/2}.

8.3.3 Bifurcation

The Lorenz flow has 3 fixed points, the origin O and the symmetrically placed
C ≡ {±

√
β(ρ− 1),±

√
β(ρ− 1), ρ−1}. They may be classified according to the

eigenvalues of the Jacobian matrix of partial derivatives

J [x, y, z] =
−σ σ 0
ρ− z −1 −x
y x −β

(8.14)

evaluated at the fixed points. The characteristic equation for the eigenvalues
λ at O is

0 = (λ+ β)
(
λ2 + (σ + 1)λ− σ(ρ− 1)

)
, (8.15)
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and the characteristic equation at C± is

0 = λ3 + (1 + σ + β)λ2 + β(ρ+ σ)λ+ 2σβ(ρ− 1). (8.16)

Explicit solutions to generic cubic equations are available, but they are cumber-
some. Figure 8.3 summarizes the qualitative changes in the fixed point stability
below for σ = 10, β = 8/3, and 0 < ρ < 28.

24.7

13.9

1
0  

Figure 8.3: Lorenz bifurcation diagram (left); fixed point eigenvalues in the
complex plane (right). Other parameters σ = 10 and β = 8/3.

Imagine increasing the parameter ρ from zero. The origin O is an attracting
fixed point, a node, for ρ < 1. But O loses its stability in a supercritical
pitchfork bifurcation at ρ = 1, when it gives rise to a pair of nodes C±, which
become stable spiral saddles at ρ ≈ 1.35. However, at ρ ≈ 24.7, C± lose stability
by absorbing an unstable limit cycle in a subcritical Hopf bifurcation. Now,
imagine decreasing ρ from this point. The saddle cycles grow in size until they
touch the stable and unstable manifolds of the O saddle, at ρ ≈ 13.9, and
disappear in a homoclinic bifurcation.

The bifurcation diagram reflects the behavior of the fixed points’ eigenval-
ues in the complex plane. Notice, in particular, the transitions that occur at
ρ = 1 and ρ ≈ 24.7. For ρ < 1, all orbits are attracted to the origin O. For
1 < ρ . 24.7, orbits are deflected from O to the pair C±. These spiral points
become weaker and weaker as ρ increases, resulting in transient chaos. Fi-
nally, for 24.7 . ρ, the spirals become unstable and orbits bounce back and
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Single chaotic orbit bounces between unstable spirals.

Six orbits asymptote to a pair of weakly stable spirals.

Six orbits asymptote to a pair of stable spirals.

Six orbits asymptote to a pair of strongly stable spirals.

Six orbits asymptote to a pair of nodes.

Six orbits asymptote to a node at the origin.

Six orbits asymptote to a pair of stable spirals.

Figure 8.4: Lorenz {x, y, z} flows for 0 < ρ < 32. Other parameters σ = 10 and
β = 8/3. Plot ranges are larger for larger ρ.
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forth between C+ and C− on a strange and chaotic attractor. Figure 8.4
summarizes the Lorenz bifurcating flows. The Lorenz velocity field results from
a pair of misaligned vortices separated by a saddle.

8.4 Rössler Flow

8.4.1 Equations

Another famous 3D flow is due to the Rössler system

ẋ = −y − z (8.17a)

ẏ = x+ ay, (8.17b)

ż = b− cz + xz. (8.17c)

This is an artificial flow designed by Otto Rössler [13]. It mimics the folding
and bending of taffy in a taffy machine. It contains only one nonlinear term,
the xz in the third equation. The 3D parameter space {a, b, c} is large. Focus
attention on 0 < a < 2, b = 2, and c = 4.

8.4.2 Observations

The Rössler flow lacks the symmetry of the Lorenz flow, which makes it more
difficult to analyze. Since the divergence of the flow is

~∇ · ~v = ∂xvx + ∂yvy + ∂zvz = a− c+ x, (8.18)

state space volumes sometimes decrease and sometimes increase. No global
trapping region exists, as orbits can be spun out to infinity (by the far fixed
point).

8.4.3 Bifurcation

The flow has 2 fixed points, ~x± = {c ± D,−(c ± D)/a, (c ± D)/a}/2, where
D ≡

√
c2 − 4ab. ~x+ is near the origin, while ~x− is faraway; they coalesce and

disappear at c2 = 4ab. The fixed points may be classified according to the
eigenvalues of the Jacobian matrix of partial derivatives

J [x, y, z] =
0 −1 −1
1 a 0
z 0 x− c

(8.19)

evaluated at the fixed points. The characteristic equation for the eigenvalues
λ is

λ3 + (c− a− x)λ2 + (1− ac+ ax+ z)λ+ (c− x− az) = 0. (8.20)
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Figure 8.5: Rössler flow for a = 0.1 (left), illustrating the interaction of the near
and far fixed points. Schematic bifurcation diagram (right). Other parameters
b = 2 and c = 4.

Explicit solutions to generic cubic equations are available, but they are cumber-
some. Figure 8.5 summarizes the qualitative changes in the fixed point stability
for 0 < a < 2, b = 2, and c = 4.

Imagine increasing the parameter a from zero. The near fixed point is a
spiral attractor (index 0). The far fixed point is a spiral saddle (index 1). Its
2D inset acts as a separatrix by either spiralling an orbit out to infinity or
spiralling it into the near fixed point at the origin.

For a . 0.12, orbits near the origin spiral into the near fixed point. At
a ≈ 0.12, the stable spiral at the near fixed point undergoes a Hopf bifurcation
as it becomes unstable in giving birth to a stable limit cycle. The stable limit
cycle grows in size until, at a ≈ 0.35, the cycle bifurcates into a stable 2-cycle.
At a ≈ 0.375, the cycle bifurcates again into a stable 4-cycle. This continues
until a ∞-cycle chaotic attractor emerges at a ≈ 0.398. Thereafter, windows of
periodicity appear amid the chaos. For example, at a ≈ 0.411, a stable 3-cycle
exists. Figure 8.6 summarizes the bifurcating flows.

The Rössler velocity field results from the interaction of two crossed vortices,
one near the origin, the other far away, pointing at the “fold” in the Rössler
“band”.
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Stable 3 cycle (period 3) window.

Band strange attractor. 

 Stable 4 cycle.

Stable cycle.  

Orbit asymptotes to a stable cycle.

Orbit asymptotes to a strongly stable spiral.

Stable 2 cycle. Orbit asymptotes to a weakly stable spiral.
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Figure 8.6: Rössler {x, y, z} flows for 0 < a < 0.411. Other parameters b = 2
and c = 4. Vertical plot ranges are larger for larger a.
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8.5 Strange & Chaotic Attractors

Attractors are invariant sets that attract all sufficiently near orbits. Orbits on
a chaotic attractor exhibit sensitive dependence on initial conditions, while
a strange attractor exhibits the self-similar microstructure of a fractal. The
properties of strange and chaotic often occur together, but not always: there
exists strange nonchaotic attractors. However, the Lorenz and Rössler at-
tractors are both strange and chaotic.

The splitting and interlacing of the Lorenz flow produce a strange attractor.
Imagine a cloud of initial points on the attractor being split apart by the saddle
at the origin, spun around each unstable spiral many times, and finally interlaced
at the saddle again. The layers seem to merge into a 2D surface, but this
is impossible, as merging surfaces would imply intersecting trajectories which
would violate the uniqueness of the state space flow. Instead, tiny gaps remain
on all scales. Figure 8.7(top) illustrates the splitting and interlacing of the
Lorenz flow.

It is the continuous folding of the Rössler flow that produces a strange at-
tractor. The near spiral alone would generate a flat band attractor, but the
interaction of the far spiral lifts the band into the third dimension and folds it,
along the outer edge, back into the band. As with the Lorenz flow, the merg-
ing can not be complete. Tiny gaps remain on all scales. Figure 8.7(bottom)
illustrates the splitting and interlacing of the Rössler flow.

Figure 8.7: Splitting and interlacing of the Lorenz flow (top); continuous folding
of the Rössler flow (bottom).

Both the Lorenz flow and the Rössler flow can be reduced to quasi-1D maps,
either by taking a 2D Poincaré section or by plotting successive maxima against
each other, as in Fig. 8.8. The steep slopes of the maps reveal that nearby tra-
jectories diverge exponentially. This provides the extreme sensitivity to initial
conditions that is the hallmark of chaotic attractors.
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Problems

1. Chua Circuit. Use Mathematica to investigate the 3D flow from the
circuit equations

ẋ = α(y − x− g[x]), (8.21a)

ẏ = x− y + z, (8.21b)

ż = −βy, (8.21c)

where the nonlinear conductance

g[x] = m1x+
1

2
(m0 −m1)(|x+ 1| − |x− 1|). (8.22)

Try m0 = −8/7, m1 = −5/7, α = 15.6, and vary β. Can you find the
double scroll attractor?

2. Duffing Oscillator. Use Mathematica to investigate the 3D flow from
the forced, damped bistable oscillator described by

mẍ = ax− bx3 − γẋ+A cos[ωt+ δ]. (8.23)

Try bistable potential well a = 0.5 and b = 0.5, mass m = 1.0, viscosity
γ = 0.15, forcing amplitude and frequency A = 0.19 and ω = 0.833. What
happens as the phase shift δ varies? Strobe the motion once each forcing
period to create a famous strange attractor. (Hint: Use Mathematica’s
Reap and Sow functions in conjunction with NDSolve and WhenEvent.)



Chapter 9

The N -Body Problem

9.1 2-Bodies

By 1682, Newton himself had solved the central force “inverse” problem (orbit
to force law), using his laws of motion and gravity to recover Kepler’s laws. By
1710, Johann Bernoulli had solved the “direct” problem (force law to orbit) for
2×(3+3) = 12 position and velocity components subject to 1+3+3+3−1−1 =
11 motion constants (energy, center-of-mass position, linear momentum, angular
momentum, eccentricity, with two interdependencies), where the only remaining
degree of freedom is the zero of time.

Figure 9.1: A Kepler ellipse rotated through angle δ in the complex plane, where
{1, i} and {eiθ, ieiθ} act like rectangular and polar basis vectors.

In the reduced 2D problem, a point mass orbits a fixed center. Since the
motion is planar by angular momentum conservation, efficiently solve it using
complex numbers

z = x+ iy = reiθ, (9.1)

99
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where i =
√
−1. In the complex plane, {1, i} act like rectangular basis vectors,

and {eiθ, ieiθ} act like polar basis vectors, as in Fig. 9.1, because multiplying a
complex number by i = eiπ/2 rotates it 90◦. Suppose a mass m orbits a fixed
mass M at z[t]. Its velocity

ż = ṙeiθ + reiθiθ

=
(
ṙ + irθ̇

)
eiθ, (9.2)

and its acceleration

z̈ =
(
r̈ + iṙθ̇ + irθ̈

)
eiθ +

(
ṙ + irθ̇

)
eiθiθ̇

=
(
r̈ − rθ̈2

)
eiθ +

(
rθ̈ + 2ṙθ̇

)
ieiθ. (9.3)

where the dots are Newton’s notation for time derivatives. Newton’s second law
of motion implies

z̈ = − µ
r2
eiθ, (9.4)

where µ = GM . Compare with Eq. 9.3 to infer

0 = rθ̈ + 2ṙθ̇ =
2rṙθ̇ + r2θ̈

r
=

1

r

(
r2θ̇
)̇

(9.5)

and so
r2θ̇ = constant ≡ λ (9.6)

is a motion constant (proportional to the angular momentum). Substitute into
the motion Eq. 9.4 to find

z̈ = −µ
λ
θ̇eiθ (9.7)

or
iλz̈ = −iµθ̇eiθ = −µ

(
eiθ
)
˙ (9.8)

or
0 =

(
iλż + µeiθ

)
˙ (9.9)

and so
iλż + µeiθ = constant ≡ ε eiδ (9.10)

is a motion constant (proportional to the orbital eccentricity), where ε and δ
are real. Use the velocity and angular momentum to write

ε eiδ = iλ
(
ṙ + irθ̇

)
eiθ + µeiθ =

(
iλṙ − λ2

r
+ µ

)
eiθ (9.11)

or

ε ei(δ−θ) = iλṙ − λ2

r
+ µ (9.12)

whose real part is

ε cos[δ − θ] = −λ
2

r
+ µ. (9.13)
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Solve for

r =
λ2

µ− ε cos[δ − θ]
=

`

1− e cos[θ − δ]
, (9.14)

where ` = λ2/µ and e = ε/µ, which is the equation of an ellipse focused at the
origin and rotated through an angle δ.

Although Newton’s gravitational force is spherically and circularly symmet-
ric, the Kepler solutions are elliptical, an example of spontaneous symmetry
breaking. Figure 9.2 illustrates and orbit. Kepler tried unsuccessfully to fit a
circle to Mars orbit, but reluctantly settled for an ellipse. However, his circle is
in velocity space.

Figure 9.2: Position versus time for a mass bound to another by gravity sweeps
out an ellipse; tangents are velocities and rainbow hues code time: a {z, ż, t} =
{x, y, ẋ, ẏ, t} 5-dimensional graph (left). Just the velocity vectors sweep out a
circle (right), which might have pleased Kepler.

9.2 3-Bodies

In 1895, for his 60th birthday, King Oscar II of Sweden and Norway established
a mathematics prize, whose first challenge was finding a convergent power series
sollution to the 3-body problem for 3 × (3 + 3) = 18 position and momentum
components subject to only 1 + 3 + 3 + 3 = 10 motion constants (energy, center-
of-mass position, linear momentum, angular momentum). No one succeeded,
although the prize went to Henri Poincaré, for his discovery of what we now call
chaos [11].

In 1913, by excluding a negligible set of initial conditions of zero angular
moment (to eliminate triple collisions), Karl Sundman proved the existence
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of a convergent power series solution for the 3-body problem [15]. But in-
finitely many possible double collisions causes this series to converge impracti-
cally slowly, and Sundman’s solution does not contradict Poincaré’s discovery
of deterministic but practically unpredictable motion.

9.3 Restricted 3-Body Problem

9.3.1 Inertial Reference Frame

Poincaré considered the restricted, planar, circular 3-body problem, where
a small mass moves in the plane of two large masses orbiting each other in circles,
and the small mass is pulled by the large masses but not vice versa.

Assume the large masses

M1 = fM, (9.15a)

M2 = (1− f)M (9.15b)

and their distances from their center-of-mass

d1 = dM2/M, (9.16a)

d2 = dM1/M. (9.16b)

By Kepler’s third law, the period of the large masses

2π

ω
= T =

√
4π2

GM
d3. (9.17)

The motion of the large masses

~d1 = +d1{cosωt, sinωt, 0}, (9.18a)

~d2 = −d2{cosωt, sinωt, 0} (9.18b)

= +d2{cos[ωt+ π], sin[ωt+ π], 0}.

Position of small mass relative to large masses

δ~r1 = ~r − ~d1, (9.19a)

δ~r2 = ~r − ~d2. (9.19b)

Newton’s second law implies

~̈r = −GM1

δr21
δr̂1 −

GM2

δr22
δr̂2. (9.20)

Initial conditions

~r [0] = {x0, 0, 0}, (9.21a)

~̇r [0] = {0, v0 + ωx0, 0} (9.21b)
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Table 9.1: Planar circular 3-body problem parameters.
description symbol value

gravitational constant GM 1
large masses distance d 1
large masses fraction f 0.4

small mass initial distance x0 −0.11659
small mass initial speed v0 +1.39641

pseudo-energy (Jacobi constant) ε −1.70711
unstable manifold slope s −1.818

Figure 9.3: Small mass (black) orbiting large masses (gray) in an inertial ref-
erence frame (left) and a rotating frame (right). Start (red) and later (blue)
positions highlight correspondence.

complete the initial value problem, and Table 9.1 lists the parameters. Nu-
merical integration generates the Fig. 9.3(left) orbit.

Because the small mass does not pull the large masses in this model, energy
is not conserved, but the specific pseudo-energy

ε =
Ẽ

m
=

1

2
~̇r · ~̇r − GM1

δr1
− GM2

δr2
− ~ω · ~λ, (9.22)

where the specific angular momentum

~λ =
~L

m
= ~r × ~̇r, (9.23)

is proportional to the Jacobi motion constant.
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9.3.2 Rotating Reference Frame

In a reference frame rotating with the large masses, they are still, and the small
mass motion equations

~̈r = −GM1

δr21
δr̂1 −

GM2

δr22
δr̂2 − ~ω × (~ω × ~r)− 2~ω × ~̇r (9.24)

include centrifugal and coriolis pseudo-accelerations. Initial conditions

~r [0] = {x0, 0, 0}, (9.25a)

~̇r [0] = {0, v0, 0}. (9.25b)

Numerical integration generates the rotating Fig. 9.3(right) orbit. The specific
pseudo-energy

ε =
Ẽ

m
=

1

2
~̇r · ~̇r − GM1

δr1
− GM2

δr2
− 1

2
~r · ~r (9.26)

is constant.

9.3.3 Poincaré Section

The {x, y, vx, vy} state space flow of the small mass m is 4D. Figure 9.4 includes
a 3D {x, y, vx} projection (top) and a 2D {x, 0, vx, v0} cross section (bottom).
The flow is a continuous curve while the section is a set of points, the two
trefoils, each consisting of three hyperbolic period-6 points whose stable and
unstable manifolds enclose three “exterior” elliptical points and one “interior”
elliptical point, as in Fig. 9.5, where the colors code sections of orbits with
slightly different initial conditions.

In his King Oscar prize-winning essay, Poincaré thought that the stable and
unstable manifolds of adjacent hyperbolic points coincide. But just after his
essay was published, he realized that they could cross transversely, and each
crossing map to another crossing infinitely often, with the manifolds oscillating
with larger and larger amplitude, as in Fig. 9.6, creating a chaotic tangle. He
wrote, “These intersections form a sort of trellis, web, or infinitely tight mesh
. . . One is struck by the complexity of this figure, which I shall not even attempt
to draw.” His publication was recalled, revised, and republished.
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Figure 9.4: Small mass 3D {x, y, vx} projection of full 4D {x, y, vx, vy} flow
(top); {x, 0, vx, v0} cross section (bottom).
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Figure 9.5: Close-up of small mass Poincaré section right half, where point
colors correspond to slightly different initial conditions. Colored “curves” are
not continuously traversed.

Figure 9.6: Further closeup of the rightmost unstable hyperbolic point including
a Poincaré trellis or chaotic tangle (left). Schematic diagram illustrates a state
space flow dominated by three hyperbolic period-6 fixed points (top-right).
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Problems

1. Rectangular Ellipse. Transform the Eq. 9.14 ellipse into rectangular
coordinates, and write it in the standard form of an ellipse. Find the
major and minor radii.

2. Inertial Jacobi Constant. Show that the time-derivative of the Eq. 9.22
inertial pseudo-energy vanishes.

3. Rotational Jacobi Constant. Show that the time-derivative of the
Eq. 9.26 rotational pseudo-energy vanishes.
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Chapter 10

Fractals

After long times, the Lorenz and Rössler flows settle down to complicated state
space sets called fractals, a term coined by Benoit Mandelbrot in the 1970s.
Fractals are complex geometric shapes with fine structure at arbitrarily small
scales. This fine structure, while sometimes exactly self-similar, is often only
approximately or statistically self-similar.

10.1 Canonical Examples

10.1.1 Cantor Dust

The prototypical fractal set was invented in the late 1800s by mathematician
Georg Cantor. Cantor’s “middle-third” set can be approached via the following
recursive construction. Begin with the unit interval and remove the (open)
middle thirds of each successive remaining interval, as in Fig. 10.1.

Figure 10.1: First six steps in the recursive construction of the Cantor dust.

If the set remaining after the nth step is Cn, then C ≡ C∞ = limn→∞ Cn
is the Cantor set. Apparently, it consists of an infinite number of infinitesimal
pieces separated by gaps of various sizes, large and small.

The Cantor set C is an invaluable counter-example in topology, as it si-
multaneously manifests a number of seemingly contradictory properties. C is a
“large” set in the sense that it contains an uncountable infinity of points, yet
C is a “small” in that its total length is zero: Ln = (2/3)n → 0 as n → ∞.
Because C contains no intervals, it is totally disconnected, yet because each of
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its points has (infinitely many) neighbors arbitrarily close, C has no isolated
points: its points are simultaneously “spread apart” and “packed together”.

Clearly, C has structure on all scales. In fact, it is exactly self-similar, made
of smaller copies of itself, one part being equal to the whole. It is more than a
point but less than a line and can be assigned a dimension between 0 and 1.

10.1.2 Koch Curve

A second prototypical fractal set was invented by mathematician Helge von
Koch. Koch’s set can be approached via the following recursive construction.
Begin with the unit interval, and erect equilateral triangles on each successive
middle third, as in Fig. 10.2.

Figure 10.2: First five steps in the recursive construction of the Koch curve.

If the curve at the nth step is Kn, then K ≡ K∞ = limn→Kn is the Koch
curve. Apparently, it consists of an infinite wiggly, nowhere differentiable curve.

The Koch curve K suggests a very rugged coastline and recalls Mandelbrot’s
famous article “How long is the coast of Britain?” [8] inspired by work of Lewis
Fry Richardson. In fact, K is infinitely long: Ln = (4/3)n →∞ as n→∞.

Clearly, K has structure on all scales. In fact, it is exactly self-similar, made
of smaller copies of itself, one part being equal to the whole. It is more than a
line but less than an area and can be assigned a dimension between 1 and 2.
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10.2 Dimension Generalizations

10.2.1 Coordinate

To generalize the notion of dimension to include the fractional dimensions of
fractal sets, start with the very intuitive coordinate dimension. The coordi-
nate dimension of a set is the minimum number of coordinates needed to locate
every point in the set. For example, a line has coordinate dimension 1 because
points along the line can be located by a single coordinate, say, the distance
from one end. Similarly, a plane has coordinate dimension 2 because points in
the plane can be located by 2 coordinates, rectangular {x, y} or polar {r, θ}.

Unfortunately, the coordinate dimension fails for fractal sets. For example,
a point in the Koch curve K cannot be located by its distance from one end
because the curve is infinitely long and every point is infinitely far from every
other point. Also, a point in the Cantor dust C cannot be located by its distance
from one end because it is a set of measure zero.

10.2.2 Similarity

First generalize the notion dimension to include exactly self-similar sets like
the Cantor dust and the Koch curve, which consist of scaled-down copies of
themselves. Familiar self-similar sets include lines, squares, and cubes.

Notice that a square consists of N = 4 copies of itself each scaled down by a
factor of s = 2, or N = 9 copies of itself each scaled down by a factor of s = 3,
as in Fig. 10.3(top). More generally, a square consists of N = s2 copies of itself
scaled down by a factor of s. Similarly, a cube consists of N = 8 copies of itself
scaled down by a factor of s = 2, or N = 27 copies of itself scaled down by
a factor of s = 3, as in Fig. 10.3(bottom). More generally, a cube consists of
N = s3 copies of itself scaled down by a factor of s.

Figure 10.3: A square consists of N = s2 copies of itself scaled down by a factor
s (top), while a cube consists of N = s3 copies of itself scaled down by a factor
s (bottom).
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An arbitrary self-similar set consists of N = sd copies of itself scaled down
by a factor of s, where d is the similarity dimension of the set. Formally, the
similarity dimension can be expressed as

d =
logN

log s
. (10.1)

The Cantor dust C consists of 2 copies of itself, each scaled down by a factor
of 3. Hence, the similarity dimension of C is d = log 2/ log 3 ≈ 0.63 < 1. The
Koch curve K consists of 4 copies of itself, each scaled down by a factor of 3.
Hence, the similarity dimension of K is d = log 4/ log 3 ≈ 1.26 > 1.

10.2.3 Box

To handle fractal sets that are not exactly self-similar, generalize the notion
of dimension even further. Multiple ways to do this exist, but each involves
measuring a set at a certain resolution ε and studying how its size varies as the
resolution increases ε→ 0.

Consider a line (embedded in a plane). Imagine covering the line with boxes
of size ε, as in Fig. 10.4(left). Let Nε be the minimum number of boxes needed
to cover the line. Clearly, halving the size of each box ε, doubles the number of
boxes Nε. Thus, Nε ∝ ε−1 for a line. Similarly, imagine covering an area with
boxes of size ε, as in Fig. 10.4(right). Halving the size of each box ε quadruples
the number of boxes Nε. Thus, Nε ∝ ε−2 for an area.

Figure 10.4: Minimal covering of a line by Nε ∝ ε−1 boxes of size ε (left), and
minimal covering of an area by Nε ∝ ε−2 boxes of size ε (right).

For a minimal covering of an arbitrary set, demand that Nε ∝ ε−d, where
d is the box dimension of the set. (The box dimension is also known as
the capacity dimension, and it is related to the more technical Hausdorff
dimension.) Formally, write

Nε = N1ε
−d. (10.2)

A plot logNε versus log ε asymptotes to a straight line of slope −d, for small
ε, as in Fig. 10.5. However, the plot departs from the straight line, for large ε,
because only a crude minimal covering of a given set is possible, for too large
boxes. To formally eliminate this ambiguity, take the limit

d = lim
ε→0

logNε
log ε−1

= − lim
ε→0

logNε
log ε

. (10.3)
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Figure 10.5: Extracting a box dimension from covering data, with typical errors
at large ε.

Exploit the recursive definition of the Cantor dust and the Koch curve to
find their box dimensions. At the nth stage in the construction of the Cantor
dust C, N = 2n boxes of length ε = 1/3n will just cover the set. Because ε→ 0
as n→,

d = lim
n→∞

log 2n

log 3n
=

log 2

log 3
≈ 0.63 (10.4)

as before. Similarly, at the nth stage in the construction of the Koch curve K,
N = 4n boxes of length ε = 1/3n will just cover the set. Hence,

d = lim
n→∞

log 4n

log 3n
=

log 4

log 3
≈ 1.26 (10.5)

as before.

10.2.4 Correlation

Unfortunately, the box dimension is often prohibitively computationally inten-
sive, especially when applied to attractors of high dimension. Seek a more
efficient dimension algorithm to apply to dynamical data.

A starting point is the fact that, crudely speaking, a point has more close
neighbors in higher dimensions than in lower dimensions. For example, the
number of points Nε in a d-dimensional ball (interval, disk, sphere, hypersphere)
of radius ε scales like Nε ∝ εd, as in Fig. 10.6.

Embed an attractor in a sufficiently large space, choose a point on the at-
tractor, find the number of points Nε in the attractor within a ball of radius ε,
average this over the attractor to find N̄ε, and demand that N̄ε ∝ εd, where d
is the correlation dimension of the attractor. Formally, write

N̄ε = N̄1ε
d. (10.6)

A plot log N̄ε versus log ε is linear with slope d, for ε not too small or not too
large. However, the data saturates for small and large ε, as in Fig. 10.7. The
balls must be smaller than the size of the attractor but larger than the minimum
separation between points on the attractor (whose resolution is typically limited
by experimental or numerical constraints).
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Figure 10.6: Number of points in a circle scales like the area or radius squared.

Figure 10.7: Extracting a correlation dimension, with data saturating at small
and large ε.

Because the correlation dimension is sensitive to the density of points on the
attractor, it equals the box dimension only if the points on the attractor are
uniformly distributed. This is not always the case, but the correlation dimension
is always greater than or equal to the box dimension.

10.3 Applications

At the onset of chaos µ ≈ 3.56994, the correlation dimension of the logistic
map attractor is d = 0.500 ± 0.005. At the standard parameters ρ = 28,
σ = 10, and β = 8/3, the correlation dimension of the Lorenz attractor is
d = 2.05± 0.01.
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Problems

1. Koch Variation. To what dimension does the following sequence of
curves converge?
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Appendix A

Mathematics Background

A.1 Complex Numbers

Complex numbers are used extensively in quantum mechanics. They also enable
beautiful theorems in mathematics, like the Fundamental Theorem of Algebra,
which says that an nth degree polynomial has exactly n complex roots

z = x+ iy, (A.1)

where x and y are real numbers and the imaginary unit

i =
√
−1. (A.2)

A common operation is complex conjugation

z∗ = x− iy = z. (A.3)

The real and imaginary parts of a complex number,

Re z =
z + z∗

2
= x (A.4)

and

Im z =
z − z∗

2i
= y (A.5)

are both real. The modulus

mod z = |z| =
√
z∗z =

√
zz∗ =

√
x2 + y2 (A.6)

and argument

arg z = atan
[y
x

]
(A.7)

offer an alternate way of specifying the complex number, as in Figure A.1.
Euler’s theorem

eiθ = cos θ + i sin θ, (A.8)
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Figure A.1: The complex plane.

which can be proved by expanding each term in a Taylor series, allows us to
interconvert the polar and rectangular representations of a complex number by

reiθ = r cos θ + ir sin θ = x+ iy, (A.9)

where r = modz and θ = arg z. A special case of Euler’s theorem, θ = π,
generates the remarkable formula (purportedly engraved on Euler’s tombstone)

eiπ + 1 = 0, (A.10)

which elegantly and surprisingly interconnects the base of the natural loga-
rithms, the imaginary unit, the ratio of a circle’s circumference to its diameter,
unity, and zero!

A.2 Hyperbolic Functions

Hyperbolic functions are intimately related to trigonometric functions. Recall
Euler’s theorem

eiθ = cos θ + i sin θ (A.11)

and its complex conjugate

e−iθ = cos θ − i sin θ. (A.12)

Adding and subtracting implies

cos θ =
eiθ + e−iθ

2
(A.13)
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and

sin θ =
eiθ − e−iθ

2i
. (A.14)

The substitution θ → iθ replaces a real angle with an imaginary angle and
generates hyperbolic functions from trigonometric functions. For example,

cos[iθ] =
e−θ + eθ

2
= cosh θ (A.15)

and

sin[iθ] =
e−θ − eθ

2i
= i

eθ − e−θ

2
= i sinh θ. (A.16)

Hence,

cosh[iθ] =
e−iθ + eiθ

2
= cos θ (A.17)

and

sinh[iθ] =
e−iθ − eiθ

2i
= i

eiθ − e−iθ

2
= i sin θ. (A.18)

Notice how the cosine “swallows” the i when becoming a hyperbolic cosine,
while the sine “spits out” the i when becoming a hyperbolic sine. (Similarly,
the cosine swallows a minus sign, cos[−θ] = cos θ, while the sine spits out a
minus sign, sin[−θ] = − sin[θ].)

Figure A.2: Graphs of hyperbolic functions, with tanh θ = sinh θ/ cosh θ.

Every trigonometric identity corresponds to a hyperbolic identity. For ex-
ample, take (cos θ)

2
+ (sin θ)

2
= 1 and substitute θ → iθ to get (cos[iθ])

2
+

(sin[iθ])
2

= 1 or

(cosh θ)
2 − (sinh θ)

2
= 1. (A.19)

The hyperbolic functions are real, exponential, and nonrepeating functions,
as depicted in Figure A.2.
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A.3 Spatial Rotations

Spatial rotations are analogues for Lorentz-Einstein transformations. Suppose
an (x′, y′) coordinate system is rotated counterclockwise through an angle θ
relative to an (x, y) coordinate system, as in Figure A.3.

Figure A.3: Two coordinate systems with a common origin but rotated through
an angle θ relative to each other.

From the trigonometry, the y-coordinate can be expressed as

y =
y′

cos θ
+ x tan θ, (A.20)

which implies
y′ = −x sin θ + y cos θ. (A.21)

Similarly, the x′-coordinate can be expressed as

x′ =
x

cos θ
+ y′ tan θ, (A.22)

which implies
x = x′ cos θ − y′ sin θ (A.23)

or, simultaneously negating θ and interchanging primes and un-primes,

x′ = x cos θ + y sin θ. (A.24)

We can summarize the rotation transformation of Equation A.24 and Equation
A.21 in the matrix equation

x′

y′
=

cos θ sin θ
− sin θ cos θ

x
y

, (A.25)
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which readily checks for θ = 0 and θ = π/2.
In terms of the relative slope s = tan θ, cos θ = 1/

√
1 + s2 = Γ and sin θ =

s/
√

1 + s2 = sΓ , and hence

x′

y′
=

Γ sΓ
−sΓ Γ

x
y

= Γ
1 s
−s 1

x
y

. (A.26)

A.4 Partial Derivatives

In one-dimension, the function

f [x] = 3x2 + 1 (A.27)

has the derivative
df

dx
= 6x+ 0 = 6x. (A.28)

In two dimensions, the function

f [x, y] = 3xy2 + 2x+ 3y + 2 (A.29)

has the partial derivatives

∂f

∂x
= 3y2 + 2 + 0 + 0 = 3y2 + 2, (A.30a)

∂f

∂y
= 6xy + 0 + 3 + 2 = 6xy + 5, (A.30b)

which are just like ordinary derivatives, but with other variables held constant.

A.5 Function Notation

Standard mathematics notation suffers a serious ambiguity involving paren-
theses. In particular, parentheses can be used to denote multiplication, as in
a(b + c) = ab + ac and f(g) = fg, or they can be used to denote a function
evaluated at a point, as in f(t) and g(b + c). One must sometimes struggle to
determine the intended meaning from context.

In this text, to avoid ambiguity, round parentheses (•) always denote mul-
tiplication, while square brackets [•] always denote function evaluation. Thus,
f [x] denotes a function evaluated at a point, while a(b) = ab denotes the prod-
uct of two quantities. The Wolfram Language and Mathematica employ the
same convention.
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Problems

1. Complex Plotting. Plot the following numbers and their complex con-
jugates in the complex z = x+ iy = {x, y} plane.

(a) 1 + i

(b) 1− i
√

3

(c)
√

2e−iπ/4

2. Complex Simplification. Simplify the following numbers to the form
x+ iy.

(a)
1

1 + i

(b) 25e2i

(c)
3i− 7

i+ 4

(d)

(
1 + i

1− i

)137

(Hint: Don’t use a calculator!)

(e) ii (Hint: Find the principal value.)

3. Complex Identities. Derive the following equations.

(a) eiθ = cos θ + i sin θ (Hint: Try infinite power series expansion.)

(b) eiπ + 1 = 0

(c) cos θ =
eiθ + e−iθ

2

(d) sin θ =
eiθ − e−iθ

2i
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