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Chapter 1

Advertisement

Before developing the necessary mathematics, survey the crucial physics.

1.1 Action at a Distance

By Coulomb’s law [1], the electric force on a stationary point charge q due to a
stationary charge q′ separated by a displacement ~r is

~F = q
q′

4πr 2r̂ , (1.1)

where the direction r̂ = ~r /r (read “script r hat equals script r vector over script
r”). In natural units, both the free space permittivity ε0 and permeability µ0 (and
hence light speed c) are one. Coulomb’s law tells “how” and not “why”. Understand
it as following from something more fundamental, such as a symmetry.

The denominator 4πr 2 reflects the dilution of the source charge over a sphere of
area 4πr 2. The unit vector r̂ in the numerator reflects the isotropy of space: if no
preferred or special direction exists, only the imaginary line joining the two charges
q′ and q singles out the direction for the electrical force.

However, these arguments break down if (say) the source charge q′ is moving,
because its velocity vector introduces another, independent direction. In fact, the
force between two electric charges in arbitrary motion is complicated by velocity,
acceleration, and time delay effects. The force need not even lie along the line joining
the two charges.

Suppose a source charge q′ is at position ~r ′ with velocity ~v ′ and acceleration ~a ′,
and a test charge q is at position ~r with velocity ~v and acceleration ~a, as in Fig. 1.1.
Let their separation ~r = ~r − ~r ′. Define the velocity of the electromagnetic “news”
traveling from q′ to q to be ~c = r̂ c = r̂ . If the velocity ~u ′ = ~c − ~v ′, then the force

11
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q

�c [tr] �c [t]

�F [t]

�v[t]

� [t]� [tr]

q�

�v �[t]

�v �[tr]

�a �[t]�a �[tr]

Figure 1.1: The force between two electric charges in arbitrary motion is compli-
cated by velocity, acceleration, and time delay effects.

on the test charge q is

~F = q
q′

4πr 2
(

1

r̂ · ~u ′
)3( (

1− v′2
)
~u ′ + ~r × (~u ′ ×~a ′)

+~v ×
(r̂ × ( (1− v′2) ~u ′ + ~r × (~u ′ ×~a ′)

) ))
, (1.2)

where the kinematical variables ~r , ~v ′, and ~a ′ are evaluated at the earlier, “retarded”
time defined implicitly by t− tr = r [tr]/c = r [tr].

If the test charge velocity ~v = ~0, then the magnetic terms vanish; if the source
charge acceleration ~a ′ = ~0, then the radiation terms vanish; if, in addition, the
source charge velocity ~v ′ = ~0, then the velocity ~u ′ = r̂ , and Eq. 1.2 reduces to the
electric term of Eq. 1.1.

It is sometimes instructive to explicitly include factors of c = 1. For example,
restoring c to the generalized Coulomb’s law of Eq. 1.2 gives

ε0 ~F = q
q′

4πr 2
(

1

r̂ · ~u ′/c
)3( (

1− v′2/c2
)
~u ′/c+ ~r × (~u ′ ×~a ′) /c3

+~v/c×
(r̂ × ( (1− v′2/c2) ~u ′/c+ ~r × (~u ′ ×~a ′) /c3

)))
, (1.3)

which demonstrates that the magnetic and radiation terms are typically much
smaller than the electric term, as typically v′, v � c.
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This generalized Coulomb’s law is impressive, as it summarizes all fundamental
knowledge of electromagnetism in a single equation involving only elementary nota-
tion, but it is also complicated. Seek a more elegant description via Maxwell’s field
equations.

1.2 Classical Field theory

Experience has shown that the field paradigm is a better way. Decompose Coulomb’s
law of Eq. 1.1 into two parts by introducing the electric field ~E with

~F = q~E , (1.4a)

~E =
Q

4πr 2r̂ . (1.4b)

This replaces the action-at-a-distance paradigm of

Q⇔ q (1.5)

with the field paradigm of
Q⇔ ~E ⇔ q. (1.6)

Is the field real or artifice? Show later that the field is endowed with energy E,
linear momentum ~p, and angular momentum ~L, and hence is as real as atoms.

Problem

1. Check that each term in Eq. 1.3 has the correct SI units.

2. Write the generalized Coulomb’s law of Eq. 1.2 as

~F = q
q′

4πr 2
(

1

1− r̂ · ~v ′
)2(

~w ′/γ2 + ~r × (~w ′ ×~a ′)

+~v ×
(r̂ × (~w ′/γ2 + ~r × (~w ′ ×~a ′)

)) )
, (1.7)

Find ~w ′ and γ and interpret them physically using the special theory of rela-
tivity.
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Chapter 2

Geometric Algebra of Space

The classical field equations of electromagnetism, Maxwell’s equations, are tradi-
tionally expressed in vector algebra. However, geometric algebra [2] subsumes
vector algebra by, for example, combining the dot and cross product into a sin-
gle geometric product. Maxwell’s equations find their most elegant expression in
geometric algebra.

2.1 Geometric Product

Let ~u, ~v, ~w be 3-vectors, vectors in 3-dimensional Euclidean space. Assume a
geometric product denoted by juxtaposition

~u~v 6= ~u · ~v 6= ~u× ~v, (2.1)

which is associative

~u(~v ~w) = ~u~v ~w = (~u~v)~w (2.2)

but not necessarily commutative (so expect ~u~v 6= ~v~u at least sometimes).

2.2 Normalized, Antisymmetric Basis

Expand a vector ~v in the basis or (reference) frame {êk} with components vk to get

~v =

3∑
k=1

êkv
k, (2.3)

where the superscript k is an index rather than an exponent. (Save the subscript for
a future index.) The conventional letter “e” for unit vectors comes from the German
einheit, which means unit or unity. Adopt the Einstein summation convention
and shorten this to

~v = êkv
k, (2.4)

15
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read “v vector equals e sub k hat times v super k”, with an implied sum over re-
peated raised and lowered indices. Latin indices always range from 1 to 3. Explicitly
expand ~v in alternate notations as

~v = ê1v
1 + ê2v

2 + ê3v
3

= êxv
x + êyv

y + êzv
z

= x̂vx + ŷvy + ẑvz. (2.5)

Assume the basis vectors

{êk} = {ê1, ê2, ê3} (2.6)

satisfy the abstract algebra

êkêl + êlêk = 2δkl, (2.7)

where the Kronecker delta

δkl =

{
1, k = l,
0, k 6= l,

(2.8)

is also the flat space metric, and δkl occupies the kth row and lth column of the
square array

δkl ↔
1 0 0
0 1 0
0 0 1

. (2.9)

Thus, under the geometric product, the basis vectors {êk} are antisymmetric and
normalized; for example, ê1ê2 = −ê2ê1 and ê3ê3 = (ê3)2 = 1, and so on.

2.3 Multivectors

Unlike traditional vector algebra, geometric algebra combines scalars and vectors to
form multivectors. This is analogous to combining real and imaginary numbers to
form complex numbers. (In fact, complex numbers are a subalgebra of geometric
algebra.) The geometric algebra of space is spanned by the 1 + 3 + 3 + 1 = 8 = 23

multivectors of Table 2.1.

Table 2.1: Basis for geometric algebra of 3-dimensional space.
multivector number name grade
1 1 scalar 0
{êk} 3 vector 1
{êkêl} = {I êm} 3 bivector = pseudovector 2
ê1ê2ê3 = I 1 trivector = pseudoscalar 3

The most general such multivector

M = s+ ~v +B + T (2.10)
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or

M = M0 +M1ê1 +M2ê2 +M3ê3 +M4ê1ê2 +M5ê2ê3 +M6ê3ê1 +M7ê1ê2ê3 (2.11)

has grade-0 scalar, grade-1 vector, grade-2 bivector, and grade-3 trivector parts:

s = 〈M〉0 = M0, (2.12a)

~v = 〈M〉1 = M1ê1 +M2ê2 +M3ê3, (2.12b)

B = 〈M〉2 = M4ê1ê2 +M5ê2ê3 +M6ê1ê1, (2.12c)

T = 〈M〉3 = M7ê1ê2ê3. (2.12d)

Attempt to create a grade-4 quadvector (or higher grade multivector) by multi-
plying a trivector by a vector, and it contracts to form a bivector instead. Geomet-
rically interpret scalars as directionless points, vectors as directed lines, bivectors as
directed areas, and trivectors as directed volumes.

2.4 Pseudoscalar

Because of the antisymmetry and normalization of the {êk}, the trivector I = ê1ê2ê3
commutes with all basis vectors,

I ê1 = ê1ê2ê3ê1 = −ê1ê2ê1ê3 = +ê1ê1ê2ê3 = +ê1ê1ê2ê3 = ê1I,
I ê2 = ê1ê2ê3ê2 = −ê1ê2ê2ê3 = −ê1ê2ê2ê3 = +ê2ê1ê2ê3 = ê2I,
I ê3 = ê1ê2ê3ê3 = +ê1ê2ê3ê3 = −ê1ê3ê2ê3 = +ê3ê1ê2ê3 = ê3I, (2.13)

and hence commutes with all vectors ~v = êkv
k,

I ~v = ~v I. (2.14)

It also squares to negative one,

I2 = II = ê1ê2ê3ê1ê2ê3 = +ê2ê3ê2ê3 = −ê3ê3 = −1. (2.15)

Since the trivector I acts like an (imaginary) scalar, refer to it as a pseudoscalar.

2.5 Pseudovectors

The pseudoscalar I relates vectors and bivectors via the duality transformations

I ê1 = ê1ê2ê3ê1 = −ê1ê2ê1ê3 = +ê1ê1ê2ê3 = +ê2ê3,

I ê2 = ê1ê2ê3ê2 = −ê1ê2ê2ê3 = −ê1ê3,
I ê3 = ê1ê2ê3ê3 = +ê1ê2, (2.16)
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or, by further permutations,

ê1I = I ê1 = ê2ê3,

ê2I = I ê2 = ê3ê1,

ê3I = I ê3 = ê1ê2. (2.17)

Since bivectors are dual to vectors in this one-to-one (or isomorphic) way, refer to
them as pseudovectors.

2.6 Inner & Outer Product Decomposition

Form the geometric product of two generic vectors

~u~v = (êku
k)(êlv

l) = êkêl u
kvl. (2.18)

Explicitly expand the implied sums to find

~u~v = + ê1ê1u
1v1 + ê1ê2u

1v2 + ê1ê3u
1v3

+ ê2ê1u
2v1 + ê2ê2u

2v2 + ê2ê3u
2v3

+ ê3ê1u
3v1 + ê3ê2u

3v2 + ê3ê3u
3v3. (2.19)

Invoke the anti-commutation and normalization of the basis vectors to segregate the
symmetric and antisymmetric parts and write

~u~v = + u1v1 + u2v2 + u3v3

+ ê2ê3(u2v3 − u3v2) + ê3ê1(u3v1 − u1v3) + ê1ê2(u1v2 − u2v1), (2.20)

which is a scalar plus a bivector

~u~v = ~u · ~v + ~u ∧ ~v
= 〈~u~v〉0 + 〈~u~v〉2. (2.21)

The symmetric, scalar part is the inner or dot or scalar product

〈~u~v〉0 = ~u · ~v = u1v1 + u2v2 + u3v3 (2.22)

and the antisymmetric, bivector part is the outer or wedge or bivector product

〈~u~v〉2 = ~u ∧ ~v = ê2ê3(u2v3 − u3v2) + ê3ê1(u3v1 − u1v3) + ê1ê2(u1v2 − u2v1)

= I ê1(u2v3 − u3v2) + I ê2(u3v1 − u1v3) + I ê3(u1v2 − u2v1)

= I ~u× ~v, (2.23)

which is the dual of the traditional cross or vector product

~u× ~v = ê1(u2v3 − u3v2) + ê2(u3v1 − u1v3) + ê3(u1v2 − u2v1). (2.24)
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Unlike the cross product, which exists in only 3 dimensions (as only in 3 dimensions
exists a unique perpendicular to a plane), the outer product generalizes to any
number of dimensions, including the 3 + 1 = 4 dimensions of spacetime.

Use these identifications to recover the Eq. 2.21 decomposition of a generic geo-
metric product,

~u~v = (êku
k)(êlv

l)

= êkêl u
kvl

= (êk · êl + êk ∧ êl)ukvl

= êk · êl ukvl + êk ∧ êl ukvl

= δkl u
kvl + êk ∧ êl ukvl

= ~u · ~v + ~u ∧ ~v, (2.25)

where

~u · ~v = δkl u
kvl, (2.26)

~u ∧ ~v = êk ∧ êl ukvl. (2.27)

2.7 Symmetries

By Eq. 2.22 and Eq. 2.23, the inner product is symmetric and the outer product is
antisymmetric,

~u · ~v = +~v · ~u, (2.28)

~u ∧ ~v = −~v ∧ ~u. (2.29)

(where the latter implies ~v ∧ ~v = 0). Use these symmetries to write the Eq. 2.21
fundamental decomposition

~u~v = ~u · ~v + ~u ∧ ~v (2.30)

as

~v~u = ~v · ~u+ ~v ∧ ~u
= ~u · ~v − ~u ∧ ~v, (2.31)

and add and subtract to solve for

〈~u~v〉0 = ~u · ~v =
~u~v + ~v~u

2
= +~v · ~u, (2.32)

〈~u~v〉2 = ~u ∧ ~v =
~u~v − ~v~u

2
= −~v ∧ ~u. (2.33)

Beware that the algebraic signs in these equations alternate as the order of the
multivectors increases. For example, if B is a bivector, then

〈~uB〉1 = ~u ·B =
~uB −B~u

2
= −B · ~u, (2.34)

〈~uB〉3 = ~u ∧B =
~uB +B~u

2
= +B ∧ ~u. (2.35)
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As an example, set the bivectorB = ~v I to show that the pseudoscalar I = ê1ê2ê3
can interchange inner and outer products,

~u · (~vI) =
~u~vI − ~vI~u

2
=
~u~vI − ~v~uI

2
=
~u~v − ~v~u

2
I = ~u ∧ ~v I, (2.36)

and

~u ∧ (~v I) =
~u~vI + ~vI~u

2
=
~u~vI + ~v~uI

2
=
~u~v + ~v~u

2
I = ~u · ~v I, (2.37)

These formulas generalize to any multivector M ,

~u · (MI) = ~u ∧MI, (2.38)

~u ∧ (MI) = ~u ·MI, (2.39)

As another example, show that a bivector is perpendicular to its dual vector. If

B = B1ê2ê3 +B2ê3ê1 +B3ê1ê2 = I(B1ê1 +B2ê2 +B3ê3) = I~b, (2.40)

then

~b ·B =
~bB −B~b

2
=
~b I~b− I~b~b

2
= I

~b~b−~b~b
2

= 0. (2.41)

Without loss of generality, rotate and scale the coordinates so that ~b = ê3 and hence
B = ê1ê2 = ê1 · ê2 + ê1 ∧ ê2 = ê1 ∧ ê2. Figure 2.1 illustrates the orthogonality of the
duality.

1

2

3

ê1

ê2

�b = ê3

Figure 2.1: A bivector B = I~b is perpendicular to its dual vector ~b.

2.8 Parallel & Perpendicular

If vectors ~u and ~v are parallel, then ~u∧~v = 0 and ~u~v = ~u·~v. If they are perpendicular,
then ~u · ~v = 0 and ~u~v = ~u ∧ ~v. These important special cases are summarized in
Table 2.2.

If n̂ is a unit vector and ~v is a general vector, then

~v = n̂2~v = (n̂n̂)~v = n̂n̂~v = n̂(n̂~v) = n̂(n̂ · ~v + n̂ ∧ ~v) = ~v‖ + ~v⊥ (2.42)
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Table 2.2: Special cases of geometric product of two vectors.
case product

generic ~u~v = ~u · ~v + ~u ∧ ~v

~u ‖ ~v ~u~v = +~v~u = ~u · ~v

~u ⊥ ~v ~u~v = −~v~u = ~u ∧ ~v

where
~v‖ = n̂(n̂ · ~v) (2.43)

is the projection and
~v⊥ = n̂(n̂ ∧ ~v) (2.44)

is the rejection of ~v, parallel and perpendicular to n̂.
Figure 2.2 depicts a specific example, with

n̂ = ê1, (2.45)

~v = ê1 + 2ê2, (2.46)

so that the dot and wedge products are

n̂ · ~v = 1, (2.47)

n̂ ∧ ~v = 2ê1ê2, (2.48)

and the projection and rejection are

~v‖ = ê1, (2.49)

~v⊥ = 2ê2. (2.50)

n̂
!v

1

2

3

2ê2

ê1

!v‖ !v⊥
n̂ ∧ !v

Figure 2.2: The projection and rejection of the vector ~v on the vector n̂.
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2.9 Magnitudes

If ~v is a vector, then
~v 2 = ~v · ~v + ~v ∧ ~v = ~v · ~v = |~v|2 (2.51)

where the magnitude |~v| is its scalar length.
Suppose that the angle between the vectors ~u and ~v is θ, as in Fig. 2.3. Since

the inner product is the familiar dot or scalar product, its magnitude

|~u · ~v| = |~u||~v|| cos θ| (2.52)

is the length of the projection of ~u on ~v.

θ

|!u ∧ !v|

|!u · v̂|
!v

!u

Figure 2.3: The magnitudes of the inner and outer products, the projected length
and the shaded area.

Since the outer product is the dual of the familiar cross or vector product, expect
its magnitude

|~u ∧ ~v| = |~u× ~v| = |~u||~v|| sin θ| (2.53)

to be the area of the parallelogram framed by ~u on ~v. To verify this, compute the
square of the outer product ~u ∧ ~v,

(~u ∧ ~v)2 = (~u~v − ~u · ~v)(~u~v − ~u · ~v)

= ~u~v ~u~v − (~u · ~v)~u~v − ~u~v(~u · ~v) + (~u · ~v)2

= ~u~v(−~v~u+ 2~u · ~v)− 2(~u · ~v)~u~v + (~u · ~v)2

= −~u|~v|2~u+ (~u · ~v)2

= −|~u|2|~v|2 + |~u|2|~v|2 cos2 θ

= −|~u|2|~v|2 sin2 θ, (2.54)

which implies Eq. 2.53.
Consider the trivector

T = ~u ∧ (~v ∧ ~w) = (~u ∧ ~v) ∧ ~w = ~u ∧ ~v ∧ ~w. (2.55)

Express the corresponding volume more traditionally by multiplying by the pseu-
doscalar I and using Eq. 2.39 and Eq. 2.23 to convert wedge products to dot products
and cross products. If B = ~v ∧ ~w = I~v × ~w, then

T = ~u ∧B = −~u · (BI)I = −~u · (I~v × ~wI)I = ~u · ~v × ~w I = |T |I, (2.56)
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where the magnitude

|T | = |~u ∧ ~v ∧ ~w| = ~u · ~v × ~w (2.57)

is the volume of the parallelepiped framed by ~u on ~v on ~w.

2.10 Geometric Interpretations

Visualize a scalar s as a point, a vector ~u as a directed line or arrow, a bivector
B = ~u ∧ ~v as a directed plane, and a trivector T = (~u ∧ ~v) ∧ ~w as a directed solid,
as in Fig. 2.4. Use the wedge product to create multivectors of any order.

trivectorbivectorvectorscalar

!u !v!u !v!u

!w

Figure 2.4: Visualization of the lowest grade multivectors.

!u ∧ !v !v ∧ !u
!u

!u

!v!v

Figure 2.5: Visualization of bivectors as oriented areas. Interchanging the vectors
reverses the orientation of the area.

Think of the outer or wedge product B = ~u ∧ ~v as the parallelogram formed by
sweeping ~v along ~u, as in Fig. 2.5. Think of the wedge product −B = ~v ∧ ~u as the
parallelogram formed by sweeping ~u along ~v. Interchanging the vectors reverses the
orientation of the area, due to the antisymmetry of the wedge product. Similarly,
think of the wedge product T = (~u∧~v)∧ ~w as the parallelepiped formed by sweeping
~u ∧ ~v along ~w. Again, permuting the vectors cycles the orientation.
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2.11 Metric

Associate with any (possibly nonorthonormal) reference frame {~ek} a second (pos-
sibly nonorthonormal) reciprocal frame {~e k} mutually orthonormal to the first,

~e k · ~el = δkl. (2.58)

Expand a vector in both frames by

~v = vk~ek = vl~e
l, (2.59)

where the contravariant and covariant components

~v · ~e k = vl~el · ~e k = vlδl
k = vk, (2.60a)

~v · ~e k = vl~e
l · ~e k = vlδ

l
k = vk (2.60b)

(remember “co is low”) imply the identities

~v = ~v · ~ek~e k = ~v · ~e l~el. (2.61)

Define the symmetric covariant metric tensor and its contravariant inverse to be
the dot product of the same-frame basis vectors,

gkl = ~ek · ~el = ~el · ~ek = glk, (2.62a)

gkl = ~e k · ~e l = ~e l · ~e k = glk, (2.62b)

where
gklglm = ~e k · ~e l~el · ~em = ~e k · ~em = δkm. (2.63)

Write the dot product with or without the metrics as

~u · ~v = uk~ek · vl~el = ukvl ~ek · ~el = ukvlgkl = umvng
mn, (2.64a)

~u · ~v = uk~ek · vl~e l = ukvl ~ek · ~e l = ukvl δk
l = ukvk = umv

m. (2.64b)

By comparison, the metrics raise or lower component indices

vm = gmnvn, (2.65a)

vk = gklv
l, (2.65b)

and by substituting into the Eq. 2.59 vector expansion, they raise or lower basis
vector indices

~em = gmn~en, (2.66a)

~em = gmn~e
n. (2.66b)

The covariant and contravariant basis vectors ~ek and ~e k are the same in Eu-
clidean frames where the metric gkl = δkl. However, they differ in nonorthonormal
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Figure 2.6: Acute skew frame (blue) and its obtuse reciprocal frame (red).

frames. Consider a flat-space skew frame whose axes are separated by an angle θ,
as in Fig. 2.6. From the geometry, the squared length of the vector ~v is

~v · ~v = ~v 2 = (v1 + v2 cos θ)2 + (v2 sin θ)2

= v1v1 + v1v2 cos θ + v2v1 cos θ + v2v2

= gklv
kvl (2.67)

so the metric and its inverse

gkl ↔ 1 cos θ
cos θ 1

, (2.68a)

gkl ↔ 1 − cos θ
− cos θ 1

1

sin2 θ
. (2.68b)
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The reciprocal bases vectors

~e 1 = g1n~en = (~e1 − ~e2 cos θ)
1

sin2 θ
, (2.69a)

~e 2 = g2n~en = (−~e1 cos θ + ~e2)
1

sin2 θ
, (2.69b)

and the reciprocal components

v1 = g1nv
n = v1 + v2 cos θ, (2.70a)

v2 = g2nv
n = v1 cos θ + v2. (2.70b)

The skew frame basis vectors are of unit length, but the reciprocal bases vector are
not, √

~e1 · ~e1 =
√
g11 = 1 =

√
g22 =

√
~e2 · ~e2, (2.71a)

√
~e 1 · ~e 1 =

√
g11 =

1

sin θ
=
√
g22 =

√
~e 2 · ~e 2, (2.71b)

so the contravariant unit vectors

ê 1 = ~e 1 sin θ, (2.72a)

ê 2 = ~e 2 sin θ. (2.72b)

Thus, by Fig. 2.6, the contravariant components vn correspond to parallel projection
and the covariant components vn to perpendicular projection onto the original frame.

2.12 Rotations

To rotate a vector ~v = ê1 through an angle θ in the plane B = ê1 ∧ ê2 = ê1ê2,
multiply by the rotor

R = e−ê1ê2θ/2 = e−Bθ/2 (2.73)

on the right and by its reversion

R̃ = R† = e−ê2ê1θ/2 = e+Bθ/2 (2.74)

on the left, with the exponentials defined by their infinite series expansions like

R† = e+ê1ê2θ/2

= 1 +

(
ê1ê2

θ

2

)
+

1

2!

(
ê1ê2

θ

2

)2

+
1

3!

(
ê1ê2

θ

2

)3

+ · · ·

=

(
1− 1

2!

(
θ

2

)2

+ · · ·
)

+ ê1ê2

((
θ

2

)
− 1

3!

(
θ

2

)3

+ · · ·
)

= cos

[
θ

2

]
+ ê1ê2 sin

[
θ

2

]
, (2.75)
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as i2 = (ê1ê2)
2

= −1. Hence, the rotated vector is

~v ′ = R~v R† = e−Bθ/2 ~v e+Bθ/2 = e−ê1ê2θ/2 ~v e+ê1ê2θ/2

=

(
cos

[
θ

2

]
− ê1ê2 sin

[
θ

2

])
ê1

(
cos

[
θ

2

]
+ ê1ê2 sin

[
θ

2

])
=

(
cos

[
θ

2

]
− ê1ê2 sin

[
θ

2

])(
ê1 cos

[
θ

2

]
+ ê2 sin

[
θ

2

])
= ê1

(
cos2

[
θ

2

]
− sin2

[
θ

2

])
+ ê2

(
2 sin

[
θ

2

]
cos

[
θ

2

])
= ê1 cos θ + ê2 sin θ, (2.76)

as illustrated in Fig. 2.7.

�v1

2

3

ê1

Figure 2.7: The rotor R rotates a vector ~v through an angle θ in the plane of the
bivector B.

Such rotation in a plane generalizes to any dimension, whereas the traditional no-
tion of rotation about a line is confined to three dimensions. Rotate any multivector
in the same way.
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Problems

1. Reduce the following to the simplest multivector form of Eq. 2.11.

(a) (ê1ê2 + 2ê1ê3)(ê1 − ê1ê2).

(b) (3− ê1 + 2ê1ê2ê3)(ê1 + 3ê1ê2).

(c) ê2ê1ê3ê2ê1ê2ê2ê3.

2. Let ~u = ê1 − 2ê2, ~v = ê1 + ê2 − ê3, and ~w = 3ê1 + ê3. Reduce the following
products to simplest form.

(a) ~u · ~v.

(b) ~u ∧ ~v.

(c) (~u ∧ ~v) ∧ ~w.

(d) ~u ∧ (~v ∧ ~w).

3. Assume the vectors of Problem 2, and define the bivector B = 〈~v ~w〉2. Verify
the following identities. (Hint: Because the dot product is grade lowering,
~u ·B = 〈~uB〉1, and so on.)

(a) By Eq. 2.34, ~u ·B = (~uB −B~u)/2.

(b) By Eq. 2.35, ~u ∧B = (~uB +B~u)/2.

4. Derive the group composition law for rotors by showing that if rotor R1

rotates vector ~u into vector ~v and rotor R2 rotates vector ~v into vector ~w, then
the composite rotor R = R2R1 rotates vector ~u into vector ~w. (Hint: Like the
matrix transpose or adjoint operations, the reversion of a product of rotors is
the product of the reversions in reverse order.)

5. In mechanics, Euler angles {φ, θ, ψ} traditionally parameterize rotations in
three-dimensional space: First rotate anticlockwise through an angle φ about
the direction ê3, next rotate anticlockwise through an angle θ about the trans-
formed direction ê′1, finally rotate anticlockwise through an angle ψ about the
transformed direction ê′′3 . Find bivectors B1, B2, B3 such that

R = e−B1φ/2e−B2θ/2e−B3ψ/2. (2.77)

(Hint: Use the Problem 4 composition law and the Eq. 2.40 orthogonality of
bivectors and their dual vectors.)



Chapter 3

Geometric Calculus of Space

3.1 Geometric Derivative

Use the flat space metric gkl = δkl to define equivalent basis vectors êl = glkê
k.

With orthonormal frame {êk} and position ~x = êkx
k, expand the geometric or

vector derivative ~∇ in components ∇k = ∂k to get

~∇ =

3∑
k=1

êk
∂

∂xk
= êk∂k, (3.1)

read “big del vector equals e hat super k times del sub k”. (Although ∇ is sometimes
referred to as the “nabla” operator, pronounce the pseudo-letters ∇ and ∂ “del” in
analogy with pronouncing the Greek letters ∆ and δ “delta”.) Expand ~∇ in alternate
notations as

~∇ = ê1∂1 + ê2∂2 + ê3∂3,

= ê1
∂

∂x1
+ ê2

∂

∂x2
+ ê3

∂

∂x3
,

= êx
∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z
,

= x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
. (3.2)

Apply ~∇ to a generic vector field ~v[~x] to get

~∇~v = (êk∂k)(êlv
l), (3.3)

and use ê1 = ê1, and so on, to expand this into

~∇~v = + ê1ê1∂1v
1 + ê1ê2∂1v

2 + ê1ê3∂1v
3

+ ê2ê1∂2v
1 + ê2ê2∂2v

2 + ê2ê3∂2v
3

+ ê3ê1∂3v
1 + ê3ê2∂3v

2 + ê3ê3∂3v
3. (3.4)

29
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By invoking the anti-commutation and normalization of the basis vectors, segregate
the symmetric and antisymmetric parts, to find

~∇~v = + ∂1v
1 + ∂2v

2 + ∂3v
3

+ ê2ê3(∂2v
3 − ∂3v2) + ê3ê1(∂3v

1 − ∂1v3) + ê1ê2(∂1v
2 − ∂2v1) (3.5)

or
~∇~v = ~∇ · ~v + ~∇∧ ~v, (3.6)

where the symmetric, scalar part is the interior derivative or divergence

~∇ · ~v = ∂1v
1 + ∂2v

2 + ∂3v
3, (3.7)

and the antisymmetric, bivector part is the exterior derivative

~∇∧ ~v = ê2ê3(∂2v
3 − ∂3v2) + ê3ê1(∂3v

1 − ∂1v3) + ê1ê2(∂1v
2 − ∂2v1)

= I ê1(∂2v
3 − ∂3v2) + I ê2(∂3v

1 − ∂1v3) + I ê3(∂1v
2 − ∂2v1)

= I ~∇× ~v, (3.8)

which is the dual of the traditional curl

~∇× ~v = ê1(∂2v
3 − ∂3v2) + ê2(∂3v

1 − ∂1v3) + ê3(∂1v
2 − ∂2v1). (3.9)

Unlike the curl, which exists in only 3 dimensions, the exterior derivative generalizes
to any number of dimensions.

3.2 Differentiating Scalar Fields

Given a constant vector ~a = êkak, consider a scalar field

ϕ[~x] = ~a · ~x = êkak · êlxl = êk · êlakxl = δklakxl = alx
l, (3.10)

whose gradient is

~∇(~a · ~x) = êk∂k(alx
l)

= êkal ∂kx
l

= êkalδ
l
k

= êkak

= ~a, (3.11)

where, from the definition of partial differentiation,

∂kx
l =

∂xl

∂xk
= δlk. (3.12)

This is analogous to d(3x)/dx = 3 in ordinary one-dimensional calculus. Set ~a = êk

to find that the gradient of a coordinate is the corresponding basis vector,

~∇xk = êk. (3.13)
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This is analogous to d(x)/dx = 1.
Next consider the scalar field

θ[~x] = ~x 2 = ~x~x = ~x · ~x = xlêl · xmêm = xlxmêl · êm = xlxmδlm = xlxl, (3.14)

whose gradient is

~∇(~x 2) = êk∂k(xlxl)

= êk(∂kx
l)xl + êkxl(∂kxl)

= êkδlkxl + êkxlδkl

= êkxk + êkxk

= 2~x, (3.15)

according to the product rule and the Eq. 3.12 partial differentiation identity. This
is analogous to d(x2)/dx = 2x.

3.3 Differentiating Vector Fields

Consider a vector field ~v[~x]. The interior derivative or divergence of the vector
field ~v[~x] is the symmetric

~∇ · ~v = êk∂k · êlvl = êk · êl ∂kvl = δkl ∂kv
l = ∂kv

k. (3.16)

The exterior derivative of ~v[~x] is the antisymmetric

~∇∧ ~v = êk∂k ∧ êlvl = êk ∧ êl ∂kvl = êk ∧ êl ∂kvl (3.17)

For example, the geometric vector derivative of ~x is

~∇~x = ~∇ · ~x+ ~∇∧ ~x = 3 + 0 = 3, (3.18)

which is the dimension of space. This is analogous to d(x)/dx = 1 in ordinary
one-dimensional calculus.

If M is a generic multivector, then

~∇∧ (~∇∧M) = êk∂k ∧
(
êl∂l ∧M

)
= êk ∧ êl ∧ (∂k∂lM) = Akl ∧ Skl. (3.19)

Because Skl = Slk is symmetric but Akl = −Alk is antisymmetric, the double sum
of Eq. 3.19 vanishes. (Expand explicitly to verify.) Hence,

~∇∧ (~∇∧M) = 0 (3.20)

and so the exterior derivative of an exterior derivative always vanishes.
Insert N = MI−1 into Eq. 3.19, multiply by the pseudoscalar I, and use the

dot-wedge duality of Eq. 2.39 to convert it to

0 = ~∇∧ (~∇∧N)I = ~∇ · (~∇∧N I) = ~∇ · (~∇ · (NI)) (3.21)
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or
~∇ · (~∇ ·M) = 0. (3.22)

Thus, the interior derivative of the interior derivative always vanishes. (For con-
sistency, and by extension, assume that the dot product of a vector and a scalar
vanishes.)
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Problems

1. Let ~u[~x] = ê12x1−ê2x1x2x3, ~v[~x] = ê13x1+ê22x2−ê3x3, and ~w[~x] = ê12x2x3+
ê3x

1x2. Reduce the following derivatives to simplest form.

(a) ~∇ · ~v.

(b) ~∇∧ ~v.

(c) ~∇ · ~u.

(d) ~∇~w.

2. Assume the vector fields of Problem 1, and define the bivector field B[~x] =
〈~v[~x] ~w[~x] 〉2. Verify the following identities.

(a) By Eq. 3.20, ~∇∧ (~∇∧ ~u) = 0.

(b) By Eq. 3.22, ~∇ · (~∇ ·B) = 0.
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Chapter 4

Geometric Algebra of
Spacetime

In the theory of relativity, Albert Einstein placed space and time on an equal
footing, but it was Hermann Minkowski who first recognized that the geometry
of spacetime was non-Euclidean. Incorporate spacetime geometry into geometric
algebra by adding a single time-like basis vector ê0.

4.1 Basis

Expand a spacetime vector
⇒
v of 3 + 1 = 4 dimensions in the basis or (reference)

frame {êα} with components vα to get

⇒
v =

3∑
α=0

êαv
α = êαv

α, (4.1)

read “v bold vector equals e sub alpha hat times v super alpha”, with an implied
sum over repeated raised and lowered indices. Unlike Latin indices that range from
1 to 3, Greek indices range from 0 to 3. Explicitly expand

⇒
v in alternate notations

as
⇒
v = êαv

α = ê0v
0 + êkv

k = êtv
t + ~v. (4.2)

Assume the basis vectors

{êα} = {ê0, ê1, ê2, ê3} (4.3)

satisfy the abstract algebra

êαêβ + êβ êα = 2ηαβ , (4.4)

or, alternately,

êα · êβ =
êαêβ + êβ êα

2
= ηαβ , (4.5)

35
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where the flat spacetime metric

ηαβ ↔
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

. (4.6)

The signature of the spacetime metric is the sequence {−,+,+,+} of algebraic
signs on the main diagonal, which is consistent with the flat space signature, so
that {êk} still obey the Eq. 2.7 subalgebra. (However, the opposite signature of
{+,−,−,−} is also widely used, often with the frame denoted by {γ̂α}.) Conse-
quently, under the geometric product, {êα} are antisymmetric and normalized like
{êk} with the crucial exception that ê0ê0 = (ê0)2 = −1; while space and time are
indeed on an equal footing, they are not completely interchangeable – else one could
walk back to yesterday!

The three space basis vectors êk share the same algebra as the Pauli spin matrices
σk from non-relativistic quantum mechanics. The four spacetime basis vectors êα
share the same algebra as the Dirac gamma matrices γα from relativistic quantum
mechanics.

4.2 Multivectors

The corresponding spacetime algebra is spanned by the 1+4+6+4+1 = 16 = 24

multivectors of Table 4.1.

Table 4.1: Basis for geometric algebra of 4-dimensional spacetime.
multivector number name grade
1 1 scalar 0
{êα} 4 vector 1
{êαêβ} 6 bivector 2
{êαêβ êγ} = {I êδ} 4 trivector = pseudovector 3
ê0ê1ê2ê3 = I 1 quadvector = pseudoscalar 4

The most general such spacetime multivector

M = s+
⇒
v +B + T +Q (4.7)

or

M =M0

+M1ê0 +M2ê1 +M3ê2 +M4ê3

+M5ê0ê1 +M6ê0ê2 +M7ê0ê3 +M8ê1ê2 +M9ê1ê3 +M10ê2ê3

+M11ê0ê1ê2 +M12ê0ê1ê3 +M13ê0ê2ê3 +M14ê1ê2ê3

+M15ê0ê1ê2ê3 (4.8)
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has grade-0 scalar, grade-1 vector, grade-2 bivector, grade-3 trivector, and grade-4
quadvector parts:

s = 〈M〉0 = M0,
⇒
v = 〈M〉1 = M1ê0 +M2ê1 +M3ê2 +M4ê3 ,

B = 〈M〉2 = M5ê0ê1 +M6ê0ê2 +M7ê0ê3 +M8ê1ê2 +M9ê1ê3 +M10ê2ê3,

T = 〈M〉3 = M11ê0ê1ê2 +M12ê0ê1ê3 +M13ê0ê2ê3 +M14ê1ê2ê3,

Q = 〈M〉4 = M15ê0ê1ê2ê3. (4.9)

Attempt to create a grade-5 quintvector (or higher grade multivector) by multi-
plying a quadvector by a vector, and it contracts to form a trivector instead.

4.3 Pseudoscalars

Unlike the trivector I = ê1ê2ê3 that commutes with all the basis vectors, the quad-
vector I = ê0ê1ê2ê3 anticommutes with all basis vectors,

I ê0 = ê0ê1ê2ê3ê0 = −ê0ê1ê2ê0ê3 = +ê0ê1ê0ê2ê3 = −ê0ê0ê1ê2ê3 = −ê0I ,

I ê1 = ê0ê1ê2ê3ê1 = −ê0ê1ê2ê1ê3 = +ê0ê1ê1ê2ê3 = −ê1ê0ê1ê2ê3 = −ê1I ,

I ê2 = ê0ê1ê2ê3ê2 = −ê0ê1ê2ê2ê3 = +ê0ê2ê1ê2ê3 = −ê2ê0ê1ê2ê3 = −ê2I ,

I ê3 = ê0ê1ê2ê3ê3 = −ê0ê1ê3ê2ê3 = +ê0ê3ê1ê2ê3 = −ê3ê0ê1ê2ê3 = −ê3I , (4.10)

and hence anticommutes with all spacetime vectors
⇒
v = êαv

α,

I
⇒
v = −⇒vI . (4.11)

(The extra dimension necessitates an extra permutation that interchanges the alge-
braic signs of the products.) However, like the trivector I, the quadvector I also
squares to negative one,

I 2 = I I = ê0ê1ê2ê3ê0ê1ê2ê3 = +ê1ê2ê3ê1ê2ê3 = +ê2ê3ê2ê3 = −ê3ê3 = −1.
(4.12)

Since the quadvector I acts like an imaginary (although anti-commuting) scalar,
refer to it as a spacetime pseudoscalar. Anti-commuting numbers called Grass-
man variables are used to describe fermionic fields in quantum field theory.
Table 4.2 summarizes the pseudoscalars.

Table 4.2: Pseudoscalar comparison.
symbol content pronunciation grade

i ê1ê2 “i” 2
I ê1ê2ê3 “big i” 3
I ê0ê1ê2ê3 “script big i” 1 + 3 = 4
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4.4 Pseudovectors

The spacetime pseudoscalar I relates spacetime vectors and spacetime trivectors
via the duality transformations

I ê0 = ê0ê1ê2ê3ê0 = −ê0ê1ê2ê0ê3 = +ê0ê1ê0ê2ê3 = −ê0ê0ê1ê2ê3 = +ê1ê2ê3,

I ê1 = ê0ê1ê2ê3ê1 = −ê0ê1ê2ê1ê3 = +ê0ê1ê1ê2ê3 = +ê0ê2ê3,

I ê2 = ê0ê1ê2ê3ê2 = −ê0ê1ê2ê2ê3 = −ê0ê1ê3,
I ê3 = ê0ê1ê2ê3ê3 = +ê0ê1ê2, (4.13)

or, by further permutations,

−ê0I = I ê0 = +ê1ê2ê3,

−ê1I = I ê1 = +ê2ê3ê0,

−ê2I = I ê2 = −ê3ê0ê1,
−ê3I = I ê3 = +ê0ê1ê2. (4.14)

Since spacetime trivectors are dual to spacetime vectors in this one-to-one (or iso-
morphic) way, refer to them as spacetime pseudovectors.

4.5 Spacetime Metric

Given the frame {êα}, consider a second reciprocal frame {êα}, where

êα = ηαβ ê
β = ηαγ ê

γ (4.15)

and
êα = ηαβ êβ = ηαβηβγ ê

γ . (4.16)

Consistency demands
ηαβηβγ = δγα, (4.17)

so that the flat spacetime metric ηαβ is its own inverse ηαβ ,

ηαβ ↔
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

↔ ηαβ . (4.18)

Therefore,
êα · êβ = ηαγ êγ · êβ = ηαγηγβ = δαβ . (4.19)

and the reciprocal frames are mutually orthonormal.
Expand a spacetime vector in both frames,

⇒
v = vαêα = vαê

α, (4.20)
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where

vα = ηαβv
β = ηαβη

βγvγ . (4.21)

The spatial basis vectors êk and êk are the same, but the temporal basis vectors ê0
and ê0 are negatives of each other. Similarly, the spatial components vk and vk are
the same, but the temporal components v0 and v0 are negatives of each other. For
example, ê1 = ê1 and v1 = v1, but ê0 = −ê0 and v0 = −v0.

The metric can appear explicitly in dot products, as in

⇒
u ·⇒v = (êαu

α) · (êβvβ) = êα · êβ uαvβ = ηαβ u
αvβ , (4.22)

or the components of the reciprocal frames can absorb the metric, as in

⇒
u ·⇒v = (êαu

α) · (êβvβ) = êα · êβ uαvβ = δβα u
αvβ = uαvα = uβvβ . (4.23)

Similarly, the metric can appear in vector lengths or be absorbed,∣∣⇒v ∣∣2 =
⇒
v ·⇒v =

⇒
v
⇒
v = ηαβ v

αvβ = vαvα

= v0v0 + vkvk = −(vt)2 + ~v 2. (4.24)

Table 4.3: Important spacetime vectors, with metric signature {−,+,+,+} and
light speed c = 1.

name spacetime split length squared

event
⇒
x = êtct+ ~x

⇒
x2 = −c2τ2

velocity
⇒
V = êtγc+ γ~v

⇒
V 2 = −c2

momentum
⇒
P = êtγmc+ γm~v

⇒
P 2 = −m2c2

derivative
⇒
∇ = −êt∂ct + ~∇

⇒
∇2 = �2

4.6 Important Spacetime Vectors

Locate an event in spacetime by

⇒
x = êαx

α = ê0x
0 + êkx

k = êtt+ ~x, (4.25)

where êt = ê0. Denote the relative spacetime displacement of two nearby events
by

d
⇒
x = êαdx

α = ê0dx
0 + êkdx

k = êtdt+ d~x. (4.26)



40 CHAPTER 4. GEOMETRIC ALGEBRA OF SPACETIME

The invariant length of the spacetime displacement is the proper time dτ between
the events, as

d
⇒
x2 = (êtdt+ d~x)(êtdt+ d~x)

= êtdtêtdt+ d~xd~x+ êtdtd~x+ d~xêtdt

= (êt)
2(dt)2 + (d~x)2

= −(dt)2 + (d~x)2

= −(dt)2(1− ~v 2)

= − (dt)2

γ2

= −(dτ)2 (4.27)

or

dτ =
dt

γ
≤ dt, (4.28)

where the relativistic stretch

γ =
1√

1− ~v 2
≥ 1, (4.29)

and the space velocity ~v = d~x/dt.
By Eq. 4.26, the relative spacetime velocity of a massive particle is

⇒
V =

d
⇒
x

dτ
= êt

dt

dτ
+
d~x

dτ
= êtγ + ~V , (4.30)

where ~V = γ~v. The time component V t = γ is the relativistic stretch. The invariant
length of the spacetime velocity is always one (or light speed), as

⇒
V 2 = (êtγ + ~V )(êtγ + ~V ) = −(V t)2 + ~V 2 = −γ2(1− ~v 2) = −1. (4.31)

The relative spacetime momentum of a particle of mass m is

⇒
P = m

⇒
V = êtγm+m~V = êtE + ~P , (4.32)

where E = γm and ~P = γ~p = γm~v. The time component P t = E is the energy. (If
the mass is at relative rest, then γ = 1 and E = m = mc2.) The invariant length of
the spacetime momentum is the mass, as

⇒
P 2 = (êtE + ~P )(êtE + ~P ) = −E2 + ~P 2 = −γ2m2(1− ~v 2) = −m2 (4.33)

The relative spacetime derivative is

⇒
∇ = êα∂α = ê0∂0 + êk∂k = êt∂t + ~∇ = −êt∂t + ~∇. (4.34)



4.7. SPACETIME ROTATIONS 41

The invariant length of the spacetime derivative is the d’Alembert operator,

⇒
∇2 = (−êt∂t + ~∇)(−êt∂t + ~∇) = −∂2t + ~∇2 = �2. (4.35)

Just as the three sides of the nabla operater ∇ can represent the three dimensions of
space, the four sides of the d’Alembert operator can represent the four dimensions
of spacetime. Table 4.3 summarizes the spacetime vectors central to the theory of
relativity.

4.7 Spacetime Rotations

A spacetime rotation known as a Lorentz transformation relates observations
of (reference) frames in relative motion. Parameterize the relative speed

|~v| = tanhw, (4.36)

by the hyperbolic angle or rapidity w, so that the relativistic stretch

γ =
1√

1− ~v 2
= coshw. (4.37)

To boost the event
⇒
x = êtt+ êxx to a frame moving at space velocity ~v = êx|~v|,

multiply by the rotor

R = eêtêxw/2 (4.38)

on the right and by its reversion

R† = eêxêtw/2 (4.39)

on the left, with the exponentials defined by their infinite series expansions like

R = eêtêxw/2

= 1 +
(
êtêx

w

2

)
+

1

2!

(
êtêx

w

2

)2
+

1

3!

(
êtêx

w

2

)3
+ · · ·

=

(
1 +

1

2!

(w
2

)2
+ · · ·

)
+ êtêx

((w
2

)
+

1

3!

(w
2

)3
+ · · ·

)
= cosh

[w
2

]
+ êtêx sinh

[w
2

]
, (4.40)
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as (êtêx)
2

= 1. Hence, the boosted event is

⇒
x ′ = R

⇒
x R† = eêtêx

⇒
x eêxêt

=
(

cosh
[w

2

]
+ êtêx sinh

[w
2

])
(êtt+ êxx)

(
cosh

[w
2

]
+ êxêt sinh

[w
2

])
=
(

cosh
[w

2

]
+ êtêx sinh

[w
2

])(
êt

(
t cosh

[w
2

]
+ x sinh

[w
2

])
+

êx

(
t sinh

[w
2

]
+ x cosh

[w
2

]))
= êt

(
t
(

cosh2
[w

2

]
+ sinh2

[w
2

])
+ x

(
2 sinh

[w
2

]
cosh

[w
2

]))
+ êx

(
t
(

2 sinh
[w

2

]
cosh

[w
2

]
+ x

(
cosh2

[w
2

]
+ sinh2

[w
2

])))
= êt (t coshw + x sinhw) + êx (x coshw + t sinhw)

= êtt
′ + êxx

′, (4.41)

where the components

t ′ = t coshw + x sinhw = coshw (t+ x tanhw), (4.42a)

x ′ = x coshw + t sinhw = coshw (x+ t tanhw), (4.42b)

which, by Eq. 4.36 and Eq. 4.37, form the familiar Lorentz transformation

t ′ = γ(t+ |~v|x), (4.43a)

x ′ = γ(x+ |~v|t), (4.43b)

as illustrated by the spacetime diagram of Fig. 4.1.

Figure 4.1: An active Lorentz boost is a spacetime rotation.



4.7. SPACETIME ROTATIONS 43

Problems

1. Reduce the following to the simplest multivector form of Eq. 4.8.

(a) (ê0ê2 + 4ê1ê3ê0)(ê0 − ê1ê2).

(b) (3− ê1ê3 + 2ê0ê2ê3)(ê1 + 3ê0ê2ê0).

(c) ê2ê1ê3ê2ê0ê2ê2ê0ê1ê3.

2. If one event occurs at
⇒
x1 = ê0 + 2ê1 − 3ê2 − ê3 and a second event occurs at

⇒
x2 = 3ê0 + ê1 − 2ê2 − 2ê3, what is the proper time between them?

3. Suppose a particle has spacetime momentum
⇒
P = 3ê0 + 2ê1 + ê2 − ê3.

(a) What is its mass m?

(b) What is its space speed |~v|?
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Chapter 5

The Foundation of
Electromagnetism

Spacetime algebra distills all of electromagnetism, including optics, into two simple
equations. The Maxwell field equation defines the electromagnetic field due to
electric charges; the Lorentz force equation defines the force on electric charges
moving in an electromagnetic field.

5.1 Field

Define electric ~E [~x] and magnetic ~B[~x] space vector fields by

~E = êkEk, (5.1a)

~B = êkBk. (5.1b)

Combine these into a single electromagnetic field, the Faraday spacetime bivector

F = ( ~E + I ~B )ê0 = ~E ê0 − I ~B (5.2)

and expand it to

F = êkEkê0 + ê0ê1ê2ê3Bkêkê0
= Ekêkê0 − Bkê1ê2ê3êk
= E1ê1ê0 + E2ê2ê0 + E3ê3ê0
− B1ê2ê3 − B2ê3ê1 − B3ê1ê2. (5.3)

The electric field components Ek are the coefficients of the spacetime bivectors êkê0,
while the magnetic field components Bk are the coefficients of the space bivectors
êkêl, as depicted in Fig. 5.1. Also write Faraday as

F =
1

2
Fαβ êαêβ =

1

2
Fαβ êα ∧ êβ , (5.4)

45
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where the antisymmetric components

Fαβ ↔
0 −E1 −E2 −E3
E1 0 −B3 B2
E2 B3 0 −B1
E3 −B2 B1 0

↔ −Fβα. (5.5)

1

2

0

E1

1

2

3

E2 B2

B3

Figure 5.1: Four of the six components of Faraday, the electromagnetic field bivec-
tor. Each electric bivector has one timelike edge ê0 and one spacelike edge êk, while
each magnetic bivectors has two spacelike edges.

The Faraday spacetime bivector field F decomposes into different electric ~E and
magnetic ~B space vector fields for (reference) frames in relative motion. For example,
if one frame has a pure electric field

F = E1ê1ê0 + E2ê2ê0 = êxêtEx + êy êtEy, (5.6)

then, using the Sec. 4.7 boost, another frame moving at space velocity ~v = êx|~v| =
êx tanhw has a mix of electric and magnetic fields

F ′ = RF R†

= eêtêxw/2 (êxêtEx + êy êtEy) eêxêtw/2

= eêtêxw/2êxête
−êtêxw/2Ex + eêtêxw/2êy ête

−êtêxw/2Ey
= êxêtEx + êy êtEye−êtêxw, (5.7)

as êxêt and êtêx commute but êy êt and êtêx anticommute. Hence,

F ′ = êxêtEx + êy êtEy (coshw − êtêx sinhw)

= êxêtEx + êy êtEy coshw + êy êxEy coshw tanhw

= êxêtEx + êy êtEyγ − êxêyEyγ|~v|
= êxêtE ′x + êy êtE ′y − êxêyB′z (5.8)

where

E ′x = Ex, (5.9a)

E ′y = γEy, (5.9b)

B′z = γ|~v|Ey. (5.9c)
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5.2 Source

Define the electric charge density ρ as charge per unit space volume,

ρ =
dQ

dx dy dz
=

dQ0

dx1 dx2 dx3
, (5.10)

and the electric current density ~J as current per unit perpendicular area,

J1 = Jx =
Ix
dy dz

=
dQx

dt dy dz
=

dQ1

dx0 dx2 dx3
, (5.11)

J2 = Jy =
Iy

dx dz
=

dQy
dx dt dz

=
dQ2

dx0 dx1 dx3
, (5.12)

J3 = Jz =
Iz

dy dz
=

dQz
dx dy dt

=
dQ3

dx0 dx1 dx2
. (5.13)

For a charge density ρ moving with velocity ~v, the current density ~J = ρ~v.
Current densities well describe current carrying wires, for example, but they also

naturally extend charge density from space to spacetime, as in Fig. 5.2. Combine
both into a single electromagnetic source, the spacetime vector

⇒
J = êtρ+ êkJ

k = êαJ
α, (5.14)

where the components

Jα ↔
ρ
Jx
Jy
Jz

. (5.15)

1

2

0

1

2

3

dQ0dQ3

dx1dx2dx3dx0dx1dx2

ρ = J0Jz = J3

Figure 5.2: Two of the four components of the electromagnetic source spacetime
vector.

Because of charge conservation, if charge density decreases in a region, charge
density currents must diverge from that region. Using the Section 6.1 definition of
divergence as flux or outflow per unit volume, write

∂tρ = −~∇ · ~J (5.16)
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or

0 = ∂tρ+ ~∇ · ~J = (−ê0∂0 + ~∇) · (ê0ρ+ ~J) =
⇒
∇ ·
⇒
J , (5.17)

which is the continuity equation.

5.3 The Maxwell Field Equation

In spacetime algebra, using the geometric product, the traditional Maxwell field
equations reduce to a single equation: the spacetime derivative of the electromag-
netic field is its source,

⇒
∇F =

⇒
J , (5.18)

read “big del spacetime vector times script big f equals big j spacetime vector”.
Expand this to

(−ê0∂0 + ~∇)(~E + I ~B )ê0 = ê0ρ+ ~J, (5.19)

or

(−ê0∂0 + ê1∂1 + ê2∂2 + ê3∂3)(ê1ê0E1 + ê2ê0E2 + ê3ê0E3
−ê2ê3B1 + ê1ê3B2 − ê1ê2B3) = ê0ρ+ ê1J

1 + ê2J
2 + ê3J

3, (5.20)

or even

−ê0ê1ê0∂0E1 − ê0ê2ê0∂0E2 − ê0ê3ê0∂0E3 + ê0ê2ê3∂0B1 − ê0ê1ê3∂0B2 + ê0ê1ê2∂0B3
+ê1ê1ê0∂1E1 + ê1ê2ê0∂1E2 + ê1ê3ê0∂1E3 − ê1ê2ê3∂1B1 + ê1ê1ê3∂1B2 − ê1ê1ê2∂1B3
+ê2ê1ê0∂2E1 + ê2ê2ê0∂2E2 + ê2ê3ê0∂2E3 − ê2ê2ê3∂2B1 + ê2ê1ê3∂1B2 − ê2ê1ê2∂2B3
+ê3ê1ê0∂3E1 + ê3ê2ê0∂3E2 + ê3ê3ê0∂3E3 − ê3ê2ê3∂3B1 + ê3ê1ê3∂3B2 − ê3ê1ê2∂3B3

= ê0ρ+ ê1J
1 + ê2J

2 + ê3J
3.

(5.21)

Use the Eq. 4.13 duality transformations and the Eq. 4.4 algebra of the spacetime
basis vectors to rewrite this as

−ê1∂0E1 − ê2∂0E2 − ê3∂0E3 + I ê1∂0B1 + I ê2∂0B2 + I ê3∂0B3
+ê0∂1E1 + I ê3∂1E2 −I ê2∂1E3 −I ê0∂1B1 + ê3∂1B2 − ê2∂1B3
−I ê3∂2E1 + ê0∂2E2 + I ê1∂2E3 − ê3∂2B1 −I ê0∂1B2 + ê1∂2B3
+I ê2∂3E1 −I ê1∂3E2 + ê0∂3E3 + ê2∂3B1 − ê1∂3B2 + I ê0∂3B3

= ê0ρ+ ê1J
1 + ê2J

2 + ê3J
3. (5.22)

Equate timelike vectors ê0 to write

∂1E1 + ∂2E2 + ∂3E3 = ρ. (5.23)
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Equate spacelike vectors êk to write

∂2B3 − ∂3B2 − ∂0E1 = J1,

∂3B1 − ∂1B3 − ∂0E2 = J2,

∂1B2 − ∂2B1 − ∂0E3 = J3. (5.24)

Equate timelike trivectors I ê0 to write

∂1B1 + ∂2B2 + ∂3B3 = 0. (5.25)

Equate spacelike trivectors I êk to write

∂2E3 − ∂3E2 + ∂0B1 = 0,

∂3E1 − ∂1E3 + ∂0B2 = 0,

∂1E2 − ∂2E1 + ∂0B3 = 0. (5.26)

Write these equations traditionally as

~∇ · ~E = ρ,

~∇× ~B − ∂t~E = ~J,

~∇ · ~B = 0,

~∇× ~E + ∂t ~B = ~0. (5.27)

The timelike multivectors form the divergence equations and the spacelike multivec-
tors form the curl equations; the vectors form the inhomogeneous (source) equations
and the trivectors form the homogeneous (source-free) equations.

Accomplish the same decomposition at a higher level. Begin with

⇒
J =

⇒
∇F , (5.28)

and expand to write

ê0ρ+ ~J = (−ê0∂0 + ~∇)(~E ê0 − I ~B )

= −∂0~E + I ∂0 ~B + ê0~∇~E − I ~∇ ~B. (5.29)

Decompose the geometric product into dot and cross products using the Eq. 2.39
duality of the wedge and cross products to write

~∇~E = ~∇ · ~E + ~∇∧ ~E = ~∇ · ~E + I ~∇× ~E , (5.30)

~∇ ~B = ~∇ · ~B + ~∇∧ ~B = ~∇ · ~B + I ~∇× ~B. (5.31)

Hence,

ê0ρ+ ~J = −∂0~E + I ∂0 ~B + ê0~∇ · ~E + I ~∇× ~E − I ~∇ · ~B + ~∇× ~B, (5.32)

which again results in the traditional Maxwell equations of Eq. 5.27.
Like all differential equations, provide suitable boundary conditions to uniquely

specify a solution to the Maxwell equation. For example, require that the field F
decay sufficiently rapidly at infinity.
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5.4 The Lorentz Force Equation

The spacetime force on a test charge moving in an electromagnetic field is the
product of the charge and the dot product of the spacetime velocity with the field,

⇒
F =

d
⇒
P

dτ
= q
⇒
V · F , (5.33)

read “d big p spacetime vector over d tau equals q times big v spacetime vector dot

script big f”. Use
⇒
V · F =

〈⇒
V F

〉
1

to expand this to

γ
d

dt
(Eê0 + ~P ) = q

〈
(γê0 + γ~v)(~E ê0 − I ~B)

〉
1
, (5.34)

dE

dt
ê0 +

d~P

dt
= q

〈
~E −I ~B + ~v~E ê0 − I~v ~B

〉
1
. (5.35)

Decompose the geometric product into dot and cross products to write

~v~E = ~v · ~E + ~v ∧ ~E = ~v · ~E + I~v × ~E , (5.36)

~v ~B = ~v · ~B + ~v ∧ ~B = ~v · ~B + I~v × ~B. (5.37)

Hence,

dE

dt
ê0 +

d~P

dt
= q

〈
~E −I ~B + ~v · ~E ê0 + I ~v × ~E ê0 − I~v · ~B + ~v × ~B

〉
1
, (5.38)

dE

dt
ê0 +

d~P

dt
= q~E + q~v · ~E ê0 + q~v × ~B, (5.39)

which results in the traditional form

dE

dt
= q~v · ~E , (5.40)

d~P

dt
= q(~E + ~v × ~B). (5.41)

The timelike vectors form the power equation, while the spacelike vectors from the
traditional Lorentz force. To elucidate the former, extend it by noting ~v ·~v× ~B = 0
and so

dE

dt
= ~v · ~F , (5.42)

~F =
d~P

dt
= q(~E + ~v × ~B). (5.43)
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Problems

1. Verify the Faraday components of Eq. 5.5.

2. Prove the following decomposition of the Faraday bivector, and try to interpret
it physically.

(a) ê0 · F = −F · ê0 = ~E .

(b) ê0 ∧ F = F ∧ ê0 = −I ~B.

3. Consider parallel plate capacitors moving parallel and perpendicular to their
plates. Use elementary relativity and electromagnetism (including simple
forms of Gauss’s and Ampère’s laws) to qualitatively check the boosted fields
of Eq. 5.9.

4. Suppose a particle of mass m and charge Q moves with spacetime velocity

⇒
V = 2ê0 −

√
3 ê1 sinx0 +

√
3 ê2 cosx0

= 2 t̂−
√

3 x̂ sin t+
√

3 ŷ cos t

in the electromagnetic field

F = e−r(x1ê1ê0 + x2ê2ê0 + x3ê3ê0)

= e−r(x x̂t̂+ y ŷt̂+ z ẑt̂)

= e−r~r t̂

where r = |~x| =
√

(x1)2 + (x2)2 + (x3)2 =
√
x2 + y2 + z2.

(a) What is the charge’s space speed |~v|?
(b) Sketch its orbit in both space and spacetime.

(c) What is the spacetime force
⇒
F on the charge?

(d) What is the corresponding Newtonian force ~f on the charge?

(e) What spacetime source
⇒
J can produce this field? (Hint: Use and show

~∇r = r̂ and ~∇ · ~r = 3.)

(f) What are the corresponding charge and current densities, ρ and ~J?
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Chapter 6

Interpreting Maxwell’s
Equations

Descend from four-dimensional spacetime to three-dimensional space, where the tra-
ditional Maxwell’s equations, in either differential or integral form, balance elegance
and practicality and admit powerful and visualizable geometrical interpretations.
Seek such interpretations by relating the derivative concepts of divergence and curl
to the integral concepts of flux and circulation. For simplicity, denote Euclidean
coordinates and basis vectors by

~r = xx̂+ yŷ + zẑ = xêx + yêy + zêz = x1ê1 + x2ê2 + x3ê3 = xkêk = ~x. (6.1)

6.1 Divergence & Flux

Let ~v[~r ] be a vector field, such as the velocity field of a flowing fluid. The flux Φ of
the vector field through an area a is

Φ =

∫∫
a

~v · d~a = 〈v⊥〉 a, (6.2)

where d~a is perpendicular to the area element, and 〈v⊥〉 is the average perpendicular
component of ~v. With dimensions of volume per time, the flux could represent the
number of gallons per minutes that flows through a pipe. The flux Φ of the vector
field through a closed area a bounding a volume V is

Φ =©
∫∫
a=∂V

~v · d~a, (6.3)

where d~a is the outward area element and the symbol ∂ (without an index) is the
boundary operator.

Consider the flux (or outflow) of the vector field from an infinitesimal cube
dV = dx dy dz at {x, y, z}, as in Fig. 6.1. Sum the flux through the six sides of the
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x̂ dy dzx

y

z

!v[!r ]

Figure 6.1: Flux of a vector field ~v[~x] through and infinitesimal cube dx dy dz.

cube, pairing the fluxes through opposite sides, to get

dΦ = + vx[x+ dx, y, z] dy dz − vx[x, y, z] dy dz

+ vy[x, y + dy, z] dz dx− vy[x, y, z] dz dx

+ vz[x, y, z + dz] dx dy − vz[x, y, z] dx dy

=

(
∂vx
∂x

dx

)
dy dz +

(
∂vy
∂y

dy

)
dz dx+

(
∂vz
∂z

dz

)
dx dy

= (∂xvx + ∂yvy + ∂zvz) dx dy dz.

=~∇ · ~v dV. (6.4)

Thus, the divergence of a vector field ~v[~x] is the flux per unit volume,

div~v = ~∇ · ~v =
dΦ

dV
. (6.5)

Figure 6.2 depicts a couple of examples. If the vector field is the position ~v[~r ] = ~r,

then ~∇ · ~v = 3 and net flux exists everywhere (not just at the origin). If the vector

field is a unit vector, say ~v[~r ] = x̂, then ~∇ · ~v = 0 and net flux exists nowhere, as
what enters on the left exits on the right.

!v[!r ] = !r

!v[!r ] = x̂

!∇ · !v = 3

!∇ · !v = 0

Figure 6.2: Vector fields ~v[~r ] with simple divergences ~∇ · ~v. Random sampling
represents the fields.
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6.2 Curl & Circulation

Given the same vector field ~v[~r ], the circulation Γ around a line ` bounding an
area a is

Γ =

∮
`=∂a

~v · d~̀=
〈
v‖
〉
`. (6.6)

where d~̀ is parallel (or tangent) to the line element, and
〈
v‖
〉

is the average parallel
component of ~v.

ẑ dx dy

x

y

z

!v[!r ]

Figure 6.3: Circulation of a vector field ~v[~r] around an infinitesimal square ẑ dx dy.

Consider the circulation of the vector field around an infinitesimal area daz =
dx dy at {x, y, z}, as in Fig. 6.3. Sum the circulations around the four sides of the
square, pairing the contributions along opposite sides, to get

dΓz = + vx[x, y, z] dx− vx[x, y + dy, z] dx

+ vy[x+ dx, y, z] dy − vy[x, y, z] dy

=

(
−∂vx
∂y

dy

)
dx+

(
∂vy
∂x

dx

)
dy

= (∂xvy − ∂yvx) dx dy

=
(
~∇× ~v

)
z
daz. (6.7)

Thus, (
~∇× ~v

)
z

=
dΓz
daz

=

(
d~Γ

da

)
z

. (6.8)

and the curl of a vector field is the circulation per unit area,

curl~v = ~∇× ~v =
d~Γ

da
. (6.9)

Figure 6.4 depicts a couple of examples. If the vector field is the linear velocity
field of a wheel spinning at ~ω = ωx̂, then

~v[~r ] = ~ω × ~r = ωx̂× (yŷ + zẑ) = ωyẑ − ωzŷ, (6.10)

and
~∇× ~v = (x̂∂x + ŷ∂y + ẑ∂z)× (ωyẑ − ωzŷ) = ωx̂+ ωx̂ = 2~ω. (6.11)
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So, drop a stick in a stream and watch it spin; the curl of the water’s velocity field
is twice the angular velocity of the stick. In fact, if the vector field is the parabolic
velocity profile of a river, fast near the center and slow at the banks,

~v[~r ] = x̂y(1− y) = x̂(y − y2) (6.12)

then

~∇× ~v = (x̂∂x + ŷ∂y + ẑ∂z)× (x̂(y − y2)) = −ẑ(1− 2y) = ẑ2(y − 1/2). (6.13)

The stick doesn’t spin at all at the stream’s center y = 1/2 but spins one way near
the left bank y < 1/2 and the opposite way near the right bank y > 1/2, as expected.

!∇× !v

ω

!∇× !v

!v[!r ]

!v[!r ]

x

y

z

Figure 6.4: Vector fields ~v[~r ] with simple circulations ~∇×~v, spinning wheel (left)
and river (right). Regular sampling represents the fields.

6.3 Integral Form

According to the fundamental theorem of calculus, the integral of an ordinary
derivative of a function is the function. For the derivatives of space vector calculus,
the fundamental theorem takes different forms. The integral of the divergence of a
vector field motivates the divergence theorem,∫∫∫

V

div~v dV =

∫∫∫
V

~∇ · ~v dV =

∫∫∫
V

dΦ

dV
dV =

∫
dΦ = Φ =©

∫∫
a=∂V

~v · d~a, (6.14)

because the infinitesimal fluxes dΦ across all interior boundaries cancel in pairs (as
each exit is also an entrance), as in Fig. 6.5.

Similarly, the integral of the curl of a vector field motivates the curl theorem,∫∫
a

curl~v · d~a =

∫∫
a

~∇× ~v · d~a =

∫∫
a

d~Γ

da
· d~a =

∫
dΓ = Γ =

∮
`=∂a

~v · d~̀, (6.15)

because the infinitesimal flows dΓ along interior boundaries cancel in pairs, as in
Fig. 6.6. Both the divergence and the curl theorem are special cases, in different
dimensions, of the generalized Stokes’ theorem.
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The integral of the gradient of a scalar field S[~r ] motivates yet another example,∫ ~r2

~r1

gradS · d~̀=

∫ ~r2

~r1

~∇S · d~̀=

∫ ~r2

~r1

d~S

d`
· d~̀=

∫
dS = ∆S = S[~r2]−S[~r1]. (6.16)

For an ordinary function f [x], the lowest dimensional example is∫ x2

x1

f ′[x]dx =

∫ x2

x1

df

dx
dx =

∫
df = ∆f = f [x2]− f [x1]. (6.17)

d!a d!a′

dV dV ′

!v[!r ]!v[!r ]

Figure 6.5: Interior fluxes ~v · d~a cancel in pairs leaving only the flux through the
exterior, so

∫
dΦ = Φ.

d!a
d!a′

d!" d!" ′

!v[!r ]!v[!r ]

Figure 6.6: Interior circulations ~v · d~̀ cancel in pairs leaving only the circulation
around the exterior, so

∫
dΓ = Γ .

Use these fundamental theorems of space vector calculus to convert Maxwell’s
equations from differential form to integral form. Begin with the Helmholtz form,
where specifying divergence and curl of the fields determines the fields everywhere,

~∇ · ~B = 0, ~∇× ~E = −∂t ~B,
~∇ · ~E = ρ, ~∇× ~B = +∂t~E + ~J. (6.18)

Integrate the divergence equations over a volume bounded by a closed surface and
integrate the curl equations over an area bounded by a closed curve to get∫∫∫

V

~∇ · ~B dV = 0,

∫∫
a

~∇× ~E · d~a = − d

dt

∫∫
a

~B · d~a,∫∫∫
V

~∇ · ~E dV =

∫∫∫
V

ρ dV ,

∫∫
a

~∇× ~B · d~a = +
d

dt

∫∫
a

~E · d~a+

∫∫
a

~J · d~a. (6.19)
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Apply the divergence and curl theorems to write

©
∫∫
a=∂V

~B · d~a = 0,

∮
`=∂a

~E · d~̀= − d

dt

∫∫
a

~B · d~a,

©
∫∫
a=∂V

~E · d~a =

∫∫∫
V

ρ dV,

∮
`=∂a

~B · d~̀= +
d

dt

∫∫
a

~E · d~a+

∫∫
a

~J · d~a, (6.20)

or, more succinctly,

ΦB = 0, ΓE = −Φ̇B,

ΦE = Q, ΓB = +Φ̇E + I, (6.21)

where Q is the charge inside the volume V , I is the current passing through the
area a, and the overdots denote time differentiation. The fluxes Φ on the left are
over closed surfaces, but the fluxes on the right are over open surfaces. The fluxes Φ
have the dimensions of charge Q, the circulations Γ have the dimensions of current
I.

6.4 Interpretations

Each Maxwell equation now has a simple, visualizable meaning. In the differential
form of Eq. 6.18, Gauss’s law for the magnetic field, ~∇ · ~B = 0, means that the
magnetic field never diverges (forming loops instead). Gauss’s law for the electric

field, ~∇·~E = ρ, means that the electric field diverges from positive charge density and
converges on negative charge density. Faraday’s law, ~∇× ~E = −∂t ~B, means that
an electric anti-curl accompanies a time varying magnetic field. Ampère’s law (as

extended by Maxwell), ~∇× ~B = +∂t~E + ~J , means that a magnetic curl accompanies
a time varying electric field or an electric current density. (The special, stationary

case of Ampère’s original law, ~∇× ~B = ~J , means that a magnetic curl accompanies
a positive current density and a magnetic anti-curl accompanies a negative current
density.)

In integral form of Eq. 6.29, Gauss’s law for the magnetic field, ΦB = 0,
means that the flux of the magnetic field through any closed surface vanishes, so
whatever goes in must come out. Gauss’s law for the electric field, ΦE = Q,
means that the flux of the electric field through any closed surface is the electric
charge inside. Faraday’s law, ΓE = −Φ̇B, means that the circulation of the electric
field around any closed loop is minus the time rate of change of the magnetic flux
through any surface bounded by the loop. Ampère’s law (as extended by Maxwell),
ΓB = +Φ̇E + I, means that the circulation of the magnetic field around any closed
loop is the time rate of change of the electric flux through any surface bounded by
the loop plus the electric current passing through the loop. (The special, stationary
case of Ampère’s original law, ΓB = I, means the circulation of the magnetic field
around any closed loop is the electric current passing though the loop.)
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6.5 Maxwell’s Form

Maxwell worked before the advent of vector algebra and so explicitly wrote Eq. 6.18
in terms of components,

∂xBx + ∂yBy + ∂zBz = 0,

∂yEz − ∂zEy + ∂tBx = 0,

∂zEx − ∂xEz + ∂tBy = 0,

∂xEy − ∂yEx + ∂tBz = 0,

∂xEx + ∂yEy + ∂zEz = ρ,

∂yBz − ∂zBy − ∂tEx = Jx,

∂zBx − ∂xBz − ∂tEy = Jy,

∂xBy − ∂yBx − ∂tEz = Jz, (6.22)

where they reveal more of their internal structure and symmetry, as in Sec. 5.3.

!vB!vE

QBQE

−QB!vB × !E

QBQE

!B !E

!vB!vE

QBQEQBQE

!B !E

+QE!vE × !B +QE !E

+QB !B

Figure 6.7: Passing electric and magnetic charges QE and QB, with relative ve-
locities ~vE = −~vB (perpendicular to the page), from two different references frames
(left and right), illustrate the consistency of the sign conventions in Eq. 6.23 and
Eq. 6.24.
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6.6 Magnetic Monopole Form

Include magnetic charges QB and currents IB to further symmetrize Maxwell’s equa-
tions,

ΦB = QB, ΓE = −Φ̇B − IB = − d

dt
(ΦB +QB),

ΦE = QE , ΓB = +Φ̇E + IE = +
d

dt
(ΦE +QE). (6.23)

(Note again that the fluxes Φ on the left side are over closed areas, while those
on the right side are over open areas.) Such magnetic monopoles have not yet
been observed but are predicted by Grand Unified Theories. For a particle
with electric charge qE and magnetic charge qB moving with relative velocity ~v, the
Lorentz force law becomes

~F = qE ~E + qB ~B + qE ~v × ~B − qB ~v × ~E , (6.24)

where the lone minus sign can be derived by demanding consistency between the
forces on passing electric and magnetic charges from each of their reference frames,
as illustrated by Fig. 6.7.

6.7 Matter Fields

Electric fields from free charges Qf can polarize matter and create bound surface
charges Qb, as in the dielectric material within the Fig. 6.8 capacitor. Magnetic
fields from free currents If can magnetize matter and create bound surface currents
Ib, as in the paramagnetic material within the Fig. 6.8 solenoid. Conventionally
decompose the total electric field as the difference of the free electric field and the
polarization field,

~E = ~D − ~P. (6.25)

Decompose the total magnetic field as the sum of the free magnetic field and the
magnetization field,

~B = ~H+ ~M. (6.26)

For simple materials only, the total electric and magnetic fields are proportional to
the free electric and magnetic fields,

~E = ~D/ε (6.27)

and
~B = ~Hµ, (6.28)

where ε and µ are the permittivity and permeability of the material. A paraelec-
tric material like a ceramic with ε > 1 weakens the electric field; a paramagnetic
material like aluminum with µ > 1 strengthens the magnetic field. For complex
hysteretic materials, like ferroelectrics and ferromagnets, ε and µ are not constants
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Figure 6.8: Cross sections of capacitor & dielectric (top) and solenoid & paramag-
net (bottom). The total electric field is the free electric field minus the polarization,
~E = ~D− ~P; the total magnetic field is the free magnetic field plus the magnetization,
~B = ~H+ ~M.

but are variables that depend on the history of the material. In natural units, the
permittivity and permeability of the vacuum are one, and the total and free fields
are the same, ~E = ~D and ~B = ~H.

Experimentalists often control the free charges and currents, rather than the
bound charges and currents, and so prefer the free electric and magnetic fields ~D
and ~H over the total electric and magnetic fields ~E and ~B. So, in matter, modify
the two Maxwell source equations to get

ΦB = 0, ΓE = −Φ̇B,

ΦD = Qf , ΓH = +Φ̇D + If , (6.29)

where Qf = Q−Qb is the free charge and If = dQf/dt is the free current.
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Problems

x

y

z

x

y

z

2

2

2
2

2

Figure 6.9: Cube and triangle for Problem 1.

1. Assume the vector field ~v = xy x̂+ 2yz ŷ + 3zx ẑ.

(a) Verify the divergence theorem of Eq. 6.14 for the cube of Fig. 6.9 by
separately computing the volume integral of the divergence of the field
inside the cube and the surface integral of the field over the boundary of
the cube.

(b) Verify the curl theorem of Eq. 6.15 for the triangle of Fig. 6.9 and by
separately computing the area integral of the curl of the field inside the
triangle and the line integral of the field along the boundary of the tri-
angle.

2. Consider a circular electric current intersecting a (hypothetical) circular mag-
netic current at right angles, so that each current passes through the center
of the other current. Show that the sign conventions adopted in the Eq. 6.23
Maxwell integral monopole equations are necessary to avoid a diverging so-
lution. (Hint: Imagine a situation where the fluxes change arbitrarily slowly
and focus on the circulation equations.)



Chapter 7

Electrostatics

In a world of static electric charges, irrotational electric fields diverge from charge
densities, and Maxwell’s equations reduce to

~∇ · ~E = ρ, ~∇× ~E = ~0, (7.1)

or

ΦE = Q, ΓE = 0. (7.2)

An electric force is proportional to an electric charge and an electric field, and
Lorentz’s equation reduces to

~F = q~E . (7.3)

7.1 Coulomb’s Law

Consider the electric field of a point charge Q at the origin ~r = 0. Symmetry
demands that the field ~E [~r ] = E [r]r̂ must be radial and depend only on its distance.
Apply Gauss’s law to a sphere of radius r concentric with the charge to obtain

Q = ΦE =©
∫∫
a=∂V

~E · d~a =©
∫∫
r′=r

E [r′]da′ = E [r]©
∫∫
r′=r

da′ = E [r]4πr2. (7.4)

or

~E [~r ] =
Q

4πr2
r̂, (7.5)

which is Coulomb’s law. The charge’s electric field spreads over the spherical
surface area 4πr2 and dilutes with distance r by that same factor. If the charge is
at ~r ′, then

~E =
Q

4πr 2r̂ , (7.6)

where the displacement vector ~r = ~r − ~r ′ points from the source point to the field
point.
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The principle of superposition is implicit in the vector notation used to ex-
press Coulomb’s law. For a discrete charge distribution Qk at ~rk, the displacement
vectors are ~r k = ~r − ~rk, and the electric field at the point ~r is

~E =
∑
k

~Ek =
∑
k

Qk
4πr 2k
r̂ k. (7.7)

For a continuous charge distribution,

~E =

∫
d~E =

∫
dQ

4πr 2r̂ , (7.8)

where the infinitesimal charge

dQ = λd` = σda = ρdV (7.9)

and λ, σ, ρ are line, surface, and volume charge densities.

r′ = R
θ

x

y

z
ψ

dE

r = z ψ

θ R

R sin θ

R cos θ

z − R cos θ

σ

dQ

Figure 7.1: A spherical shell of radius R holds an surface charge density σ (left)
and the geometry of the position triangle rotated into the plane of the page (right).

As an example, compute the electric field ~E of a spherical shell of charge density
σ and radius R. By symmetry, assume the shell is centered at the origin, the field
point ~r = zẑ is on the z-axis, and the source point ~r ′ = ~R is on the shell, as
in Fig. 7.1. Let ψ be the angle between d~E and ẑ. Employ spherical coordinates
{r, θ, φ}, where θ is the co-latitude and φ is the longitude. By symmetry, write

E = Ez =

∫
dEz =

∫
dE cosψ. (7.10)
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Expand by geometry, and perform the trivial φ integration to get

E =

∫
dQ

4πr 2
(
z −R cos θ

r
)

=
1

4π

∫∫
σda(z −R cos θ)(

~z − ~R
)3

=
σ

4π

∫ 2π

φ=0

∫ π

θ=0

(Rdθ)(R sin θdφ)(z −R cos θ)

(z2 − 2~z · ~R+R2)3/2

=
σ

2

∫ π

0

R2(z −R cos θ) sin θ dθ

(z2 − 2zR cos θ +R2)3/2
. (7.11)

First make the variable substitution u = cos θ and then the parameter substitution
ζ = z/R to show

E =
σ

2

∫ −1
+1

R2(z −Ru)(−du)

(z2 − 2zRu+R2)3/2

=
σ

2

∫ +1

−1

R2(z −Ru)du

(z2 − 2uzR+R2)3/2

=
σ

2

∫ +1

−1

(ζ − u)du

(ζ2 − 2uζ + 1)3/2
. (7.12)

Make the variable substitution v = ζ2 − 2uζ + 1 to conclude

E =
σ

2

1

(2ζ)2

∫ (ζ−1)2

(ζ+1)2

(
ζ − ζ2+1−v

2ζ

)(
−dv2ζ

)
v3/2

=
σ

2

1

4ζ2

∫ (ζ+1)2

(ζ−1)2

(
(ζ2 − 1)v−3/2 + v−1/2

)
dv

=
σ

2

1

2ζ2

(
−(ζ2 − 1)v−1/2 + v1/2

) ∣∣∣∣(ζ+1)2

(ζ−1)2

=
σ

2

1

2ζ2

(−ζ2 + 1 + v√
v

) ∣∣∣∣(ζ+1)2

(ζ−1)2

=
σ

2

1

ζ2

(
ζ + 1

|ζ + 1| +
ζ − 1

|ζ − 1|

)
. (7.13)

Two cases exist. In the interior of the shell, z < R and ζ < 1, so

E [z < R] =
σ

2

1

ζ2
(1− 1) = 0, (7.14)

and the field vanishes identically. In the exterior of the shell, z > R and ζ > 1, so

E [z > R] =
σ

2

1

ζ2
(1 + 1) =

σR2

z2
=

Q

4πz2
, (7.15)
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and the field is that of a point charge Q = σ 4πR2 at the center of the sphere!
Summarize this by

~E [~r ] =

 0, r < R,

Q

4πr2
r̂, r > R.

(7.16)

This is the electricity version of Newton’s famous gravity shell theorem. Rapidly
confirm this result by applying Gauss’s law to concentric spheres inside and outside
the shell.

7.2 Boundary Conditions

Electrostatic fields are discontinuous at charge layers, like the shell of charge. Con-
sider a surface with normal n̂ and surface charge density σ, as in Fig. 7.2. Let ~E−
be the electric field just below the surface and ~E+ be the electric field just above the
surface. Apply ΦE = Q to a cylinder straddling the surface of cross sectional area a
and vanishing height h→ 0 to get

E+⊥a− E−⊥a− 0 = σa (7.17)

or
∆E⊥ = E+⊥ − E−⊥ = σ. (7.18)

Apply ΓE = 0 to a rectangular loop straddling the surface of length ` and vanishing
height h→ 0 to get

E+‖ `+ 0− E−‖ `− 0 = 0 (7.19)

or
∆E‖ = E+‖ − E−‖ = 0. (7.20)

Thus, the normal component of the electrostatic field is discontinuous by the charge
density,

∆~E = ~E+ − ~E− = σn̂. (7.21)

For example, this is true for the Eq. 7.16 shell of charge, where σ = Q/4πR2 and
n̂ = r̂.

!E−

h↓0

σ

h↓0

!E−

!E+!E+

σ

!

n̂n̂

a

Figure 7.2: A closed cylinder (left) and rectangular loop (right) straddle a charge

layer to compute the discontinuity in an electric field ~E due to the charge density σ.
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7.3 Point Charges and the Dirac Delta

If ρ[~r ] is the electric charge density of a point charge Q at ~r = ~0, it must satisfy
both ∫∫∫

ρ[~r ]dV = Q, (7.22)

and
ρ[~r 6= ~0 ] = 0, (7.23)

No normal function vanishes everywhere except a point and still has a nonzero
integral. Instead write

ρ[~r ] = Qδ3[~r ] = Qδ[x]δ[y]δ[z], (7.24)

where the Dirac delta is a generalized function with just those properties.
The discrete analogue of the Kronecker delta δkl, the Dirac delta δ[x− a] is like

an infinite spike bounding a unit area Think of it as the limit

δ[x] = lim
ε→0

δε[x] (7.25)

of “top-hat” functions

δε[x] =

{
1/ε, |x| < ε/2,
0, ε/2 ≤ |x|. (7.26)

Apparently,

δ[x] =

{
∞ x = 0,
0, x 6= 0,

(7.27)

such that ∫ ∞
−∞

δ[x]dx = 1. (7.28)

Since the Dirac delta vanishes everywhere except at a point, when it occurs in
an integral, replace the the rest of the integrand by its value at that point. For
example, ∫ ∞

−∞
f [x]δ[x]dx =

∫ ∞
−∞

f [0]δ[x]dx = f [0]

∫ ∞
−∞

δ[x]dx = f [0]. (7.29)

More generally, the Dirac delta exhibits the sifting property∫ ∞
−∞

f [x]δ[x− a]dx = f [a]. (7.30)

For example, ∫ 3

0

x3δ[x− 2]dx = 8 (7.31)

but only if it is nonzero within the limits of integration,∫ 1

0

x3δ[x− 2]dx = 0. (7.32)
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Use a change of variable to prove∫ ∞
−∞

f [x]δ[kx]dx =

∫ ∞
−∞

f

[
ξ

k

]
δ[ξ]

dξ

k
=

1

k
f [0]

∫ ∞
−∞

δ[ξ]dξ =
1

k
f [0], (7.33)

where k > 0. More generally, show∫ ∞
−∞

f [x]δ[kx]dx =
1

|k|f [0] =

∫ ∞
−∞

f [x]
1

|k|δ[x]dx. (7.34)

Since this is true for all sufficiently nice “test” functions f [x], write

δ[kx] =
1

|k|δ[x]. (7.35)

Hence, the dimensions of the Dirac delta must be inverse to those of its argument.
Furthermore, k = −1 implies that the Dirac delta is symmetric,

δ[−x] = δ[x]. (7.36)

Return to the motivating example of the point charge of Eq. 7.24, where Gauss’s
law in differential form ~∇ · ~E = ρ implies

~∇ ·
(

Q

4πr2
r̂

)
= Qδ3[~r ], (7.37)

or

~∇ ·
(
r̂

r2

)
= 4πδ3[~r ], (7.38)

which is an important differential identity. For example, given the electric field

~E [~r ] =

∫∫∫
ρ[~r ′]dV ′

4πr 2 r̂ , (7.39)

its divergence

~∇ · ~E [~r ] =

∫∫∫
ρ[~r ′]dV ′

4π
~∇ ·
( r̂
r 2
)

=

∫∫∫
ρ[~r ′]dV ′

4π
4πδ3[~r − ~r ′] = ρ[~r ] (7.40)

as expected from Gauss’s law.

7.4 Electric Potential

Consider the circulation of an electrostatic field around the closed loop joining points
~a and ~b in Fig. 7.4. By the Eq. 7.2 Maxwell’s equations,

0 = ΓE =

∮
`

~E · d~̀=

∫ ~b

~a
low

~E · d~̀+

∫ ~a

~b
high

~E · d~̀ (7.41)
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or ∫ ~b

~a
low

~E · d~̀= −
∫ ~a

~b
high

~E · d~̀= +

∫ ~b

~a
high

~E · d~̀, (7.42)

so that the line integral of the electrostatic field is the same over both the high and
low paths. Because those paths are generic, the electrostatic field line integrals are
path independent. Thus, given a reference point ~O, define an electric scalar field
or electric potential by

ϕ[~r ] = −
∫ ~r

~O
~E [~r ′] · d~r ′ = −

∫ ~r

~O
~E · d~̀, (7.43)

where the minus sign is conventional (so that positive charges move from high to
low potential). Show later that the electric potential is a potential energy per unit
charge.

!a

!b

!O

!c !b
!a

!E [!r ]

!E [!r ]

high

low

Figure 7.3: A path independent electric vector field ~E and a reference point ~O
enables the definition of an electric scalar field or electric potential ϕ.

Next, consider the electric potential difference between the points ~u and ~v,

ϕ[~v ]− ϕ[~u ] = −
∫ ~v

~O
~E · d~̀+

∫ ~u

~O
~E · d~̀

= −
∫ ~v

~O
~E · d~̀−

∫ ~O

~u

~E · d~̀

= −
∫ ~O

~u

~E · d~̀−
∫ ~v

~O
~E · d~̀

∆ϕ = −
∫ ~v

~u

~E · d~̀. (7.44)

By the Eq. 6.16 fundamental theorem of calculus for the gradient, write this also as

∆ϕ =

∫ ~v

~u

~∇ϕ · d~̀, (7.45)

and so identify the electric field as the negative gradient of the electric potential,

~E = −~∇ϕ, (7.46)
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which is the inverse of the Eq. 7.43 definition.
Immediately check that

~∇× ~E = −~∇× ~∇ϕ = ~0, (7.47)

because the curl of any gradient vanishes identically. In fact, this constraint on the
components of the vector field ~E [~r ] precisely enables the same information to be
encoded in the scalar field ϕ[~r ].

Shifting the reference point ~O shifts the potential ϕ[~r ] without changing the

electric field ~E [~r ]. For example, if

ϕ1[~r ] = −
∫ ~r

~O1

~E · d~̀, (7.48)

then

ϕ2[~r ] = −
∫ ~r

~O2

~E · d~̀= −
∫ ~O1

~O2

~E · d~̀−
∫ ~r

~O1

~E · d~̀= k + ϕ1[~r ], (7.49)

and so
~E2 = −~∇ϕ2 = ~0− ~∇ϕ1 = ~E1 (7.50)

A good reference point is often at infinity (except for problems with idealized charge
distributions that extend to infinity).

R0

ϕ

E

Q

4πR

σ =
Q

4πR2

0

Figure 7.4: Electric field magnitude E and electric potential ϕ as a function of
radial distance r for a spherical shell of radius R and charge Q.

As an example, compute the electric potential ϕ of a spherical shell of charge Q
and radius R centered at the origin. By symmetry, ϕ[~r ] = ϕ[r]. Set the reference
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point at infinity and choose a simple radial path d~̀ = r̂dr to integrate over the
electric field of Eq. 7.16. Two cases exist. In the exterior of the shell r > R and

ϕ[r] = −
∫ r>R

∞
E [r′]dr′ = −

∫ r

∞

Q

4πr′2
dr′ = +

Q

4πr′

∣∣∣∣r
∞

=
Q

4πr
. (7.51)

In the interior of the shell r < R and

ϕ[r] = −
∫ r<R

∞
E [r′]dr′ = −

∫ R

∞

Q

4πr′2
dr′ −

∫ r

R

0 dr′ =
Q

4πR
. (7.52)

Summarize this by

ϕ[r] =


Q

4πR
, r ≤ R,

Q

4πr
, r ≥ R.

(7.53)

Unlike the electric field, which is discontinuous at the shell, the electric potential is
continuous everywhere, as in Fig. 7.4.

As another example, compute the electric potential ϕ of a line of charge density
λ. First find the electric field ~E by applying Gauss’s law ΦE = Q to a closed coaxial
cylinder of radius r⊥ = s and length ` to get

0 + E(2πs)`+ 0 = `λ (7.54)

so that

E =
λ

2πs
(7.55)

or

~E =
λ

2πs
ŝ. (7.56)

Then integrate the electric field ~E along a path perpendicular to the line to get

ϕ = −
∫ s

s0

λ

2πs′
ds′ = − λ

2π
log s′

∣∣∣∣s
s0

=
λ

2π
log

s0
s
, (7.57)

where s0 <∞ is some constant fiducial distance.
The electric potential ϕ inherits superposition from the electric field ~E . For a

discrete charge distribution Qk at ~rk, the displacement vectors are ~r k = ~r − ~rk,
and the electric potential at the point ~r is

ϕ =
∑
k

ϕk =
∑
k

Qk
4πr k . (7.58)

For a continuous charge distribution

ϕ =

∫
dϕ =

∫
dQ

4πr , (7.59)
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where dQ = λd` = σda = ρdV . Compared to the electric field integral of Coulomb’s
law

~E =

∫
d~E =

∫
dQ

4πr 2r̂ , (7.60)

the electric potential integral lacks that pesky r̂ unit vector, making it often easier
to find the electric potential first and subsequently differentiate to find the electric
field than to find the electric field directly via Coulomb’s law.

As an example, (re)compute the electric field ~E of a spherical shell of charge Q
(and charge density σ) and radius R centered at the origin, as in Fig. 7.1, by first
computing the electric potential. By symmetry, take the field point ~r = zẑ to be on
the z-axis. The source point ~r ′ = ~R will be on the shell. The electric potential

ϕ =

∫
dQ

4πr
=

1

4π

∫∫
σda∣∣~z − ~R

∣∣
=

σ

4π

∫ 2π

φ=0

∫ π

θ=0

(Rdθ)(R sin θdφ)

(z2 − 2zR cos θ +R2)1/2

=
σR2

2

∫ π

θ=0

sin θdθ

(z2 − 2zR cos θ +R2)1/2

=
σR2

2

1

zR
(z2 − 2zR cos θ +R2)1/2

∣∣∣∣π
θ=0

=
Rσ

2z
(|z +R| − |z −R|) (7.61)

Two cases exist. In the interior of the shell z ≤ R and

ϕ[z ≤ R] = Rσ =
Q

4πR
. (7.62)

In the exterior of the shell z ≥ R and

ϕ[z ≥ R] =
R2σ

z
=

Q

4πz
. (7.63)

Summarize this by

ϕ[~r ] =


Q

4πR
, r ≤ R,

Q

4πr
, r ≥ R,

(7.64)

which is the same as the Eq. 7.53 line integral result. Finally, ~E = −~∇ϕ readily
recovers the Eq. 7.16 surface integral result.

7.5 Work & Energy

Energy E stored in a charge configuration is the work W done to assemble it.
Recover the stored energy as kinetic energy by letting the charges fly apart. Move a
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test charge q from a reference point ~O, typically at infinity, at constant velocity so
that the applied force balances the electric force, ~F + q~E = ~0. The work done (and
energy stored) is

W =

∫ ~r

~O
~F · d~̀= −q

∫ ~r

~O
~E · d~̀= q ϕ[~r ] = E. (7.65)

Thus, the electric potential ϕ is the “potential” energy per unit charge stored in the
charge distribution. Alternately, think of the electric potential ϕ as the potential
energy per unit charge stored in the corresponding electric field ~E .

Imagine assembling a collection of electric charges {Qk}. The work to assemble
the first charge in the absence of any others is

W1 = 0. (7.66)

The work to assemble the second charge in the presence of the first is

W2 = Q2ϕ1[~r2 ] = Q2
Q1

4πr 12 . (7.67)

The work to assemble the third charge in the presence of the first two is

W3 = Q3ϕ12[~r3 ] = Q3

(
Q1

4πr 13 +
Q2

4πr 23
)
. (7.68)

The work to assemble the fourth charge in the presence of the first three is

W4 = Q4ϕ123[~r4 ] = Q4

(
Q1

4πr 14 +
Q2

4πr 24 +
Q3

4πr 34
)
. (7.69)

The total work to assemble all four charges is

W = W1 +W2 +W3 +W4

=
Q1Q2

4πr 12 +
Q1Q3

4πr 13 +
Q1Q4

4πr 14 +
Q2Q3

4πr 23 +
Q2Q4

4πr 24 +
Q3Q4

4πr 34 . (7.70)

More generally,

W =
∑
pairs

QkQl
4πr kl . (7.71)

Be careful not to double count pairs when alternately writing

W =

N∑
k=1

k−1∑
l=1

QkQl
4πr kl =

N∑
k=1

N∑
l=1
l<k

QkQl
4πr kl =

∑
l<k

QkQl
4πr kl (7.72)

or half the double count while still avoiding the self-energies with

W =
1

2

N∑
k=1

N∑
l=1
l 6=k

QkQl
4πr kl =

1

2

∑
l 6=k

QkQl
4πr kl . (7.73)
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Q1

Q2

Q3

Q4

12

13

14

23

34

24

Figure 7.5: With work W , assemble four charges whose configuration stores energy
E = W .

For a continuous charge distribution, re-introduce the electric potential as

W =
1

2

N∑
k=1

Qk

N∑
l=1
l 6=k

Ql
4πr kl =

1

2

N∑
k=1

Qkϕ[~rk] (7.74)

and generalize to

W =
1

2

∫
dQϕ =

1

2

∫
ϕdQ =

1

2

∫∫∫
V

ϕρ dV, (7.75)

where the integral is over the volume V containing the charge. Use Gauss’s Law
~∇ · ~E = ρ to eliminate the charge density,

W =
1

2

∫∫∫
V

ϕ~∇ · ~E dV, (7.76)

and integrate by parts using the Eq. B-8 product rule

~∇ ·
(
ϕ~E
)

=
(
~∇ϕ
)
· ~E + ϕ ~∇ · ~E (7.77)

to write
ϕ ~∇ · ~E = −

(
~∇ϕ
)
· ~E + ~∇ ·

(
ϕ~E
)

(7.78)

and ∫∫∫
V

ϕ ~∇ · ~E dV = −
∫∫∫

V

(
~∇ϕ
)
· ~E dV +

∫∫∫
V

~∇ ·
(
ϕ~E
)
dV

=

∫∫∫
V

~E · ~E dV +©
∫∫
a=∂V

ϕ~E · d~a

=

∫∫∫
r<R

E2 dV +©
∫∫
r=R

ϕ~E · d~a. (7.79)

Any physical charge distribution is localized about the experimenter, so the final
“boundary” term in Eq. 7.79, the integral over a large spherical surface of radius R,
is of order

©
∫∫
r=R

ϕ~E · d~a ∼ 1

R

1

R2
R2 =

1

R
→ 0 (7.80)
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as R → ∞. Thus, the work required to assemble (and the energy stored in) a
continuous charge distribution is

W =
1

2

∫∫∫
E2 dV = E, (7.81)

where the integration is implicitly over all space. More briefly, the integration by
parts amounts to moving the derivative in the integrand from one factor to the
other, incurring a minus sign,

W =
1

2

∫∫∫
ϕ~∇ · ~E dV = −1

2

∫∫∫
~∇ϕ · ~E dV =

1

2

∫∫∫
E2 dV. (7.82)

One subtlety of the Eq. 7.81 work is that it diverges for a point charge, where

W =
1

2

∫∫∫
E2 dV ∼

(
1

r2

)2

r3 =
1

r
→∞ (7.83)

as r → 0. This is because of the infinite self energy needed to create the charge.
This complication sneaks into the calculations when ϕ[~rk] is replaced by ϕ[~r ] in
going from Eq. 7.73 to Eq. 7.74.

The work required to assemble the charge distribution is also the energy stored
in the corresponding electric field. Therefore, from Eq. 7.81, the energy density
stored in an electrostatic field is

dE

dV
=

1

2
E2. (7.84)

Table 7.1 compares and contrasts similar but different electrostatic formulas.
Memorize these essential prototypes.

Table 7.1: Summary of similar but different electrostatic formulas.
single charge pair of charges

ϕ =
Q1

4πr1
W =

Q2

4πr1

E =
Q1

4πr2
F =

Q2

4πr2

7.6 Poisson’s Equation

Since the electric field is the gradient of the electric potential,

~E = −~∇ϕ, (7.85)
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the curl of the electric field vanishes,

~∇× ~E = −~∇× ~∇ϕ = ~0, (7.86)

because the curl of any gradient is identically zero. The other Maxwell electrostatic
equation becomes

ρ = ~∇ · ~E = ~∇ · (−~∇ϕ) = −∇2ϕ, (7.87)

or
∇2ϕ = −ρ, (7.88)

which is Poisson’s equation with solution

ϕ =

∫∫∫
V

ρ dV

4πr . (7.89)

In this way, explicitly solve the Eq. 7.88 inhomogeneous partial differential equation!

7.7 Laplace’s Equation

In regions where the charge density vanishes, Poisson’s equation becomes

∇2ϕ = 0, (7.90)

which is Laplace’s equation. Solutions to Laplace’s equation are harmonic func-
tions. These arise in many places in physics, including gravitation, heat flow, and
soap films. The value of a harmonic function at any point is the average of the
function over any sphere centered on that point,

ϕ⊙ = ϕ̄. (7.91)

It follows that a harmonic function has no local maxima or minima, and so its
extrema are on its boundary.

In one dimension, Laplace’s equation

ϕ′′[x] = ∂2xϕ[x] = 0 (7.92)

has the explicit straight-line solution

ϕ[x] = mx+ b, (7.93)

where m and b are integration constants, or

ϕ− ϕ1 =
ϕ2 − ϕ1

x2 − x1
(x− x1), (7.94)

where {ϕ1, ϕ2} are the solution’s values at its endpoints {x1, x2}. The averaging
property is obviously

ϕ⊙ = ϕ[x] =
ϕ[x−R] + ϕ[x+R]

2
= ϕ̄. (7.95)
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In two dimensions, Laplace’s equation

∂2xϕ[x, y] + ∂2yϕ[x, y] = 0 (7.96)

is much more interesting. No closed form general solution is possible, but the aver-
aging property becomes

ϕ⊙ = ϕ[x, y] =

∮
ϕd`∮
d`

=
1

2πR

∮
r=R

ϕd` = ϕ̄. (7.97)

A plot of ϕ[x, y] is a two-dimensional surface with no hills and no valleys, no bumps
and no dents. A ball on the surface rolls to one side and falls off.

ϕ[0]

∇2ϕ = 0

r′ = R
θ

x

y

z

r = z

Q

ϕ["r ′]

Figure 7.6: The electric potential ϕ at a point ~0 due to a charge Q at ~r = zẑ is
the average of the potential over a spherical surface ~r ′ = ~R centered on the point.

In three dimensions, Laplace’s equation

∂2xϕ[x, y, z] + ∂2yϕ[x, y, z] + ∂2zϕ[x, y, z] = 0 (7.98)

again has no closed form general solution, and the averaging property becomes

ϕ⊙ = ϕ[x, y, z] =
1

4πR2
©
∫∫
r=R

ϕda = ϕ̄. (7.99)

To prove this, consider a point charge Q at a position r = z external to an imaginary
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sphere of radius R, as in Fig. 7.6. The average electric potential over the sphere is

ϕ̄ =
1

4πR2
©
∫∫
r=R

ϕda

=
1

4πR2

∫ 2π

φ=0

∫ π

θ=0

Q

4πr (Rdθ)(R sin θdφ)

=
1

4πR2

Q

4π
R2

∫ 2π

φ=0

∫ π

θ=0

sin θ dθdφ√
z2 − 2zR cos θ +R2

=
Q

8π

∫ π

θ=0

(z2 − 2zR cos θ +R2)−1/2 sin θdθ

=
Q

8π

1

zR
(z2 − 2zR cos θ +R2)1/2

∣∣∣∣π
θ=0

=
Q

8π

|z +R| − |z −R|
zR

=
Q

4πz
, (7.100)

as z > R. Hence, ϕ̄ = ϕ⊙. Generalize to arbitrary charge distributions by super-
position.

The harmonic averaging property implies Earnshaw’s theorem, which states
that a charged particle cannot be held in a stable equilibrium by electrostatic forces
alone. Because charges are forced along the gradient of the potential, ~F = −q~∇ϕ, a
stable equilibrium must be characterized by a local minimum of the potential, which
is impossible for the harmonic function solutions of Laplace’s equation.

Figure 7.7: The left side of the box is held at a different potential than the other
three sides, but from random guesses for the potentials at an interior grid of points
(left), the relaxation algorithm quickly relaxes to the equilibrium solution (right).

The harmonic averaging property is also the basis of the relaxation algorithm
for numerically solving Laplace’s equation for the electric potential ϕ. First, fix
ϕ on the boundaries and guess ϕ on a grid of points inside the boundaries. Then
replace ϕ at each grid point by the average of it neighbors and repeat until ϕ stops
changing, as in Fig. 7.7. The updates can be synchronous or asynchronous, and so
the relaxation algorithm is trivial to parallelize.
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7.8 Separation of Variables

A popular technique for solving Laplace’s equations involves seeking solutions that
are products of functions each of which depends on only one of the coordinates. For
example, if

ϕ[~r ] = ϕ[x, y, z] = X[x]Y [y]Z[z], (7.101)

then Laplace’s equation becomes

0 = ∇2ϕ = X ′′[x]Y [y]Z[z] +X[x]Y ′′[y]Z[z] +X[x]Y [y]Z ′′[z], (7.102)

where the primes indicate differentiation with respect to the single arguments. Di-
vide Eq. 7.102 by Eq. 7.101 to get

0 =
∇2ϕ

ϕ
=
X ′′[x]

X[x]
+
Y ′′[y]

Y [y]
+
Z ′′[z]
Z[z]

. (7.103)

The only way the sum of these three terms can vanish for all x, y, z, is if each term
itself is a constant (else, for example, varying x would change the first term and not
the others, thereby changing the sum). These constants must satisfy

0 = cx + cy + cz, (7.104)

where

X ′′[x] = cxX[x],

Y ′′[y] = cyY [y],

Z ′′[z] = czZ[z]. (7.105)

The Eq. 7.101 separation of variables transforms a partial differential equation
into three ordinary differential equations! However, in specific applications boundary
conditions may necessitate the superposition of infinitely many such solutions.

As an example, use separation of variables to find the electric potential between
two parallel semi-infinite grounded conductors terminated orthogonally by an elec-
trode held at a fixed potential, as in Fig. 7.8. If the conductors and electrode are
infinite in the z direction, symmetry implies

ϕ[~r ] = ϕ[x, y, z] = ϕ[x, y]. (7.106)

Furthermore, since no z dependence exists, cz = 0, and so by Eq. 7.104, cx = −cy =
k2, where k is another constant. Laplace’s equation reduces to

X ′′[x] = +k2X[x],

Y ′′[y] = −k2Y [y], (7.107)

which have solutions

X[x] = ax exp[−kx] + bx exp[kx],

Y [y] = ay sin[ky] + by cos[ky], (7.108)
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x

y

z

x

y

ϕ[x, y]

ϕ0

∇2ϕ = 0

0

0

Figure 7.8: The electric potential ϕ[x, y] between two parallel semi-infinite
grounded conductors (cyan) terminated orthogonally by an electrode (yellow) held
at a fixed potential ϕ0.

where ax, bx, ay, by are constants. Take the boundary conditions to be

ϕ[x, 0] = 0, (7.109)

ϕ[x, d] = 0, (7.110)

ϕ[∞, y] = 0, (7.111)

ϕ[0, y] = ϕ0, (7.112)

where d is the distance between the conductors. The Eq. 7.109 and Eq. 7.110
boundary conditions imply by = 0 and kd = nπ, where n is a natural number, so

Y [y] = ay sin
[
−nπy

d

]
. (7.113)

The Eq. 7.111 boundary condition implies bx = 0, so

X[x] = ax exp
[
−nπx

d

]
. (7.114)

Hence,

ϕn[x, y] = X[x]Y [y] = an exp
[
−nπx

d

]
sin
[
nπ

y

d

]
, (7.115)

where an = axay is yet another constant. Finally, to satisfy the Eq. 7.112 boundary
condition, form the infinite superposition

ϕ[x, y] =

∞∑
n=1

ϕn[x, y] =

∞∑
n=1

an exp
[
−nπx

d

]
sin
[
nπ

y

d

]
(7.116)
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and demand

ϕ0 = ϕ[0, y] =

∞∑
n=1

an sin
[
nπ

y

d

]
. (7.117)

Use Fourier’s trick to solve for the constant coefficients an by exploiting the or-
thogonality of sinusoids,∫ d

0

sin
[
mπ

y

d

]
sin
[
nπ

y

d

]
dy

=

∫ d

0

1

2

(
cos
[
(m− n)π

y

d

]
− cos

[
(m+ n)π

y

d

])
dy

=
1

2

(
d

(m− n)π
sin
[
(m− n)π

y

d

]
− d

(m+ n)π
sin
[
(m+ n)π

y

d

]) ∣∣∣∣d
0

=

{
(0− 0)− (0− 0) = 0, m 6= n,

(d/2− 0)− (0− 0) = d/2, m = n,

=
d

2
δmn. (7.118)

Multiply both sides of Eq. 7.117 by sin[mπy/d] and integrate to get∫ d

0

sin
[
mπ

y

d

](
ϕ0 =

∞∑
n=1

an sin
[
nπ

y

d

])
dy,

ϕ0

∫ d

0

sin
[
mπ

y

d

]
dy =

∞∑
n=1

an

∫ d

0

sin
[
mπ

y

d

]
sin
[
nπ

y

d

]
dy,

ϕ0
d

mπ
(1− cos[mπ]) =

∞∑
n=1

an
d

2
δmn = am

d

2
. (7.119)

Hence, the coefficients

am = ϕ0
2

mπ
(1− (−1)m) =

 ϕ0
4

mπ
, m odd,

0, m even.
(7.120)

The final solution is

ϕ[x, y] = ϕ0
4

π

∑
n odd

1

n
exp

[
−nπx

d

]
sin
[
nπ

y

d

]
, (7.121)

or more explicitly,

ϕ[x, y] = ϕ0
4

π

∞∑
`=1

1

2`− 1
exp

[
−(2`− 1)π

x

d

]
sin
[
(2`− 1)π

y

d

]
, (7.122)

which is graphed in Fig. 7.8.
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Problems

1. Find the electric field ~E at distance r along the perpendicular axis of the
following charge distributions of size R. Expand the result in powers of R/r
to show that the field is asymptotically like that of a point charge when r � R.

(a) A ring of radius R and linear charge density λ.

(b) A disk of radius R and surface charge density σ.

2. Find the electric flux ΦE through one face of a cube with a charge Q at a vertex
on the opposite face. Integrate – or just write the answer using symmetry.

3. Evaluate the following integrals.

(a)
∫ 6

2
(3x2 − 2x− 1)δ[x− 3]dx.

(b)
∫ 5

0
cosx δ[x− π]dx.

(c)
∫ 3

0
x3δ[x+ 1]dx.

(d)
∫∞
−∞ log[x+ 3] δ[x+ 2]dx.

4. Show that the derivative of the step function,

θ[x] =

{
0, x ≤ 0,
1, 0 < x,

is the Dirac delta,
dθ

dx
= δ[x].

5. Find the charge densities ρ[~r ] for the following charge distributions. Check
that the volume integral of the charge density is the total charge.

(a) An electric dipole consisting of a point charge −Q at −~r0 and a point
charge +Q at +~r0.

(b) A charged shell centered on the origin of radius R and total charge Q.

6. Prove the following vector differential identities. (Hint: Partial derivatives
commute for the smooth functions typically assumed in physics.)

(a) The curl of any gradient is zero, ~∇× ~∇s = ~0.

(b) The divergence of any curl is zero, ~∇ · ~∇× ~v = 0.

7. Find the electric field ~E both inside and outside the following charge distribu-
tions using Gauss’s law in integral form. Sketch the electric field magnitude E
as a function of the radial distance r.

(a) A solid sphere of radius R and constant volume charge density ρ.

(b) A solid sphere of radius R and radially increasing volume charge density
ρ[r] = kr.
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8. Find the electric potential ϕ both inside and outside the charged solid sphere
of Problem 7a via the techniques below.

(a) Volume integration using Eq. 7.59.

(b) Line integration using Eq. 7.43.

9. Find the energy E = W stored in the solid sphere of Problem 7a via the
techniques below. Express the answer in terms of the total charge Q in the
sphere.

(a) Volume integration of the electric potential using Eq. 7.75.

(b) Volume integration of the electric field using Eq. 7.81.

10. Consider an empty cube with identical charges at each of its vertices. Consis-
tent with Earnshaw’s theorem, show that the electric potential at the cube’s
center exhibits a three-dimensional “saddle point”: The center is a stable equi-
librium along the body diagonals (so small diagonal displacements of a test
charge cause it to oscillate about the center) but is an unstable equilibrium per-
pendicular to the faces (so small perpendicular displacements of a test charge
cause it to move far from the center).(Hint: Show that the corresponding forces
.)

11. Use separation of variables to find the electric potential everywhere inside a
cubical box of volume `3, which has five sides grounded (at zero potential) and
one side held at a constant potential ϕ0. Express the result as a doubly infinite
sum. Create two-dimensional surface or scatter plots of the potential in three
orthogonal cross sections of the box. (Hint: Assume sinusoidal solutions in two
directions and exponential solutions in the third, and relate the two sinusoidal
frequencies to the exponential decay constant. The final solution is neatest
when expressed in terms of sines and hyperbolic sines.)
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Chapter 8

Magnetostatics

In a world of stationary electric currents, divergenceless magnetic fields curl around
current densities, and Maxwell’s equations reduce to

~∇ · ~B = 0, ~∇× ~B = ~J, (8.1)

or
ΦB = 0, ΓB = I. (8.2)

A magnetic force is proportional to an electric charge and the charge’s velocity
crossed with a magnetic field, and Lorentz’s equation reduces to

~F = q ~v × ~B. (8.3)

8.1 Biot-Savart’s Law

Consider the circulating magnetic field d ~B of an infinitesimal charge dQ of length
d` moving with velocity ~v in a current I, as in Fig. 8.1. Displace a magnetic charge
QB a vector ~r from dQ so that at dQ it produces a magnetic field

~B =
QB

4πr 2 (−r̂ ) = − QB
4πr 2r̂ , (8.4)

which results in an infinitesimal force

+ d~F = dQ~v × ~B = −dQ~v × QB
4πr 2r̂ (8.5)

on dQ due to QB. This is equal in magnitude but opposite in direction to the
infinitesimal force

− d~F = QBd ~B (8.6)

on QB due to dQ and its circulating magnetic field d ~B. Combine Eq. 8.5 and Eq. 8.6
to get

d ~B = ~v × dQ

4πr 2r̂ , (8.7)

85
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where

v dQ =
d`

dt
dQ =

dQ

dt
d` = Id`, (8.8)

and more generally
~v dQ = ~Id` = ~Kda = ~JdV, (8.9)

and ~K is (surface) current per cross sectional line and ~J is (volume) current per
cross sectional area. Integrate to find the magnetic field

~B =

∫
~v × dQ

4πr 2r̂ =

∫
`

Id~̀× r̂
4πr 2 (8.10)

due to the entire current, where Id~̀= ~Id`. This is Biot-Savart’s law. Delete the
velocity cross product to obtain Coulomb’s law,

~E =

∫
dQ

4πr 2r̂ . (8.11)

!B

−d!F

+d!F

Id!"

d !B

d !B

QB

!v dQ
!

Figure 8.1: Magnetic charge QB (blue) used to derive Biot-Savart’s law for the

magnetic field d ~B (brown) due to a current element ~v dQ = Id~̀.

As an example, compute the magnetic field ~B of an long straight current I. By
symmetry, assume the current coincides with the z-axis, the field point ~r = xx̂ is on
the x-axis, and the source point ~r ′ = zẑ is on the z-axis, as in Fig. 8.2. Let ψ be
the angle between ~r and ~r = ~r−~r ′. Employ cylindrical coordinates {s, φ, z}, where
s is the perpendicular distance to the z-axis and φ is the longitude. By symmetry,
write

B = By =

∫
dBy =

∫
Idz sin[π/2 + ψ]

4πr 2 . (8.12)

Eliminate the variables z and r in favor of the angle ψ using

r =
x

cosψ
= x secψ (8.13)

and
z = x tanψ (8.14)
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or
dz = x sec2 ψ dψ (8.15)

to get

B =

∫ π/2

−π/2

Ix sec2 ψ dψ cosψ

4πx2 sec2 ψ

=
I

4πx

∫ π/2

−π/2
cosψ dψ

=
I

2πx
. (8.16)

Generalize this to
~B[~r ] =

I

2πs
φ̂. (8.17)

The denominator reflects the dilution of the source current over a circle of circum-
ference 2πs.

x

yψ

r′ = z

r = x

dB

Idz

ψ

π

2
− ψ

π

2
+ ψ

z

x
dB

Idz

Figure 8.2: A long straight current (left) and the geometry of the position triangle
rotated into the plane of the page (right).

To compute the magnetic field on the plane bisecting a short straight current of
length 2h, calculate as before, except use finite limits of integration to get

B =
I

4πs

∫ Ψ

−Ψ
cosψ dψ

=
I

2πs
sinΨ

=
I

2πs

h√
s2 + h2

. (8.18)
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If the current is relatively long, then h� s and

B =
I

2πs

(
1 +

( s
h

)2)−1/2
∼ I

2πs

(
1− 1

2

( s
h

)2)
∼ I

2πs
, (8.19)

which is the previous result for the long straight current.

8.2 Boundary Conditions

Magnetostatic fields are discontinuous at current layers. Consider a surface with
normal n̂ and surface current density ~K, as in Fig. 8.3. Let ~B− be the magnetic
field just below the surface and ~B+ be the magnetic field just above the surface.
Apply ΦB = 0 to a cylinder straddling the surface of cross sectional area a and
vanishing height h→ 0 to get

B+⊥a− B−⊥a− 0 = 0 (8.20)

or

∆B⊥ = B+⊥ − B−⊥ = 0. (8.21)

Apply ΓB = I to a rectangular loop straddling the surface of length ` and vanishing
height h→ 0 to get

B+‖ `+ 0− B−‖ `− 0 = K` (8.22)

or

∆B‖ = B+‖ − B−‖ = K. (8.23)

Thus, the parallel component of the magnetostatic field is discontinuous by the
current density,

∆~B = ~B+ − ~B− = ~K × n̂. (8.24)

h↓0

n̂ !B+

!B−

h↓0

n̂ !B+

!B−

!
K K
a

Figure 8.3: A closed cylinder (left) and rectangular loop (right) straddle a current

layer to compute the discontinuity in a magnetic field ~B due to the current density
~K.
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8.3 Magnetic Potential

In analogy with the electric potential

ϕ =

∫∫∫
V

ρ dV

4πr , (8.25)

define the magnetic potential

~A =

∫∫∫
V

~JdV

4πr . (8.26)

The scalar nature of the electrostatic source ρ suggests a scalar potential ϕ in the
same way that the vector nature of the magnetostatic source ~J suggests a vector
potential ~A. By Eq. 8.9, write

~A =

∫∫∫
V

~JdV

4πr =

∫∫
a

~Kda

4πr =

∫
`

~Id`

4πr =

∫
~v
dQ

4πr =

∫
~v dϕ. (8.27)

Differentiate the potential to find the field. For the electric potential, the deriva-
tive must be a gradient. Remembering that the displacement vector ~r = ~r − ~r ′,
compute

~∇ϕ = ~∇~r
∫∫∫

ρ[~r ′]d3~r ′

4πr
=

∫∫∫
ρ[~r ′]d3~r ′

4π
~∇~r
(

1

r
)

=

∫∫∫
ρ[~r ′]d3~r ′

4π

(
− r̂r 2

)
= −

∫∫∫
ρ[~r ′]d3~r ′

4πr 2 r̂
= −~E , (8.28)

by Coulomb’s law. The electric potential is unique up to a constant, because ϕ and
ϕ+ ϕ0 represent the same electric field ~E provided ~∇ϕ0 = ~0.
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For the magnetic potential, the derivative must be a curl. Compute

~∇× ~A = ~∇~r ×
∫∫∫ ~J [~r ′]d3~r ′

4πr
=

∫∫∫
d3~r ′

4π
~∇~r ×

(
1

r
~J [~r ′]

)
=

∫∫∫
d3~r ′

4π
~∇~r
(

1

r
)
× ~J [~r ′]

=

∫∫∫
d3~r ′

4π

(
− r̂r 2

)
× ~J [~r ′]

=

∫∫∫ ~J [~r ′]d3~r ′ × r̂
4πr 2

= ~B, (8.29)

by Biot-Savart’s law. The magnetic potential is unique up to a curlless vector field,
because ~A and ~A+ ~A0 represent the same magnetic field ~B provided ~∇× ~A0 = ~0.

If the magnetic source is a line current, then ~J dV = ~I d`. Hence, curl both sides
of Eq. 8.27 to get

~B = ~∇× ~A

= ~∇×
∫
`

~I d`

4πr
=

∫
`

d`

4π
~∇×

(
1

r
~I

)
=

∫
`

d`

4π
~∇
(

1

r
)
× ~I

=

∫
`

d`

4π

(
− r̂r 2

)
× ~I

=

∫
`

~Id`× r̂
4πr 2 , (8.30)

which is another derivation of Biot-Savart’s law.

As an example, compute the magnetic potential ~A of a long straight current. If
the current coincides with the z-axis, as in Fig. 8.2, that will also be the direction
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of the magnetic potential, whose magnitude at the perpendicular distance x = s is

A =

∫
`

Id`

4πr
=

I

4π

∫ ∞
−∞

dz√
s2 + z2

=
I

4π

∫ π/2

−π/2

s sec2 ψ dψ

s secψ

=
I

4π

∫ π/2

−π/2
secψ dψ

=
I

4π
log[tanψ + secψ]

∣∣∣∣π/2
−π/2

=∞−∞? (8.31)

Attempt to handle the infinities by replacing the angles by distances and using limits
to write

A =
I

4π
lim
L→∞

log

[
z

s
+

√
z2 + s2

s

] ∣∣∣∣∣
L

−L

=
I

4π
lim
L→∞

log

[
L+
√
L2 + s2

−L+
√
L2 + s2

× L+
√
L2 + s2

L+
√
L2 + s2

]

=
I

4π
lim
L→∞

log

(L+
√
L2 + s2

s

)2


=
I

2π
lim
L→∞

log

[
L+
√
L2 + s2

s

]

=
I

2π
lim
L→∞

log

[
2L

s

]
= lim
L→∞

I

2π
log[2L]− I

2π
log s. (8.32)

The infinite constant does not affect the derivative, which is the field. Hence,
renormalize A by having it absorb the infinity, and write

A =
I

2π
log s0 −

I

2π
log s =

I

2π
log
[s0
s

]
, (8.33)

or, more generally,

~A[~r ] =
I

2π
log
[s0
s

]
ẑ =

~I

2π
log
[s0
s

]
, (8.34)

where s0 is some constant fiducial distance. (This is similar to the Eq. 7.57 electric
potential of a line charge because similar geometry forces similar physics.) The



92 CHAPTER 8. MAGNETOSTATICS

I

B

A

Figure 8.4: The magnetic field ~B of the long straight current I is the curl of the
magnetic potential ~A.

magnetic field of the long straight current is the curl of this magnetic potential,
~B = ~∇× ~A, as in Fig. 8.4.

Another important example is the magnetic potential ~A for a constant magnetic
field ~B, namely

~A = −1

2
~r × ~B, (8.35)

as illustrated by Fig. 8.5. Use the Eq. B-11 product rule to check that ~A curls to ~B,

~∇× ~A = −1

2
~∇×

(
~r × ~B

)
= −1

2

((
~B · ~∇

)
~r − ~B

(
~∇ · ~r

)
+ ~r

(
~∇ · ~B

)
−
(
~r · ~∇

)
~B
)

= −1

2

(
~B − 3 ~B +~0−~0

)
= ~B, (8.36)

where the last term vanishes because ~B is a constant. Use the Eq. B-9 product rule
to note that ~A is divergenceless,

~∇ · ~A = −1

2
~∇ ·
(
~r × ~B

)
= −1

2

(
~B · ~∇× ~r − ~r · ~∇× ~B

)
= −1

2
(0− 0)

= 0. (8.37)
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However, since the same nonzero curl is present not just at the “center” but ev-
erywhere, translate the potential through an arbitrary vector to ~A + ~A0 and still
generate the same field.

A

B

Figure 8.5: A constant magnetic field ~B has an everywhere curling potential ~A.

8.4 Poisson’s Equation

Since the magnetic field is the curl of the magnetic potential,

~B = ~∇× ~A, (8.38)

the divergence of the magnetic field vanishes,

~∇ · ~B = ~∇ · ~∇× ~A = 0, (8.39)

because the divergence of any curl is identically zero. Shifting the magnetic potential
~A by the gradient of a scalar field ~∇λ doesn’t change the magnetic field ~B because
the curl of a gradient is identically zero. Use this gauge freedom to simplify the
other Maxwell magnetostatic equation,

~J = ~∇× ~B = ~∇× (~∇× ~A) = ~∇(~∇ · ~A)− (~∇ · ~∇) ~A, (8.40)

by choosing
~A ′ = ~A+ ~∇λ (8.41)

such that
0 = ~∇ · ~A ′ = ~∇ · ~A+ ~∇ · ~∇λ = ~∇ · ~A+∇2λ (8.42)

or
∇2λ = −~∇ · ~A, (8.43)

which is Poisson’s equation with solution

λ =

∫∫∫
V

~∇ · ~A
4πr dV. (8.44)
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With the Eq. 8.42 Coulomb gauge choice, Eq. 8.40 implies

∇2 ~A ′ = − ~J, (8.45)

which is a vector form of Poisson’s equation with solution

~A ′ =

∫∫∫
V

~J dV

4πr . (8.46)

8.5 Statics Comparison

Magnetostatics and electrostatics have comparable structures, as in Table 8.1. How-
ever, with its deflecting, curling nature, magnetostatics is richer for the extra cross
product.

Table 8.1: Comparison of electrostatics and magnetostatics (with the Coulomb

gauge choice ~∇ · ~A = 0).
Electrostatics Magnetostatics

~∇ · ~E = ρ, ~∇× ~E = ~0 ~∇ · ~B = 0, ~∇× ~B = ~J

ΦE = Q, ΓE = 0 ΦB = 0, ΓB = I

~F = q~E ~F = q ~v × ~B

~E =

∫
dQ

4πr 2r̂
~B =

∫
~v × dQ

4πr 2r̂

~E =
Q

4πr2
r̂ ~B =

I

2πs
φ̂

~E = −~∇ϕ ~B = ~∇× ~A

∇2ϕ = −ρ ∇2 ~A = − ~J

ϕ =

∫∫∫
V

ρ dV

4πr
~A =

∫∫∫
V

~J dV

4πr
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Problems

1. Consider a circular loop of radius R carrying a current I.

(a) Find the magnetic field ~B everywhere on the perpendicular axis of the
loop using Biot-Savart’s law.

(b) What is the ratio of the magnetic field at the loop’s center to the magnetic
field a distance R from a long straight current I?

2. Find the magnetic field ~B at the center of the following loops of current I.

(a) A square with side 2R and inscribed circular radius R.

(b) An n-sided polygon of inscribed circular radius R.

(c) What happens as the number n of sides in Problem 2b goes to infinity?

3. Find the magnetic field ~B both inside and outside the following current distri-
butions using Ampère’s law in integral form.

(a) A solid cylinder of radius R and constant current density ~J = Jẑ.

(b) A solid cylinder of radius R and radially increasing current density ~J [s] =
ksẑ.

4. Explicitly curl the Eq. 8.34 magnetic potential to get the magnetic field of the
long straight current. (Hint: Use the Eq. A-22 curl operator in cylindrical
coordinates.)
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Chapter 9

Electrodynamics

Describe a world of dynamic fields and charges by the full Maxwell equations

~∇ · ~B = 0, ~∇× ~E = −∂t ~B,
~∇ · ~E = ρ, ~∇× ~B = +∂t~E + ~J, (9.1)

or

ΦB = 0, ΓE = −Φ̇B,
ΦE = Q, ΓB = +Φ̇E + I, (9.2)

and the full Lorentz equation

~F = q(~E + ~v × ~B). (9.3)

9.1 Faraday’s Law

A linear electric generator consists of a constant magnetic field −Bẑ and a con-
ducting cross bar `ŷ at xx̂ sliding on parallel conductors that terminate at a fixed
transverse conductor, as in Fig. 9.1. Kick the cross bar so its initial velocity is v0x̂.
If the area element d~a = daẑ, then the magnetic flux through the loop is

ΦB =

∫∫
a

~B · d~a = −
∫∫

a

B da = −B(`x) < 0. (9.4)

and it is decreasing
Φ̇B = −B`ẋ = −B`vx < 0. (9.5)

The changing magnetic flux induces a circulating electric field that drives current
around the loop formed by the cross bar, parallel conductors, and resistor, like a
delocalized battery. Assuming the circuit is an ohmic device of resistance R,

ΓE =

∮
l

~E · d~̀= ∆ϕ = IR, (9.6)

97
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where a right-hand-rule relates the positive sense of circulation around the loop to
the positive direction of the area bounded by the loop. From Eq. 9.6 and Eq. 9.5,
Faraday’s law ΓE = −Φ̇B implies

IR = −(−B`vx) (9.7)

or

I =
B`
R vx > 0. (9.8)

The induced current (counterclockwise from above) generates a magnetic field (up-
ward through the loop) that opposes the change in the magnetic flux (increasing
downward). This electromagnetic “inertia” is know as Lenz’s rule and is embodied
mathematically in the minus sign in Faraday’s law. Assume the initial speed v0 is
small enough that the induced current’s magnetic field contributes negligibly to the
magnetic flux though the loop.

B a

x

y

z

x

I

vy

Fx

vx

dq

∂a

!

Figure 9.1: From a kicked start, the sliding cross bar of this linear electric generator
exponentially slows, dissipating energy as heat in the rails.

The magnetic field −Bẑ deflects the current ~I = Iŷ flowing in the cross bar with
a force

~F =

∫
dq ~v × ~B =

∫
Id~̀× ~B, (9.9)

whose x-component

Fx = −
∫
Idy B = −IB

∫
dy = −IB` = −B

2`2

R vx < 0 (9.10)

resists its motion. If m is the mass of the cross bar, then Newton’s second law
implies

− B
2`2

R vx = Fx = max = m
dvx
dt

(9.11)

or
dvx
dt

= −B
2`2

mR vx, (9.12)
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which has solution

vx[t] = v0 e
−t/τ , (9.13)

where

τ =
mR
B2`2 (9.14)

is the decay time of the exponential slowing of the cross bar.

The sliding cross bar dissipates its kinetic energy as heat in the rails. The power
dissipation is

dE

dt
= P = I2R =

B2`2
R2

v2xR =
B2`2
mRmv20 e

−2t/τ =
1

τ
mv20 e

−2t/τ , (9.15)

and so the total energy dissipated

E =

∫ ∞
0

P dt =
1

τ
mv20

∫ ∞
0

e−2t/τdt =
1

τ
mv20

(
e−2t/τ

−2/τ

) ∣∣∣∣∞
0

=
1

2
mv20 . (9.16)

B0

B < B0

ω < ω∞ ω∞

q, m

R

R0

Figure 9.2: Turn off the solenoid and the coaxial charged ring begins to rotate!

Next consider a ring of radius R, charge q, and mass m coaxial with a solenoid of
radius R0 and internal magnetic field B0. Turn off the solenoid, and the ring begins
rotating, as in Fig. 9.2, even thought magnetic field at the ring is always zero! This
is a version of the Feynman disk paradox.

Qualitatively, a changing magnetic field induces a circulating electric field that
forces the ring to rotate. The rotating ring of charge constitutes an electric current
whose magnetic field opposes the reduction of the initial magnetic flux through the
disk bounded by the ring. Quantitatively, Faraday’s law implies

E(2πR) = ΓE = −Φ̇B = − d

dt

(
B(πR2

0)
)

= −πR2
0

dB
dt
. (9.17)

The resulting torque on the ring is

~τ =

∫
d~τ =

∫
~R× d~F =

∫
~R× dq~E =

∮
~R× λd`~E , (9.18)
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where λ = q/2πR is the ring’s line charge density. Hence the magnitude of the
torque is

τ =

∮
Rλd` E = RλE

∮
d` = Rλ E(2πR), (9.19)

or, using the Eq. 9.17 electric circulation,

τ = R
q

2πR

(
−πR2

0

dB
dt

)
= −1

2
qR2

0

dB
dt

> 0. (9.20)

The final angular momentum is

L∞ =

∫ ∞
−∞
τ dt = −1

2
qR2

0

∫ 0

B0

dB =
1

2π
qπR2

0B0 =
qΦB0

2π
. (9.21)

The rotational inertia of the ring about its center is Ic = mR2, so the final angular
speed of the ring is

ω∞ =
L

Ic
=

1

2

q

m

R2
0

R2
B0 ≤

1

2

q

m
B0. (9.22)

This result is independent of how the magnetic field is extinguished, provided it
does not change so fast as to introduce radiation and time delay effects. What is the
source of the angular momentum? Show later that it is initially stored in crossed
electric and magnetic fields inside the solenoid!

9.2 Multiply Connected Regions

Consider a box [3] with two electrodes protruding from opposite sides. Connect
identical volt meters across the electrodes but on opposite sides of the box. The
voltmeters register different voltages ∆ϕL 6= ∆ϕR! How can this be?

ML

ΦB = kt
k > 0

B[t]

H

C

RRRL

IL

IR

MR

Figure 9.3: The counter-clockwise circulating electric field induced by the
solenoid’s changing magnetic flux creates an asymmetry in the volt meter readings.

Inside the box is a solenoid generating a time-varying magnetic flux

ΦB = kt, (9.23)
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where k > 0, along with two resistors RL and RR, as in Fig. 9.3. The voltages differ
even if the resistors are identical, because the time-varying magnetic flux induces a
counter-clockwise circulating electric field that breaks the symmetry.

Some loops in in the plane of the volt meters can shrink to points but others
– those encircling the solenoid – cannot. Topologically this resembles a torus
rather than a sphere. Be careful when deploying Faraday’s law in such multiply
connected regions. The circulation of the electric field around any closed loop
depends on how the loop is wound about the solenoid. For a single clockwise winding,
ΓE = −Φ̇B = −k. More generally,∮

`

~E · d~̀= ΓE = nk, (9.24)

where n = 0,±1,±2, . . . is the loop’s winding number, as in Fig. 9.4. The electric
field is irrotational and path independent only for those loops that do not enclose
the solenoid.

ΦB = kt
k > 0

B[t]

ΓE = 0

ΓE = +2k
ΓE = −k

ΓE = +k

Figure 9.4: The electric field is irrotational only for those loops that do not enclose
the solenoid.

A volt meter measures the line integral of the electric field from its “hot” (red)
lead to its “cold” (black) lead,∫ C

H

~E · d~̀= −
∫ C

H

~∇ϕ · d~̀= −
∫ C

H

dϕ = ϕH − ϕC = ∆ϕ > 0. (9.25)

Thus, the left meter measures

∆ϕL =

∫ C

H
viaML

~E · d~̀, (9.26)

and the right meter measures

∆ϕR =

∫ C

H
viaMR

~E · d~̀. (9.27)
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The difference in these measurements is

∆ϕL −∆ϕR =

∫ C

H
viaML

~E · d~̀ −
∫ C

H
viaMR

~E · d~̀

=

∫ C

H
viaML

~E · d~̀ +

∫ H

C
viaMR

~E · d~̀

=

∮
ccw

~E · d~̀

= k, (9.28)

which is nonzero unless k = 0 and the solenoid stops varying its magnetic field.
For Ohmic devices of electrical resistance R, the current I = ∆ϕ/R. Thus, the

current through the left resistor is

IL =
1

RL

∫ C

H
viaRL

~E · d~̀=
1

RL

∫ C

H
viaML

~E · d~̀= +
∆ϕL
RL

, (9.29)

and the current through the right resistor is

IR =
1

RR

∫ H

C
viaRR

~E · d~̀=
1

RR

∫ H

C
viaMR

~E · d~̀= − 1

RR

∫ C

H
viaMR

~E · d~̀= −∆ϕRRR
. (9.30)

Since the volt meters draw negligible current by design, IL = IR, and so

∆ϕL
RL

= −∆ϕRRR
. (9.31)

or
RR∆ϕL +RL∆ϕR = 0. (9.32)

Solve Eq. 9.28 and Eq. 9.32 simultaneously to find

∆ϕL = +
RL

RL +RR
k (9.33)

and

∆ϕR = − RR
RL +RR

k (9.34)

and hence

IL = IR =
1

RL +RR
k. (9.35)

The linearly increasing magnetic flux of Eq. 9.23 is impractical. Instead drive the
solenoid current with a triangular-wave generator. Replace the volt meters by two
channels of a multiple-trace oscilloscope. Use a third channel to monitor the current
through a small resistor in series with the solenoid windings. Enjoy experimenting
with different windings of the leads.
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9.3 Ampère-Maxwell’s Law

Consider a steady current I between a source charge Q[t] and a sink charge −Q[t].
Since the source charge is decreasing, Q̇ < 0, the current I = −Q̇ > 0. Assume that
the source and sink are symmetrically placed on the z-axis at a height h above and
below the xy-plane, as in Fig. 9.5.

x

y

z z

h

h

R R

I I

E [t]E [t]

da

da

Ψ

−Q[t]

+Q[t]

−Q[t]

+Q[t]

d� B

s

ψ

Figure 9.5: A steady current I moves current from a source charge Q[t] to a sink
charge −Q[t]. As the charges decrease in magnitude, the electric flux ΦE through
the disk decreases.

Compute the corresponding magnetic field ~B by evaluating Ampère-Maxwell’s
law, ΓB = +Φ̇E + I, about the disk and the circle bounding it, which bisect the
source and sink. The electrical field at a radius s on the disk is

~E = 2
Q

4πr 2 cos
[π

2
− ψ

]
ẑ = 2

Q

4πr 2
h

r ẑ =
Q

2π

h

(s2 + h2)3/2
ẑ. (9.36)

The electric flux through the disk is

ΦE =

∫∫
a

~E · d~a

=

∫ R

s=0

∫ 2π

φ=0

Q

2π

h

(s2 + h2)3/2
(sdφ)ds

= Qh

∫ R

0

sds

(s2 + h2)3/2

= −Qh 1√
s2 + h2

∣∣∣∣R
0

= Q

(
1− h√

R2 + h2

)
. (9.37)
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Differentiate with respect to time to find

Φ̇E = Q̇

(
1− h√

R2 + h2

)
= −I

(
1− h√

R2 + h2

)
. (9.38)

The circulation of the magnetic field around the circle bounding the disk is

ΓB =

∮
`=∂a

~B · d~̀= B(2πR). (9.39)

Hence, the Ampère-Maxwell law demands

B(2πR) = −I
(

1− h√
R2 + h2

)
+ I. (9.40)

or

B =
I

2πR

h√
R2 + h2

, (9.41)

which agrees with the Eq. 8.18 magnetic field of a short, straight current obtained
using Biot-Savart’s law.

9.4 Dynamic Potentials

The Maxwell’s equations

~∇ · ~E = ρ, (9.42a)

~∇ · ~B = 0, (9.42b)

~∇× ~E = −∂t ~B, (9.42c)

~∇× ~B = +∂t~E + ~J, (9.42d)

are 1 + 1 + 3 + 3 = 8 differential equations (plus boundary conditions) in 3 +

3 = 6 unknowns {~E , ~B} given 1 + 3 = 4 sources {ρ, ~J}. Achieve a more compact
representation by re-expressing Maxwell’s equation in terms of potentials, which
need to be extended for electrodynamics.

To satisfy the Eq. 9.42b magnetic Gauss’s law, take

~B = ~∇× ~A, (9.43)

as the divergence of any curl vanishes. Thus, in dynamics as in statics the magnetic
field is the derivative of the magnetic potential. The Eq. 9.42c Faraday’s law then
requires

~∇× ~E = −∂t ~B = −∂t~∇× ~A = −~∇× ∂t ~A (9.44)

or
~∇×

(
~E + ∂t ~A

)
= ~0. (9.45)

To satisfy this, take
~E + ∂t ~A = −~∇ϕ, (9.46)
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as the curl of any gradient vanishes. Thus, in dynamics the electric field is the
derivative of both the electric and magnetic potentials,

~E = −~∇ϕ− ∂t ~A. (9.47)

The Eq. 9.42a Gauss’s law then requires

−∇2ϕ− ~∇ · ∂t ~A = ρ. (9.48)

Finally, the Eq. 9.42d Ampère-Maxwell’s equation then requires

~∇×
(
~∇× ~A

)
= +∂t

(
−~∇ϕ− ∂t ~A

)
+ ~J (9.49)

or
~∇
(
~∇ · ~A

)
−∇2 ~A = −~∇∂tϕ− ∂2t ~A+ ~J (9.50)

Consolidate Eq. 9.48 and Eq. 9.50 as Maxwell’s equations in potential form,

∇2ϕ+ ∂t~∇ · ~A = −ρ, (9.51a)(
∇2 ~A− ∂2t ~A

)
− ~∇

(
~∇ · ~A+ ∂tϕ

)
= − ~J, (9.51b)

which are 1 + 3 = 4 differential equations (plus boundary conditions) in 1 + 3 = 4

unknowns {ϕ, ~A} given 1 + 3 = 4 sources {ρ, ~J}. Unfortunately, they are not yet
ready for T-shirt display. Instead, note that our definitions do not completely define
our potentials. Quantify the freedom in our potentials, and exploit it to simplify
these equations.

9.5 Gauge Transformations

Suppose {ϕ, ~A} and {ϕ′, ~A′} correspond to the same {~E , ~B} fields. By how much
can they differ? Let

ϕ′ = ϕ+ α, (9.52a)

~A′ = ~A+ ~β, (9.52b)

where α and ~β are scalar and vector fields, which can change, but not independently.
To show this, first differentiate to find the corresponding magnetic fields,

~∇× ~A′ = ~∇× ~A+ ~∇× ~β, (9.53)

or
~B′ = ~B + ~∇× ~β. (9.54)

For ~B′ = ~B, it is sufficient that
~β = ~∇λ, (9.55)
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where λ is a scalar field. Similarly, differentiate to find the corresponding electric
fields,

− ~∇ϕ′ − ∂t ~A′ = −~∇ϕ− ~∇α− ∂t ~A− ∂t~β, (9.56)

or
~E ′ = ~E − ~∇ (α+ ∂tλ) . (9.57)

For ~E ′ = ~E , it is sufficient that
α+ ∂tλ = 0 (9.58)

or
α = −∂tλ. (9.59)

Therefore,

ϕ′ = ϕ− ∂tλ, (9.60a)

~A′ = ~A+ ~∇λ. (9.60b)

Subtracting a scalar field λ[t, ~r ] from the electric potential ϕ while simultaneously

adding the gradient of the same scalar field to the magnetic potential ~A does not
change the fields. Refer to this as gauge freedom, because the gauges of old-
fashioned analog volt meters could be freely reset without affecting currents and
charges.

9.6 Coulomb Gauge

The Coulomb gauge is convenient for statics. Choose the scalar field λ[t, ~r ] such
that

~∇ · ~A = 0. (9.61)

The Eq. 9.51a Maxwell’s equations in potential form reduce to

∇2ϕ = −ρ, (9.62a)(
∇2 ~A− ∂2t ~A

)
− ~∇∂tϕ = − ~J. (9.62b)

If in addition the fields are static, then Maxwell’s equations further reduce to

∇2ϕ = −ρ, (9.63a)

∇2 ~A = − ~J, (9.63b)

which are identical, explicitly integrable Poisson’s equations.
Is the Coulomb gauge choice always possible? Suppose

~∇ · ~A = Θ 6= 0. (9.64)

Use Eq. 9.60 to change gauge such that

0 = ~∇ · ~A′

= ~∇ · ~A+ ~∇ · ~∇λ
= Θ +∇2λ, (9.65)
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or
∇2λ = −Θ, (9.66)

which is an explicitly integrable Poisson’s equation.

9.7 Lorentz Gauge

The Lorentz gauge is convenient for dynamics. Choose the scalar field λ[t, ~r ] such
that

~∇ · ~A+ ∂tϕ = 0. (9.67)

The Eq. 9.51a Maxwell’s equations in potential form reduce to

∇2ϕ− ∂2t ϕ = −ρ, (9.68a)

∇2 ~A− ∂2t ~A = − ~J, (9.68b)

or

�2ϕ = −ρ, (9.69a)

�2 ~A = − ~J, (9.69b)

which are identical spacetime Poisson’s equations! This form is ready for the T-shirt.
Is the Lorentz gauge choice always possible? Suppose

~∇ · ~A+ ∂tϕ = Θ 6= 0. (9.70)

Use Eq. 9.60 to change gauge such that

0 = ~∇ · ~A′ + ∂tϕ
′

= ~∇ · ~A+ ~∇ · ~∇λ+ ∂tϕ− ∂t∂tλ
=
(
~∇ · ~A+ ∂tϕ

)
+
(
∇2λ− ∂2t λ

)
= Θ + �2λ, (9.71)

or
�2λ = −Θ, (9.72)

which is the spacetime Poisson’s equation. Show later that this is explicitly solvable.
Wear that T-shirt now.

9.8 Field Momentum

In terms of the electromagnetic potentials, the force on a charge q moving with
velocity ~v is

~F =
d~p

dt
= q

(
~E + ~v × ~B

)
= q

(
−∇ϕ− ∂t ~A+ ~v ×

(
~∇× ~A

))
. (9.73)
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The velocity ~v [t] is a function of time and not space. Hence,

~v ×
(
~∇× ~A

)
= ~∇

(
~v · ~A

)
−
(
~v · ~∇

)
~A, (9.74)

and so
d~p

dt
= −q

(
∂t ~A+

(
~v · ~∇

)
~A+ ~∇

(
ϕ− ~v · ~A

))
. (9.75)

The vector field ~A
[
t, x[t], y[t], z[t]

]
= ~A

[
t, ~r [t]

]
at the charge q can change because

the field varies in time, or because it varies in space, or both. Hence, the total or
convective derivative

d ~A
dt

=
∂ ~A
∂t

+
∂x

∂t

∂ ~A
∂x

+
∂y

∂t

∂ ~A
∂y

+
∂z

∂t

∂ ~A
∂z

=
∂ ~A
∂t

+ ~v · ~∇ ~A, (9.76)

and so

d~p

dt
= −q

(
d ~A
dt

+ ~∇
(
ϕ− ~v · ~A

))
, (9.77)

or
d

dt

(
~p+ q ~A

)
= −q

(
~∇
(
ϕ− ~v · ~A

))
. (9.78)

Express this as
d~ptot
dt

= −~∇U, (9.79)

where the potential energy

U = q
(
ϕ− ~v · ~A

)
(9.80)

and the total or canonical momentum

~ptot = ~p+ q ~A. (9.81)

Interpret ~p as the mechanical momentum and q ~A as the field momentum.
Thus, the magnetic potential ~A (in the appropriate gauge) is the momentum per
unit charge, just as in electrostatics the electric potential ϕ is the energy per unit
charge.

9.9 Energy & Momentum Density

A charge density ρ moving at velocity ~v is a current density ~J = ρ~v and is accom-
panied by a radial electric field ~E and a circulating magnetic field ~B. What is the
rate of work done on the sources by the fields? The force is

~F =

∫
dq
(
~E + ~v × ~B

)
. (9.82)
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The work dW through a distance d~̀= ~v dt is

dW = ~F · d~̀

=

∫
dq
(
~E + ~v × ~B

)
· ~v dt

=

∫∫∫
V

ρ dV ~E · ~v dt+ 0

= dt

∫∫∫
V

~E · ρ~v dV, (9.83)

where the deflecting magnetic field makes no contribution as it is always orthogonal
to the displacement. Divide by the time step dt to find

dW

dt
=

∫∫∫
V

~E · ~J dV. (9.84)

Use Ampère-Maxwell’s law ~∇× ~B = +∂t~E + ~J to eliminate the source from the
power density

~E · ~J = ~E · ~∇× ~B − ~E · ∂t~E = ~E · ~∇× ~B − ~E · ∂t~E . (9.85)

Use the Eq. B-9 product rule and Faraday’s law ~∇× ~E = −∂t ~B to put the fields ~E
and ~B on equal footing,

~E · ~J = ~B · ~∇× ~E − ~∇ ·
(
~E × ~B

)
− ~E · ∂t~E

= ~B ·
(
−∂t ~B

)
− ~∇ ·

(
~E × ~B

)
− ~E · ∂t~E

= − ~B · ∂t ~B − ~∇ ·
(
~E × ~B

)
− ~E · ∂t~E

= −∂t
B2 + E2

2
− ~∇ ·

(
~E × ~B

)
= −∂tε− ~∇ · ~S, (9.86)

where ε = (E2 + B2)/2 and ~S = ~E × ~B. Finally, use the Eq. 9.86 power density to
express the Eq. 9.84 rate of work as

dW

dt
=

∫∫∫
V

(
−∂tε− ~∇ · ~S

)
dV

= −
∫∫∫

V

∂tε dV −
∫∫∫

V

~∇ · ~S dV

= − d

dt

∫∫∫
V

ε dV −©
∫∫
a=∂V

~S · d~a, (9.87)

which is Poynting’s theorem,

dW

dt
= −dE

dt
−©
∫∫
a=∂V

~S · d~a, (9.88)
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where the energy density

dE

dV
= ε =

E2 + B2
2

, (9.89)

and the energy flux density is the momentum density

d~p

dV
= ~S = ~E × ~B, (9.90)

because

S =
dP
da⊥

=
dE

da⊥dt
=

dE

da⊥d`||

d`||
dt

=
dE

dV
c =

dp

dV
c2 =

dp

dV
, (9.91)

where E =
√
p2 +m2 = p for the massless photons that are the quanta of the

electromagnetic field. (~S “poynts” in the direction of momentum density and energy
flux.) The Eq. 9.89 electromagnetic energy density generalizes the Eq. 7.84 electric
energy density. The Eq. 9.88 Poynting theorem implies that the work done in a unit
time on the sources by the electromagnetic force is the decrease in the energy stored
in the field less the energy that flows away.

As an example, consider a variation of the Sec. 9.1 Feynman disk paradox. A
charge q of mass m is a distance s from the axis of a solenoid of radius R and internal
magnetic field ~B. Turn off the solenoid, and the charge receives an impulse, as in the
left side of Fig. 9.6. Qualitatively, a changing magnetic field induces a circulating
electric field that forces the charge to move.

Ḃ < 0

E

q > 0

F

q > 0−q < 0

FF

B

E

E

E

E

E

E

E

Eq

Ḃ < 0
B

A

S

A

A
A

A

s

Figure 9.6: Suddenly turn off the solenoid, and the charges receive impulses from
momentum stored in the fields. Variation on the right is a model for a reactionless
drive spacecraft.

Quantitively, Faraday’s law implies

E(2πs) = ΓE = −Φ̇B, (9.92)

and the circulating electric field has magnitude

E = − 1

2πs
Φ̇B. (9.93)
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The charge experiences a force

dp

dt
= F = qE = − q

2πs

dΦB
dt

. (9.94)

Assume the charge doesn’t move far in the time the magnetic field decays, and
integrate ∫ ∆p

0

dp = − q

2πs

∫ 0

ΦB

dΦB (9.95)

to find the impulse

∆p =
q

2πs
ΦB (9.96)

and velocity change

∆v =
q

m

ΦB
2πs

. (9.97)

What is the source of the momentum? Initially, momentum is distributed
through the crossed ~E and ~B inside the solenoid. Alternately, potential momen-
tum exists at the charge in the ~A field.

Using the Eq. 9.93 circulating electric field in the absence of the charge, ~E =
−~∇ϕ− ∂t ~A, implies

− Φ̇B
2πs

φ̂ = −~0− ∂t ~A, (9.98)

which integrates to

~A =
ΦB
2πs

φ̂. (9.99)

Check this by noting that for s > R, the magnetic flux

ΦB =

∫∫
a

~B · d~a =

∫∫
a

~∇× ~A · d~a =

∮
`=∂a

~A · d~̀= Aφ(2πs). (9.100)

Hence, the field momentum

qA =
q

2πs
ΦB = ∆p. (9.101)

In another variation, suppose two charges of opposite sign are attached symmet-
rically across the diameter of the solenoid, as in the right side of Fig. 9.6. Change
the magnetic flux through the solenoid by ∆ΦB, and the entire apparatus of mass
M changes velocity by (a typically very small)

∆v = 2
q

M

ΦB
2πs

. (9.102)

Rotate the charges (slowly to avoid radiation effects) and vary the magnetic flux to
move freely through space with a reactionless drive, shuffling momentum between
the spacecraft and its electromagnetic fields!
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Problems

1. In the plane of a square conducting loop of side ` and electrical resistance
R, place a long straight current I parallel to the near side of the loop and a
distance s away.

(a) Find the magnetic flux ΦB through the loop due to the current.

(b) Pull the loop perpendicular from the wire at a speed v. What is the
magnitude and direction of the electrical current in the near side of the
loop?

(c) Pull the loop parallel to the wire at a speed v. What is the loop current
in this case?

2. Suspend vertically a rectangular conducting loop of width `, mass m, and
electrical resistance R, with its upper portion penetrated perpendicularly by
a horizontal magnetic field ~B.

(a) Release the loop, and compute its speed as a function of time as it falls
out of the magnetic field.

(b) What is the terminal speed of the loop, assuming it doesn’t completely
exit the magnetic field?

3. Thomson’s dipole consists of an electrical charge QE = e and a magnetic
charge QB = b separated by a distance δ.

(a) Imagine balancing the dipole on one end and then gently pushing it over.
Qualitatively but carefully explain what happens and why.

(b) Find the total angular momentum stored in the dipole’s electromagnetic
fields, both magnitude and direction. (Hint: Place e at the origin and b a
distance δ along the z-axis, and integrate the angular momentum density
~r × d~p/dV over all space.)

(c) Quantum mechanically, the dipole’s angular momentum is quantized to
L = n~/2, where n = 1, 2, 3, . . .. What does this imply for the range of
possible electric and magnetic charges? (This is a famous argument due
to Dirac.)



Chapter 10

Electromagnetic Radiation

Accelerate a charge and ripples in its fields propagate outward at light speed carry-
ing energy and momentum. Discover the relevant electric and magnetic potentials
and then differentiate to find the electric and magnetic fields. First examine the
propagation of electromagnetic waves.

10.1 Electromagnetic Waves

In a vacuum, where charges and currents are absent, Maxwell’s equations

~∇ · ~E = 0, ~∇× ~E = −∂t ~B,
~∇ · ~B = 0, ~∇× ~B = +∂t~E , (10.1)

are coupled, first-order partial differential equations for the electric and magnetic
fields ~E and ~B. Decouple them by curling the curl equations to get

~∇×
(
~∇× ~E

)
= ~∇×

(
−∂t ~B

)
, (10.2)

~∇
(
~∇ · ~E

)
−∇2~E = −∂t

(
~∇× ~B

)
, (10.3)

~∇~0 −∇2~E = −∂t
(

+∂t~E
)
, (10.4)

∇2~E = ∂2t ~E , (10.5)

and, symmetrically,

~∇×
(
~∇× ~B

)
= ~∇×

(
+∂t~E

)
, (10.6)

~∇
(
~∇ · ~B

)
−∇2 ~B = +∂t

(
~∇× ~E

)
, (10.7)

~∇~0 −∇2 ~B = +∂t

(
−∂t ~B

)
, (10.8)

∇2 ~B = ∂2t
~B. (10.9)

113
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In summary, the spacetime Poisson’s equations

(∇2 − ∂2t )~E = �2~E = ~0,

(∇2 − ∂2t ) ~B = �2 ~B = ~0, (10.10)

are uncoupled, second-order partial differential equations for the electric and mag-
netic fields ~E and ~B. (The higher-order is the price of decoupling.) These are simple
enough to solve by guessing.

Seek sinusoidal solutions

~E = ~E0ei(~k·~r−ωt),
~B = ~B0ei(~k·~r−ωt), (10.11)

where the spatial frequency k = 2π/λ, the temporal frequency ω = 2π/T , and the
speed v = λ/T = ω/k. Describe the physical waves by the real parts of the complex
~E and ~B.

!B

!E

!k

Figure 10.1: Maxwell’s equations support the propagation of transverse electro-
magnetic waves in a vacuum.

For exponentials, differentiating reduces to multiplication; for example, if f =
f0e

αx, then ∂xf = αf . Hence, the Eq. 10.10 spacetime Poisson’s equations become

(k2 − ω2)~E = ~0,

(k2 − ω2) ~B = ~0, (10.12)

which imply k = ω and v = ω/k = 1 = c. The Eq. 10.1 sourceless Maxwell’s
equations become

~k · ~E = 0, ~k × ~E = +ω ~B,
~k · ~B = 0, ~k × ~B = −ω~E . (10.13)

Divide the cross product equations by k = ω to obtain

k̂ × ~E = + ~B,
k̂ × ~B = −~E . (10.14)
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The square of the magnetic field

B2 = ~B · ~B = ~B · k̂ × ~E = ~E · ~B × k̂ = ~E · ~E = E2, (10.15)

so B = E . The scalar product of the electric and magnetic field

~E · ~B = ~E · k̂ × ~E = 0, (10.16)

and the vector product

~E × ~B = ~E ×
(
k̂ × ~E

)
= k̂E2 −

(
k̂ · ~E

)
~E = k̂E2. (10.17)

Divide by EB = E2 to obtain
Ê × B̂ = k̂. (10.18)

Together, these results define transverse electromagnetic waves that propagate
at light speed with electric and magnetic fields perpendicular to each other and to
the direction of propagation k̂, as in Fig. 10.1.

10.2 Retarded Potentials

Recall that if the fields are the derivative of the potentials,

~E = −~∇ϕ− ∂t ~A,
~B = ~∇× ~A, (10.19)

with the Lorentz gauge constraint

~∇ · ~A+ ∂tϕ = 0, (10.20)

then Maxwell’s equations in potential form reduce to the spacetime Poisson’s equa-
tions

�2ϕ = −ρ,
�2 ~A = − ~J. (10.21)

In the static case, these further reduce to the Poisson’s equations

∇2ϕ = −ρ,
∇2 ~A = − ~J, (10.22)

which have the solutions

ϕ[~r ] =

∫∫∫
ρ[~r ′]dV ′

4πr ,

~A[~r ] =

∫∫∫ ~J [~r ′]dV ′

4πr , (10.23)
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where the integrals are over all space and the sources vanish at infinity.
The non-static case must account for the fact that “electromagnetic news”

travels at light speed. It is not the condition of the sources now that matters,
but rather it is the condition of the sources at the earlier retarded time, defined
implicitly by

tr = t−r = t−r [tr]/c, (10.24)

that matters. The sources there and then determine the fields here and now. For
example, see light from stars in the night sky that left them at the retarded times
corresponding to their distances. See most of the stars of the “Big Dipper” not as
they are now, but as they were about a human lifetime (∼ 75 years) ago.

Hence, write the solutions to the spacetime Poisson’s equations as

ϕ[t, ~r ] =

∫∫∫
ρ[tr, ~r

′]dV ′

4πr [tr, ~r ′]
,

~A[t, ~r ] =

∫∫∫ ~J [tr, ~r
′]dV ′

4πr [tr, ~r ′]
. (10.25)

Since the integrands are evaluated at the retarded times (with the most distant
charge and current elements evaluated at the earliest times), refer to these as the
retarded potentials.

To check, differentiate the potentials to find the fields. For example, if

ϕ =

∫∫∫
ρ dV

4πr =
1

4π

∫∫∫
ρ

1

r dV (10.26)

where ρ is implicitly evaluated at the retarded time tr and integrated over the source
points ~r ′, then

~∇ϕ =
1

4π

∫∫∫ ((
~∇ρ
) 1

r + ρ ~∇
(

1

r
))

dV. (10.27)

But

~∇ρ =
∂

∂~r
ρ[tr, ~r

′] =
∂ρ

∂tr

∂tr
∂~r

= ρ̇
∂

∂~r
(t−r ) = −ρ̇ ~∇r = −ρ̇r̂ . (10.28)

and

~∇
(

1

r
)

= − r̂r 2 , (10.29)

so

~∇ϕ =
1

4π

∫∫∫ (
−ρ̇r̂r − ρ

r̂
r 2
)
dV. (10.30)

Furthermore,

∇2ϕ =
1

4π

∫∫∫ (
−
(
~∇ρ̇
)
· r̂r − ρ̇

~∇ ·
(r̂
r
)
−
(
~∇ρ
)
· r̂r 2 − ρ

~∇ ·
( r̂
r 2
))

dV.

(10.31)
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But

~∇ρ̇ =
∂

∂~r
ρ̇[tr, ~r

′] =
∂ρ̇

∂tr

∂tr
∂~r

= ρ̈
∂

∂~r
(t−r ) = −ρ̈ ~∇r = −ρ̈r̂ . (10.32)

and

~∇ ·
(r̂
r
)

= ~∇ ·
(

1

r 2 ~r
)

= ~∇
(

1

r 2
)
· ~r +

1

r 2
~∇ · ~r = − 2

r 3r̂ · ~r +
1

r 2 3 =
1

r 2 , (10.33)

and

~∇ ·
( r̂
r 2
)

= 4π~∇ ·
( r̂

4πr 2
)

= 4π~∇ · ~E1 = 4πρ1 = 4πδ3[~r ], (10.34)

so

∇2ϕ =
1

4π

∫∫∫ (
+
ρ̈

r −
ρ̇

r 2 +
ρ̇

r 2 − 4πδ3[r ]

)
dV

=

∫∫∫
ρ̈ dV

4πr −
∫∫∫

ρ δ3[~r ]dV

= ∂2t

∫∫∫
ρ dV

4πr −
∫∫∫

ρ
[
t− |~r − ~r ′|, ~r ′

]
δ3[~r − ~r ′]d3~r ′

= ∂2t ϕ− ρ[t, ~r], (10.35)

or

�2ϕ = ∇2ϕ− ∂2t ϕ = −ρ, (10.36)

which is the spacetime Poisson’s equation for the electric potential.

Use an analogous argument to demonstrate that not only do the Eq. 10.25 re-
tarded potentials solve Maxwell’s equations, but so too do the advanced potentials

ϕa[t, ~r ] =

∫∫∫
ρ[ta, ~r

′]dV ′

4πr [ta, ~r ′]
,

~Aa[t, ~r ] =

∫∫∫ ~J [ta, ~r
′]dV ′

4πr [ta, ~r ′]
, (10.37)

where the advanced time

ta = t+r = t+r [tr]/c, (10.38)

The advanced potentials in the present depend on the sources in the future. The
advanced solutions violate a naive causality and are typically discarded. However,
the Wheeler-Feynman absorber theory [4] is a time-symmetric interpretation of
electrodynamics that uses equally the retarded and advanced solutions to Maxwell’s
equations. The absorber theory has inspired a transactional interpretation [5]
of quantum mechanics wherein present events are jointly determined by past and
future events.
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10.3 Liénard-Weichert Potentials

The electric potential of a point charge Q moving along an arbitrary trajectory
~r ′ = ~rQ[t] is

ϕ[t, ~r ] =

∫∫∫
ρ[tr, ~r

′]dV ′

4πr [tr, ~r ′]

=

∫∫∫
ρ[tr, ~r

′]dV ′

4π|~r − ~rQ[tr]|

=
1

4π|~r − ~rQ[tr]|

∫∫∫
ρ[tr, ~r

′]dV ′, (10.39)

but the remaining integral is not the total charge! Integrate the charge density at
different retarded times for different parts to get∫∫∫

ρ[tr, ~r
′]dV ′ 6= Q, (10.40)

which effectively smears the moving charge along its trajectory. By contrast, inte-
grate the charge density at one instant of time to get∫∫∫

ρ[t, ~r ′]dV ′ = Q. (10.41)

Show below that this complication does not disappear for point charges, which are
the limit of extended charges as their sizes shrink to zero.

Fundamentally, a moving object appears slightly longer than it really is because
the light received from its rear left earlier, when the object was further away, than
the light received simultaneously from its front, when the object was closer. This
nonrelativistic effect depends only on electromagnetic news traveling at the finite
light speed.

For example, consider a sphere of diameter ` moving with speed v so that in
time ∆t it moves a distance ∆` directly toward an observer, as in the left part of
Fig. 10.2. Light from the rear of the sphere must travel an extra distance `′ = `+∆`
and leave a time ∆t = `′/c earlier to arrive at the observer simultaneously with light
from the front. Thus,

`′ =
`′

c
= ∆t =

∆`

v
=
`′ − `
v

(10.42)

or

`′ = `
1

1− v > ` (10.43)

and the apparent length of the sphere is 1/(1 − v) times greater than the actual
length of the sphere.

Similarly, if the sphere is moving at at an angle α with respect to the observer,
as in the right part of Fig. 10.2, then light from the rear of the sphere must travel
and extra distance `′ cosα and leave a time ∆t = `′ cosα/c earlier to arrive at the
observer simultaneously with light from the front. Thus,

`′ cosα =
`′ cosα

c
= ∆t =

∆`

v
=
`′ − `
v

(10.44)
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α

∆� �

��

t = 0 t = ∆t

v

∆� �

��

v

�� cosα

ˆ

ˆ

Figure 10.2: A moving object appears smeared along its trajectory due to the
finite light speed, whether approaching directly (left) or obliquely (right).

or

`′ = `
1

1− v cosα
= `

1

1− r̂ · ~v > ` (10.45)

and the apparent length of the sphere is 1/(1− r̂ · ~v) times greater than the actual
length of the sphere.

Since the motion is forward-backward and not left-right or up-down, the apparent
volume of the sphere is also 1/(1−r̂ ·~v) times greater than the actual volume of the
sphere. Since this correction factor is independent of the size of the sphere, apply
it also to the Eq. 10.40 volume integral of the retarded charge density for the point
charge in arbitrary motion to get∫∫∫

ρ[tr, ~r
′]dV ′ = Q

1

1− r̂ [tr] · ~v[tr]
> Q. (10.46)

Hence, completing Eq. 10.39, the electric potential for a moving point charge is

ϕ[t, ~r] =
Q

4πr [tr]

1

1− r̂ [tr] · ~v[tr]
. (10.47)

For a moving charge density, ~J = ρ~v, and so

~A[t, ~r ] =

∫∫∫ ~J [tr, ~r
′]dV ′

4πr [tr, ~r ′]

=

∫∫∫
ρ[tr, ~r

′]~v[tr]dV
′

4π|~r − ~rQ[tr]|

=
~v[tr]

4π|~r − ~rQ[tr]|

∫∫∫
ρ[tr, ~r

′]dV ′

=
Q~v[tr]

4πr [tr]

1

1− r̂ [tr] · ~v[tr]
. (10.48)
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More succinctly, the Liénard-Wiechert potentials for a moving point charge are

ϕ =
Q

4πr
1

1− r̂ · ~v ,

~A =
Q~v

4πr
1

1− r̂ · ~v , (10.49)

where the relative displacement ~r and the velocity ~v are implicitly evaluated at the
retarded time. If the velocity ~v = ~0, then ϕ = Q/4πr and ~A = ~0, as in electrostatics.

10.4 Constant Velocity

As an important example, for which the retarded time can be explicitly calculated,
compute the electric potential of a point charge moving at constant velocity,

~rQ[t] = ~vt. (10.50)

First, compute the retarded time. Square the retarded time relation

t− tr = r [tr] = |~r − ~rQ[tr]| = |~r − ~vtr| (10.51)

to get
t2 − 2ttr + t2r = r2 − 2~r · ~vtr + v2t2r. (10.52)

Arrange this as a quadratic equation in standard form

(1− v2)t2r − 2(t− ~r · ~v)tr + (t2 − r2) = 0, (10.53)

and use the quadratic formula to solve for

t±r =
+2(t− ~r · ~v)±

√
4(t− ~r · ~v)2 − 4(1− v2)(t2 − r2)

2(1− v2)
. (10.54)

Examine a convenient special case to choose the sign. If the speed v = 0, then
Eq. 10.54 reduces to t±r = t ± r, where the minus sign corresponds to the retarded
solution (and the plus sign corresponds to the advanced solution). Cancel a factor
of 2 and write the retarded time as

tr = t−r =
(t− ~r · ~v)−

√
(t− ~r · ~v)2 − (1− v2)(t2 − r2)

1− v2 . (10.55)

Next divide the retarded displacement vector

~r = ~r − ~rQ[tr] = ~r − ~vtr (10.56)

by its Eq. 10.51 magnitude
r = t− tr (10.57)

to form its direction

r̂ =
~r − ~vtr
t− tr

. (10.58)
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In the denominator of the Eq. 10.49 electric potential is

r̃ = r (1− r̂ · ~v)

= (t− tr)
(

1−
(
~r − ~vtr
t− tr

)
· ~v
)

= t− tr − ~r · ~v + v2tr

= (t− ~r · ~v)− tr(1− v2)

=
√

(t− ~r · ~v)2 − (1− v2)(t2 − r2), (10.59)

via the Eq. 10.55 retarded time. Hence, the electric potential

ϕ[t, ~r ] =
Q

4πr̃
=

Q

4π
√

(t− ~r · ~v)2 − (1− v2)(t2 − r2)
. (10.60)

r

vθ

QO
vtr

R

rQ[t] = vt

Figure 10.3: Simplify the retarded electric potential ϕ for a point charge Q moving
at constant velocity ~v using the present displacement vector ~R.

Exploit the predictability of uniform motion to simplify the potential by express-
ing it in terms of the present displacement vector

~R = ~r [t] = ~r − ~vt, (10.61)

as in Fig. 10.3. Use this to eliminate t and ~r from the Eq. 10.59 r̃ in two steps.
First, eliminate t by substituting ~vt = ~r − ~R into

r̃2 = (t− ~r · ~v)2 − (1− v2)(t2 − r2)

= t2 − 2t~r · ~v + (~r · ~v)2 − t2 + r2 + v2t2 − v2r2

= −2~r · (~r − ~R) + (~r · ~v)2 + r2 + (~r − ~R)2 − v2r2

= −2r2 + 2~r · ~R+ (~r · ~v)2 + r2 + r2 − 2~r · ~R+R2 − v2r2

= (~r · ~v)2 − (rv)2 +R2. (10.62)



122 CHAPTER 10. ELECTROMAGNETIC RADIATION

Next, eliminate ~r by substituting ~r = ~R+ ~vt into the constant of the motion,

(~r · ~v)2 − (rv)2 =
(
(~R+ ~vt) · ~v

)2 − (~R+ ~vt
)2
v2

=
(
~R · ~v

)2
+ 2
(
~R · ~v

)
v2t+ v4t2

− (Rv)2 − 2
(
~R · ~v

)
tv2 − v4t2

=
(
~R · ~v

)2 − (Rv)2. (10.63)

If the angle between the present displacement ~R and the velocity ~v is θ, then the
constant of the motion(

~R · ~v
)2 − (Rv)2 = (Rv cos θ)2 − (Rv)2 = −R2v2 sin2 θ (10.64)

and so
r̃2 = −R2v2 sin2 θ +R2 = R2(1− v2 sin2 θ). (10.65)

Hence, the electric potential for a charge in uniform motion

ϕ =
Q

4πR
√

1− (v sin θ)2
. (10.66)

If the speed v = 0 (or approach angle θ = 0), then ϕ = Q/4πR, as in electrostatics.

10.5 Arbitrary Motion

Use Eq. 10.19 to differentiate the potentials ϕ and ~A to obtain the fields ~E and ~B
for a point charge Q in arbitrary motion ~r ′ = ~rQ[t]. The result is worth the effort.

O

�E
�r

�

�v
Q

�r � = �rQ

�a

Figure 10.4: Electric field ~E for a charge Q in arbitrary motion with retarded
position ~rQ, retarded velocity ~v, and retarded acceleration ~a.

First, use implicit differentiation to compute the time derivative of the re-
tarded time, ∂ttr. Square the retarded time relation t− tr = r to obtain

(t− tr)2 = r 2 = ~r · ~r , (10.67)

and differentiate with respect to time to find

2(t− tr)(1− ∂ttr) = 2~r · ∂t~r (10.68)



10.5. ARBITRARY MOTION 123

or
1− ∂ttr = r̂ · ∂t~r . (10.69)

The chain rule implies

∂t~r = ∂t(~r − ~rQ) = −∂t~rQ = −∂tr
∂t

d~rQ
dtr

= −(∂ttr)~v. (10.70)

Hence, substitute Eq. 10.70 into Eq. 10.69 to obtain

1− ∂ttr = −r̂ · ~v ∂ttr (10.71)

and solve for

∂ttr =
1

1− r̂ · ~v =
r

r − ~r · ~v . (10.72)

Next, use implicit differentiation to compute the space derivative of the retarded
time, ~∇tr. Gradient the Eq. 10.67 square of the retarded time relation to find

2(t− tr)(~0− ~∇tr) = ~∇(~r · ~r ) (10.73)

and use the Eq. B-7 product rule to obtain

− ~∇tr =
1

2r
~∇(~r · ~r ) =

1

2r 2
(

(~r · ~∇)~r + ~r × (~∇× ~r )
)
. (10.74)

The chain rule implies

(~r ·~∇)~r = (~r ·~∇)~r−(~r ·~∇)~rQ = r−~r · ∂
∂~r

~rQ = r−~r ·∂tr
∂~r

d~rQ
dtr

= r−(r ·~∇tr)~v (10.75)

and

~∇× ~r = ~∇× ~r − ~∇× ~rQ = ~0− ∂

∂~r
× ~rQ = −∂tr

∂~r
× d~rQ
dtr

= −~∇tr × ~v (10.76)

and so

~r × (~∇× ~r ) = −~r × (~∇tr × ~v) = −(~r · ~v)~∇tr + (r · ~∇tr)~v. (10.77)

Hence, substitute the Eq. 10.75 directional derivative and the Eq. 10.77 double
product into Eq. 10.74 to obtain

− ~∇tr =
1

r
(

(~r − (~r · ~v)~∇tr)
)

= r̂ − (r̂ · ~v)~∇tr, (10.78)

and solve for

~∇tr =
−r̂

1− r̂ · ~v =
−~r

r − ~r · ~v . (10.79)

Next, compute the gradient of the electric potential, ~∇ϕ. Gradient

ϕ =
Q

4πr
1

1− r̂ · ~v =
Q

4π

1

r − ~r · ~v (10.80)
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to obtain
~∇ϕ =

Q

4π

1

(r − ~r · ~v)2

(
−~∇r + ~∇(~r · ~v)

)
, (10.81)

where
~∇r = ~∇(t− tr) = −~∇tr, (10.82)

and, by the Eq. B-7 product rule,

~∇(~r · ~v) = (~r · ~∇)~v + (~v · ~∇)~r + ~r × (~∇× ~v) + ~v × (~∇× ~r ), (10.83)

where the directional derivatives

(~r · ~∇)~v = ~r · ∂
∂~r

~v = ~r · ∂tr
∂~r

d~v

dtr
= (~r · ~∇tr)~a, (10.84)

and

(~v ·~∇)~r = (~v ·~∇)~r−(~v ·~∇)~rQ = ~v−~v · ∂
∂~r
~rQ = ~v−~v · ∂tr

∂~r

d~rQ
dtr

= ~v−(~v ·~∇tr)~v, (10.85)

and the curls
~∇× ~v =

∂

∂~r
× ~v =

∂tr
∂~r
× d~v

dtr
= ~∇tr ×~a (10.86)

and

~∇× ~r = ~∇× ~r − ~∇× ~rQ = − ∂

∂~r
× ~rQ = −∂tr

∂~r
× d~rQ
dtr

= −~∇tr × ~v. (10.87)

and so the double products

~r × (~∇× ~v) = ~r × (~∇tr ×~a) = (~r ·~a)~∇tr − (~r · ~∇tr)~a (10.88)

and
~v × (~∇× ~r ) = −~v × (~∇tr × ~v) = −v2~∇tr + (~v · ~∇tr)~v. (10.89)

Hence, substitute the Eq. 10.82 gradient of the relative displacement, the Eq. 10.84
and Eq. 10.85 directional derivatives, and the Eq. 10.88 and Eq. 10.89 double prod-
ucts, into the Eq. 10.81 gradient of the potential to obtain

~∇ϕ =
Q

4π

1

(r − ~r · ~v)2

(
+∇tr

+(~r · ~∇tr)~a + ~v − (~v · ~∇tr)~v
+(~r ·~a)~∇tr − (~r · ~∇tr)~a− v2~∇tr + (~v · ~∇tr)~v

)
(10.90)

and simplify to

~∇ϕ =
Q

4π

1

(r − ~r · ~v)2

(
~v + (1− v2 + ~r ·~a)~∇tr

)
=

Q

4π

1

(r − ~r · ~v)2

(
~v + (1− v2 + ~r ·~a)

−~r
r − ~r · ~v

)
=

Q

4π

1

(r − ~r · ~v)3
(
(r − ~r · ~v)~v − (1− v2 + ~r ·~a)~r ) (10.91)
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or finally

− ~∇ϕ =
Q

4πr 2
1

(1− r̂ · ~v)3
(
(1− v2 + ~r ·~a)r̂ − (1− r̂ · ~v)~v

)
. (10.92)

Next, compute the time derivative of the magnetic potential, ∂t ~A. Time differ-
entiate

~A = ϕ~v =
Q

4π

1

r − ~r · ~v~v (10.93)

to obtain

∂t ~A = (∂tϕ)~v + ϕ(∂t~v), (10.94)

where

∂t~v =
∂tr
∂t

d~v

dtr
= (∂ttr)~a (10.95)

and

∂tϕ =
Q

4π

−1

(r − ~r · ~v)2
(
∂tr − (∂t~r ) · ~v − ~r · (∂t~v)

)
, (10.96)

where

∂tr = ∂t(t− tr) = 1− ∂ttr, (10.97)

and

∂t~r = ∂t(~r − ~rQ) = 0− ∂

∂t
~rQ = −∂tr

∂t

d~rQ
dtr

= −(∂ttr)~v. (10.98)

Hence,

∂t ~A =
Q

4π

−1

(r − ~r · ~v)2
(
(1− ∂ttr + v2∂ttr − ~r ·~a ∂ttr)~v − (r − ~r · ~v)(∂ttr)~a

)
=

Q

4π

−1

(r − ~r · ~v)2

(
~v −

(
(1− v2 + ~r ·~a)~v + (r − ~r · ~v)~a

)
∂ttr

)
=

Q

4π

−1

(r − ~r · ~v)2

(
~v −

(
(1− v2 + ~r ·~a)~v + (r − ~r · ~v)~a

) r
r − ~r · ~v

)
=

Q

4π

−1

(r − ~r · ~v)3

(
(r − ~r · ~v)~v − (1− v2 + ~r ·~a)r ~v − (r − ~r · ~v)r~a

)
=

Q

4πr 2
−1

(1− r̂ · ~v)3

(
(1− r̂ · ~v)~v − (1− v2 + ~r ·~a)~v − (r − ~r · ~v)~a

)
,

(10.99)

or finally,

− ∂t ~A =
Q

4πr 2
1

(1− r̂ · ~v)3

(
(v2 − r̂ · ~v − ~r ·~a)~v − (r − ~r · ~v)~a

)
. (10.100)
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Next, combine Eq. 10.92 and Eq. 10.100 to compute the electric field

~E = −~∇ϕ− ∂t ~A

=
Q

4πr 2
1

(1− r̂ · ~v)3

(
(1− v2 + ~r ·~a)r̂ − (1− v2 +r ·~a)~v − (r − ~r · ~v)~a)

)
=

Q

4πr 2
1

(1− r̂ · ~v)3

(
(1− v2)(r̂ − ~v) + (~r ·~a)r̂ − (~r ·~a)~v −r~a + (~r · ~v)~a

)
=

Q

4πr 2
1

(1− r̂ · ~v)3

(
(1− v2)(r̂ − ~v) + ~r × (r̂ ×~a)− ~r × (~v ×~a)

)
=

Q

4πr 2
1

(1− r̂ · ~v)3

(
(1− v2)(r̂ − ~v) + ~r × ((r̂ − ~v)×~a

))
, (10.101)

where the right side is implicitly evaluated at the retarded time.
Introduce the velocity

~u = ~c− ~v = r̂ c− ~v = r̂ − ~v (10.102)

so that

u‖ = r̂ · ~u = 1− r̂ · ~v, (10.103a)

~r · ~u = r − ~r · ~v, (10.103b)

and the relativistic stretch

γ =
1√

1− v2/c2
=

1√
1− v2

, (10.104)

and rewrite the electric field as

~E =
Q

4π

1

u3‖

(
~u

γ2r 2 +
r̂ × (~u×~a)

r
)
. (10.105)

At large distances, the acceleration-dependent radiation term, which decreases
like 1/r , dominates the acceleration-independent Coulomb term, which decreases
like 1/r 2.

Next, compute the curl of the magnetic potential, ~∇× ~A. Curl

~A = ϕ~v =
Q

4πr
1

1− r̂ · ~v~v (10.106)

to obtain the magnetic field

~B = ~∇× ~A = (~∇ϕ)× ~v + ϕ~∇× ~v = −~v × ~∇ϕ+ ϕ~∇× ~v, (10.107)

where

~∇× ~v =
∂

∂~r
× ~v =

∂tr
∂~r
× d~v

dtr
= ~∇tr ×~a =

−r̂ ×~a
1− r̂ · ~v , (10.108)
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and recall the Eq. 10.92

− ~∇ϕ =
Q

4πr 2
1

(1− r̂ · ~v)3
(
(1− v2 + ~r ·~a)r̂ − (1− r̂ · ~v)~v

)
. (10.109)

Substitute these into the Eq. 10.107 magnetic field to obtain

~B =
Q

4πr 2
1

(1− r̂ · ~v)3

(
(1− v2 + ~r ·~a)~v × r̂ +~0−r (1− r̂ · ~v)r̂ ×~a

)
. (10.110)

Introduce ~u = r̂ − ~v and the resulting r̂ × ~u = ~0− r̂ × ~v = ~v × r̂ to write

~B =
Q

4πr 2
1

(1− r̂ · ~v)3

(
(1− v2 + ~r ·~a)r̂ × ~u−r (1− r̂ · ~v)r̂ ×~a

)
= r̂ × Q

4πr 2
1

(1− r̂ · ~v)3

(
(1− v2 + ~r ·~a)~u− (r − ~r · ~v)~a

)
= r̂ × Q

4πr 2
1

(1− r̂ · ~v)3

(
(1− v2)~u+ (~r ·~a)~u− (~r · ~u)~a

)
= r̂ × Q

4πr 2
1

(1− r̂ · ~v)3

(
(1− v2)~u+ ~r × (~u×~a)

)
= r̂ × Q

4π

1

u3‖

(
~u

γ2r 2 +
r̂ × (~u×~a)

r
)
. (10.111)

Substitute the Eq. 10.105 electric field to show

~B = r̂ × ~E . (10.112)

Thus, the magnetic field of a point charge in arbitrary motion is always perpendicular
to the electric field and to the vector from the retarded source. The Sec. 10.1
transverse electromagnetic waves are a special case.

10.6 Arbitrary Force

Suppose a source charge q′ = Q is at position ~r ′ with velocity ~v ′ and acceleration
~a ′, and a test charge q is at position ~r with velocity ~v, as in Fig. 1.1. Define the
relative separation ~r = ~r − ~r ′, velocity ~u ′ = ~c − ~v ′ = cr̂ − ~v ′, and projection
u′‖ = r̂ · ~u ′. The force on the test charge q is

~F = q
(
~E + ~v × ~B

)
, (10.113)

or using the Eq. 10.105 electric field and the Eq. 10.111 magnetic field,

~F = q
q ′

4π

1

u′3‖

(
~u ′

γ2r 2 +
r̂ × (~u ′ ×~a ′)

r + ~v ×
(
r̂ ×

(
~u ′

γ2r 2 +
r̂ × (~u ′ ×~a ′)

r
)))

,

(10.114)
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where the source variables are evaluated at the retarded time. This is the generalized
Coulomb’s law of the Sec. 1.1 advertisement.

Newton’s second law with Einstein’s momentum implies the force

~F =
d~p

dt
=

d

dt

m~v√
1− v2

=
m~a√
1− v2

+
m~v

(1− v2)3/2
~v ·~a. (10.115)

Substitute t = tr +r [tr] into the Eqs. 10.114 and 10.115 forces, as in Problem 2, to
find

m

(1 + ṙ )2
√

(1 + ṙ )2 − v2

((
(1 + ṙ )~v ·~a− r̈ v2

(1 + ṙ )2 − v2 − r̈
)
~v + (1 + ṙ )~a

)
= q

q′

4πr 2
(

1

1− r̂ · ~v ′
)3(

(1− v′2)(r̂ − ~v ′) + ~r × ((r̂ − ~v ′)×~a ′)
+

~v

1 + ṙ ×
(r̂ × ((1− v′2)(r̂ − ~v ′) + ~r × ((r̂ − ~v ′)×~a ′))) ), (10.116)

where dr /dtr = ṙ 6= r̂ = ~r /r , ~v = d~r/dtr, ~a = d~v/dtr, and all factors are expressed
in terms of the retarded time only. Numerically integrate this equation in Math-
ematica for pairs of charges for different initial conditions to obtain the Fig. 10.5
trajectories, which include electric, magnetic, radiation, and relativistic effects.

Figure 10.5: Mathematica simulations of interacting charged particle including
radiation and relativistic effects. Blue dots mark present positions, and red dots
mark retarded positions. Arrows represent typically unopposed force pairs.
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10.7 Feynman’s Formula

�

Q

�Erad

θ

v = 0
�a⊥

�a||

�a

Figure 10.6: Radiation electric field ~Erad for an accelerating charge Q momentarily
at rest at the retarded time.

Decompose the Eq. 10.105 electric field into its Coulomb and radiation parts,

~E = ~Ecou + ~Erad, (10.117)

where

~Ecou =
Q

4πr 2
~u

γ2u3‖
,

~Erad =
Q

4πr r̂ ×
(
~u

u3‖
×~a
)
. (10.118)

If the charge Q is instantaneously at rest at the retarded time, as in Fig. 10.6, then
v = 0 and so ~u = r̂ , u‖ = 1, γ = 1, and

~Ecou
∣∣∣∣
v=0

=
Q

4πr 2r̂ ,

~Erad
∣∣∣∣
v=0

=
Q

4πr r̂ ×
(r̂ ×~a) . (10.119)

Expand the radiation field to write

~Erad
∣∣∣∣
v=0

=
Q

4πr
(
(r̂ ·~a)r̂ − (r̂ · r̂ )~a

)
=

Q

4πr
(
~a‖ −~a

)
= − Q

4πr ~a⊥, (10.120)

and show that the radiation electric field is proportional to the projection of the
retarded acceleration transverse to the line of sight. Thus, if a charge oscillates
along the line of sight, at the extremes of its motion, when it is momentarily at rest
(at the retarded time), no radiation exists. Feynman’s formula

~Erad = − Q

4πr ~a⊥ (10.121)

is exact for v = 0 and a very good approximation for v � 1.
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10.8 Larmor’s Formula

As an accelerating charge moves on its trajectory, it drags along some energy in
its near fields. However, the rest of its energy detaches itself from the charge and
propagates to infinity as radiation. Recalling Eq. 9.91, the radiated power

P =

∫∫
a

~S · d~a, (10.122)

where the Poynting vector

~S = ~E × ~B = ~E ×
(
r̂ × ~E

)
= E2r̂ −

(
r̂ · ~E

)
~E . (10.123)

Use the Eq. 10.117 decomposition of the electric field and note that Ecou ∼ 1/r 2,

Erad ∼ 1/r , and ~Erad ⊥ r̂ . Since the area of a sphere centered on the charge
increases like r 2 as r → ∞, and because the electric fields appear quadratically
in the Poynting vector, only Erad will make a nonzero contribution to the power.
Hence, take

~Srad = E2radr̂ . (10.124)

If the charge is momentarily at rest, use the Eq. 10.121 Feynman’s formula with
a⊥ = a sin θ to write

~Srad

∣∣∣∣
v=0

=

(
Q

4πr a sin θ

)2

r̂ . (10.125)

The total power radiated is

P
∣∣∣∣
v=0

=

∫∫
a

~Srad

∣∣∣∣
v=0

· d~a

=

∫ 2π

φ=0

∫ π

θ=0

(
Q

4πr a sin θ

)2

r̂ ·
(
r̂ (r dθ)(r sin θdφ)

)
=

(
Q

4π
a

)2 ∫ 2π

φ=0

dφ

∫ π

θ=0

sin3 θ dθ

=
Q2a2

16π2
2π

4

3

=
1

6π
Q2a2. (10.126)

Thus, the power radiated is proportional to the square of the charge and the square
of the acceleration. Larmor’s formula

P =
1

6π
Q2a2 (10.127)

is exact for v = 0 and a very good approximation for v � 1.



10.8. LARMOR’S FORMULA 131

Problems

1. Explicitly differentiate the Eq. 10.37 advanced potentials to verify that they
solve the Eq. 9.69 Maxwell’s equations in potential form.

2. Substitute t = tr +r [tr] into the Eqs. 10.114 and 10.115 forces to derive the
motion Eq. 10.116. Be careful with the derivatives.

3. Consider a point charge Q moving with constant velocity ~v.

(a) Find and sketch its electric field ~E , by starting with Eq. 10.105, but
expressing the result in terms of the Fig. 10.3 angle θ.

(b) Find and sketch the corresponding magnetic field ~B.
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Appendix A

Coordinate Systems

Multiple coordinate systems are useful in electromagnetism to solve problems of
different symmetries, including rectangular, spherical, and cylindrical.

A-1 Curvilinear Coordinates

Consider a general curvilinear coordinate system {u1, u2, u3} whose axes are or-
thogonal at point. An infinitesimally small cube with edges parallel to the local
curvilinear coordinate directions has edges of lengths h1du1, h2du2, and h2du2, as
in Fig. A.1.

h1du1 h2du2

h3du3

Figure A.1: Generic coordinate system {u1, u2, u3} and infinitesimal volume ele-
ment of size h1du1 by h2du2 by h3du3.

The square of the distance across opposite corners of the cube is

ds2 = (h1du1)2 + (h2du2)2 + (h3du3)2 = h21du
2
1 + h22du

2
2 + h23du

2
3. (A-1)

The volume of the cube is

dV = (h1du1)(h2du2)(h3du3) = h1h2h3 du1du2du3. (A-2)

133
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A component of the gradient of a scalar field S[~r ] is the change of the scalar field
along one edge of the infinitesimal cube divided by the length of that edge. Hence,

~∇S = û1
1

h1

∂S

∂u1
+ û2

1

h2

∂S

∂u2
+ û3

1

h3

∂S

∂u3
. (A-3)

The divergence of a vector field ~v [~r ] is the flux of the vector field through the faces
of the infinitesimal cube divided by the volume of the cube. Hence,

~∇ · ~v =
1

h1h2h3

(
∂

∂u1
(h2h3 v1) +

∂

∂u2
(h3h1 v2) +

∂

∂u3
(h1h2 v3)

)
. (A-4)

The Laplacian of a vector field is the divergence of the gradient, so

∇2S =
1

h1h2h3

(
∂

∂u1

(
h2h3
h1

∂S

∂u1

)
+

∂

∂u2

(
h3h1
h2

∂S

∂u2

)
+

∂

∂u3

(
h1h2
h3

∂S

∂u3

))
.

(A-5)
A component of the curl of a vector field is the circulation of the vector field around
a face of the the infinitesimal cube divided by the area of that face. Hence,

~∇× ~v = û1
1

h2h3

(
∂

∂u2
(h3v3)− ∂

∂u3
(h2v2)

)
+

û2
1

h3h1

(
∂

∂u3
(h1v1)− ∂

∂u1
(h3v3)

)
+

û3
1

h1h2

(
∂

∂u1
(h2v2)− ∂

∂u2
(h1v1)

)
. (A-6)

A-2 Polar Spherical Coordinates

Define spherical coordinates {u1, u2, u3} = {r, θ, φ} by

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ, (A-7)

where θ is the co-latitude and φ is the longitude, as in Fig. A.2. By inspection, the
scale factors

h1 = 1,

h2 = r,

h3 = r sin θ. (A-8)

Hence, the diagonal square distance

ds2 = dr2 + (r dθ)2 + (r sin θ dφ)2 = dr2 + r2dθ2 + r2 sin2 θ dφ2, (A-9)

and the elemental volume

dV = (dr)(r dθ)(r sin θ dφ) = r2 sin θ dr dθ dφ. (A-10)
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φ

θ
r

x

y

z

Figure A.2: Polar spherical coordinate system {r, θ, φ} and infinitesimal volume
element of size dr by r dθ by r sin θ dφ.

The spherical gradient

~∇S = r̂
∂S

∂r
+ θ̂

1

r

∂S

∂θ
+ φ̂

1

r sin θ

∂S

∂φ
. (A-11)

The spherical divergence

~∇ · ~v =
1

r2
∂

∂r
(r2 vr) +

1

r sin θ

∂

∂θ
(sin θ vθ) +

1

r sin θ

∂vφ
∂φ

. (A-12)

The spherical Laplacian

∇2S =
1

r2
∂

∂r

(
r2
∂S

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂S

∂θ

)
+

1

r2 sin2 θ

∂

∂φ

(
∂S

∂φ

)
. (A-13)

The spherical curl

~∇× ~v = r̂
1

r sin θ

(
∂

∂θ
(sin θ vφ)− ∂vθ

∂φ

)
+

θ̂
1

r

(
1

sin θ

∂vr
∂φ
− ∂

∂r
(rvφ)

)
+

φ̂
1

r

(
∂

∂r
(rvθ)−

∂vr
∂θ

)
. (A-14)

In the θ = π/2 equatorial plane, polar spherical coordinates become polar coor-
dinates {r, φ}.
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A-3 Cylindrical Coordinates

Define cylindrical coordinates {u1, u2, u3} = {s, φ, z} by

x = s cosφ,

y = s sinφ,

z = z, (A-15)

where s = r⊥ is the perpendicular distance form the axis and φ is the longitude, as
in Fig. A.3. By inspection, the scale factors

h1 = 1,

h2 = s,

h3 = 1. (A-16)

Hence, the diagonal square distance

ds2 = dr2 + (s dφ)2 + dz2 = dr2 + s2dφ2 + dz2 (A-17)

and the elemental volume

dV = (ds)(s dφ)(dz) = s dsdφ dz. (A-18)

φ

x

y

z

s

z

Figure A.3: Cylindrical coordinate system {s, φ, z} and infinitesimal volume ele-
ment of size ds by s dφ by dz.

The cylindrical gradient

~∇S = ŝ
∂S

∂s
+ φ̂

1

s

∂S

∂θ
+ ẑ

∂S

∂z
. (A-19)
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The cylindrical divergence

~∇ · ~v =
1

s

∂

∂s
(s vs) +

1

s

∂vθ
∂φ

+
∂vz
∂φ

. (A-20)

The cylindrical Laplacian

∇2S =
1

s

∂

∂s

(
s
∂S

∂s

)
+

1

s2
∂

∂φ

(
∂S

∂φ

)
+

∂

∂z

(
∂S

∂z

)
. (A-21)

The cylindrical curl

~∇× ~v = ŝ

(
1

s

∂vz
∂φ
− ∂vφ

∂z

)
+

φ̂

(
∂vs
∂z
− ∂vz

∂s

)
+

ẑ
1

s

(
∂

∂s
(svφ)− ∂vs

∂φ

)
. (A-22)
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Appendix B

Product Rules

In one-dimensional calculus, the product rule for differentiation is

d

dx
(fg) =

df

dx
g + f

dg

dx
. (B-1)

In three-dimensional calculus, different kinds of products and derivatives re-
sulting in six different product rules exist. Derive these by carefully employing the
mixed “box” product

~A ·
(
~B × ~C

)
= ~C ·

(
~A× ~B

)
= ~B ·

(
~C × ~A

)
, (B-2)

the vector double product

~A×
(
~B × ~C

)
= ~B

(
~A · ~C

)
− ~C

(
~A · ~B

)
(B-3)

or
~B
(
~A · ~C

)
= ~A×

(
~B × ~C

)
+ ~C

(
~A · ~B

)
, (B-4)

and the linearity of the derivative

~∇ = ~∇A + ~∇B . (B-5)

The gradient of the product of two scalar fields is

~∇
(
fg
)

=
(
~∇f
)
g + f

(
~∇g
)
. (B-6)

The gradient of the scalar product of two vector fields is

~∇
(
~A · ~B

)
=~∇A

(
~A · ~B

)
+ ~∇B

(
~A · ~B

)
=~∇A

(
~A · ~B

)
+ ~∇B

(
~B · ~A

)
= ~B ×

(
~∇A × ~A

)
+
(
~B · ~∇A

)
~A+ ~A×

(
~∇B × ~B

)
+
(
~A · ~∇B

)
~B

= ~B ×
(
~∇× ~A

)
+
(
~B · ~∇

)
~A+ ~A×

(
~∇× ~B

)
+
(
~A · ~∇

)
~B (B-7)
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The divergence of the product of a scalar field and a vector field is

~∇ ·
(
f ~A
)

=
(
~∇f
)
· ~A+ f

(
~∇ · ~A

)
. (B-8)

The divergence of the vector product of two vector fields is

~∇ ·
(
~A× ~B

)
= ~∇A ·

(
~A× ~B

)
+ ~∇B ·

(
~A× ~B

)
= ~∇A ·

(
~A× ~B

)
− ~∇B ·

(
~B × ~A

)
= ~B ·

(
~∇A × ~A

)
− ~A ·

(
~∇B × ~B

)
= ~B ·

(
~∇× ~A

)
− ~A ·

(
~∇× ~B

)
(B-9)

The curl of the product of a scalar field and a vector field is

~∇×
(
f ~A
)

=
(
~∇f
)
× ~A+ f

(
~∇× ~A

)
. (B-10)

The curl of the vector product of two vector fields is

~∇×
(
~A× ~B

)
= ~∇A ×

(
~A× ~B

)
+ ~∇B ×

(
~A× ~B

)
= ~∇A ×

(
~A× ~B

)
+ ~∇B ×

(
~A× ~B

)
=
(
~B · ~∇A

)
~A− ~B

(
~∇A · ~A

)
+ ~A

(
~∇B · ~B

)
−
(
~A · ~∇B

)
~B

=
(
~B · ~∇

)
~A− ~B

(
~∇ · ~A

)
+ ~A

(
~∇ · ~B

)
−
(
~A · ~∇

)
~B (B-11)

Problems

1. Explicitly verify the following vector derivative identities by expanding both
sides in components.

(a) Eq. B-9.

(b) Eq. B-11.



Appendix C

Electromagnetic Units

The “natural” units used in this text best reflect the geometric unity of spacetime:
if distances and durations are both measured in meters (for example), then light
speed is one, velocities are dimensionless ratios, and electric and magnetic fields
share the same dimension (of charge per length squared). Table B-1 summarizes
familiar electromagnetic equations in three commonly used systems of units, while
Table B-2 summarizes the natural dimensions of important variables.
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Table C-1: Important electromagnetic equations in three common systems of units.
Natural Gaussian SI

~∇ · ~E = ρ ~∇ · ~E = 4πρ ~∇ · ~E =
1

ε0
ρ

~∇ · ~B = 0 ~∇ · ~B = 0 ~∇ · ~B = 0

~∇× ~E = −∂t ~B ~∇× ~E = −1

c
∂t ~B ~∇× ~E = −∂t ~B

~∇× ~B = +∂t~E + ~J ~∇× ~B = +
1

c
∂t~E +

4π

c
~J ~∇× ~B = +µ0ε0∂t~E + µ0

~J

~F = q
(
~E + ~v × ~B

)
~F = q

(
~E +

~v

c
× ~B

)
~F = q

(
~E + ~v × ~B

)

E =
Q

4πr2
E =

Q

r2
E =

1

4πε0

Q

r2

B =
I

2πs
B =

2

c

I

s
B =

µ0

2π

I

s

~E = ~D − ~P ~E = ~D − 4π ~P ~E =
1

ε0
~D − 1

ε0
~P

~B = ~H+ ~M ~B = ~H+ 4π ~M ~B = µ0
~H+ µ0

~M
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Table C-2: Dimensions of important electromagnetic variables in natural units.
Name Symbol(s) Dimensions

time t, T L
position r,R,r , s L

area a L2

volume V L3

velocity v, u 1
acceleration a L−1

mass m,M M

force f, F ML−1
torque τ M

energy E M
work W M

power P ML−1

linear momentum p, P M
angular momentum L ML

charge q,Q Q
current I QL−1

charge density ρ QL−3
current density J QL−3

electric field E QL−2
magnetic field B QL−2

flux ΦE , ΦB Q
circulation ΓE , ΓB QL−1

electric potential ϕ QL−1
magnetic potential A QL−1

ohmic resistance R 1
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