
Introduction to Quantum Mechanics

From Geometry to Spectra

John F. Lindner

Physics Department

The College of Wooster

2015 January 4



2



Contents

List of Tables 7

List of Figures 9

1 Quantum Phenomenology 11
1.1 Preamble: Sorting Photons . . . . . . . . . . . . . . . . . . . . . 11
1.2 Interference & Superposition . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Beam Splitter Probabilities . . . . . . . . . . . . . . . . . 14
1.2.2 Two Interpretations . . . . . . . . . . . . . . . . . . . . . 15
1.2.3 Mach-Zehnder Interferometer . . . . . . . . . . . . . . . . 16
1.2.4 Quantum Eraser . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.5 Interaction-Free Measurement . . . . . . . . . . . . . . . . 19
1.2.6 Quantum Computing . . . . . . . . . . . . . . . . . . . . 20
1.2.7 Mach-Zehnder Classical Model . . . . . . . . . . . . . . . 21
1.2.8 Mach-Zehnder Quantum Model 1 . . . . . . . . . . . . . . 22
1.2.9 Mach-Zehnder Quantum Model 2 . . . . . . . . . . . . . . 22

1.3 Measurement & Entanglement . . . . . . . . . . . . . . . . . . . 25
1.3.1 Hilbert Space Preview . . . . . . . . . . . . . . . . . . . . 25
1.3.2 Quantum Evolution . . . . . . . . . . . . . . . . . . . . . 25
1.3.3 Schrödinger’s Cat and the Measurement Problem . . . . . 26
1.3.4 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.5 Crossed Polarizers . . . . . . . . . . . . . . . . . . . . . . 28
1.3.6 Entangled States . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.7 EPR-Bohm Experiment . . . . . . . . . . . . . . . . . . . 31
1.3.8 Bell’s Inequality . . . . . . . . . . . . . . . . . . . . . . . 32

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Hilbert Spaces 39
2.1 Euclidean Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Generic Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.3 Dual Space . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.4 Hermitian Operators . . . . . . . . . . . . . . . . . . . . . 42

3



Contents 4

2.2.5 Unitary Operators . . . . . . . . . . . . . . . . . . . . . . 43
2.3 Matrix Representations . . . . . . . . . . . . . . . . . . . . . . . 44
2.4 Uncountable Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . 45
2.5 Quantum Example . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6 Commutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Symmetry Commutators 53
3.1 Spacetime Symmetries . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Spacetime Closures . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3 State Space Symmetry Generators . . . . . . . . . . . . . . . . . 61

3.3.1 Generic Commutator . . . . . . . . . . . . . . . . . . . . . 61
3.3.2 Commutator Antisymmetries . . . . . . . . . . . . . . . . 62
3.3.3 Phase Constants . . . . . . . . . . . . . . . . . . . . . . . 63

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Dynamics Commutators 69
4.1 Position Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Position and Space Translations . . . . . . . . . . . . . . 70
4.1.2 Position and Rotations . . . . . . . . . . . . . . . . . . . . 71
4.1.3 Position and Boosts . . . . . . . . . . . . . . . . . . . . . 72
4.1.4 Position and Time Translations . . . . . . . . . . . . . . . 74

4.2 Velocity Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Symmetry Generators Dynamical Identities . . . . . . . . . . . . 76

4.3.1 Free Particle Without Spin . . . . . . . . . . . . . . . . . 76
4.3.2 Interacting Particles Without Spin . . . . . . . . . . . . . 81
4.3.3 Free Particle With Spin . . . . . . . . . . . . . . . . . . . 82

4.4 Position Space Schrödinger Equation . . . . . . . . . . . . . . . . 83
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Harmonic Oscillator 87
5.1 Classical Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . 87
5.2 Commutator Solution . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 Dimensionless Variables . . . . . . . . . . . . . . . . . . . 88
5.2.2 Creation & Annihilation Operators . . . . . . . . . . . . . 89
5.2.3 Number Operator Spectrum . . . . . . . . . . . . . . . . . 89
5.2.4 Energy Spectrum . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.5 Wave Functions . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Differential Equation Solution . . . . . . . . . . . . . . . . . . . . 92
5.3.1 Dimensionless Variables . . . . . . . . . . . . . . . . . . . 93
5.3.2 Asymptotic Behavior . . . . . . . . . . . . . . . . . . . . . 93
5.3.3 Power Series Solution . . . . . . . . . . . . . . . . . . . . 94
5.3.4 Power Series Diverges . . . . . . . . . . . . . . . . . . . . 95
5.3.5 Truncate Series . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.6 Standard Form Solutions . . . . . . . . . . . . . . . . . . 96
5.3.7 Classical Correspondence . . . . . . . . . . . . . . . . . . 97



Contents 5

5.4 Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.5 Two-Dimensional Harmonic Oscillator . . . . . . . . . . . . . . . 101

5.5.1 Classical Case . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.5.2 Eigenstates of Energy . . . . . . . . . . . . . . . . . . . . 101
5.5.3 Eigenstates of Energy & Angular Momentum . . . . . . . 103

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Hydrogen Atom 107
6.1 Classical Kepler Problem . . . . . . . . . . . . . . . . . . . . . . 107
6.2 Quantum Kepler Problem . . . . . . . . . . . . . . . . . . . . . . 108

6.2.1 Angular Momentum . . . . . . . . . . . . . . . . . . . . . 108
6.2.2 Eccentricity . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2.3 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2.4 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Appendices

A Notation 115

B Bibliography 117



Contents 6



List of Tables

2.1 Bra ket Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2 Bases Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Spacetime closure . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Generator Commutators with Phase Constants . . . . . . . . . . 63
3.3 Generator Commutators . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Mixed Commutators . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Transformation Table . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 Dynamical Commutators . . . . . . . . . . . . . . . . . . . . . . 81

5.1 First few harmonic oscillator eigenvalues and eigenfunctions. . . . 96

6.1 Kepler Commutators . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.1 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7



List of Tables 8



List of Figures

1.1 Calcite crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Polarization sorters . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Photon and a ⊕ sorter . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Photon and a ⊕ sorter & antisorter . . . . . . . . . . . . . . . . . 13
1.5 Beam splitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6 Beam splitter & single photons . . . . . . . . . . . . . . . . . . . 15
1.7 Mach-Zehnder interferometer . . . . . . . . . . . . . . . . . . . . 16
1.8 Mach-Zehnder interferometer & single photons . . . . . . . . . . 17
1.9 Quantum eraser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.10 Interaction-free measurement . . . . . . . . . . . . . . . . . . . . 19
1.11 Quantum computing . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.12 Rotating arrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.13 Rotating arrow & single photons . . . . . . . . . . . . . . . . . . 23
1.14 Photon interferometer states . . . . . . . . . . . . . . . . . . . . 24
1.15 Schrödinger cat states . . . . . . . . . . . . . . . . . . . . . . . . 27
1.16 Linear polarizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.17 Crossed polarizers & single photons . . . . . . . . . . . . . . . . . 30
1.18 Decay of positronium . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.19 EPR-Bohm experiment . . . . . . . . . . . . . . . . . . . . . . . 32

2.1 Cantor’s diagonal arguments . . . . . . . . . . . . . . . . . . . . 45

3.1 Boosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Finite rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3 Spacetime gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Translated Function . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Infinitesimal rotation . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Oscillator eigenfunctions . . . . . . . . . . . . . . . . . . . . . . . 97
5.2 Oscillator classical correspondence . . . . . . . . . . . . . . . . . 98
5.3 Angular Momentum Quantum Numbers . . . . . . . . . . . . . . 101

9



List of Figures 10



Chapter 1

Quantum Phenomenology

Of the two great physics revolutions of the early 1900s, relativity “completes”
classical physics, but quantum physics subsumes it.

Richard Feynman wrote, “Things on a very small scale behave like nothing
that you have any direct experience about. They do not behave like waves, they
do not behave like particles, they do not behave like clouds, or billiard balls, or
weights on springs, or like anything that you have ever seen”[1].

One can’t learn about atoms by playing with billiard balls, but one can learn
about billiard balls by studying atoms. Classical physics follows from quantum
physics, not the other way around.

Figure 1.1: A calcite crystal sorts classical light into vertical (up-down arrows)
and horizontal (in-out dots) polarizations. Thus, a black disk seen through
calcite would appear as two gray disks.

1.1 Preamble: Sorting Photons

Optically anisotropic materials can sort light according to its polarization (the
oscillation direction of its electric field). For example, because of its crystal
structure, calcite is birefringent with different indices of refraction for electric

11



Chapter 1. Quantum Phenomenology 12

fields perpendicular and parallel to its optic axis, as illustrated in Fig. 1.1.
Schematically represent the action of the calcite by a box with one input and
two outputs, as in Fig. 1.2. Convert a vertical and horizontal ⊕ sorter into
a ±45◦ diagonal ⊗ sorter by rotating the calcite. For bright classical light, if
diagonally polarized light is input to a ⊕ sorter, then half of the input light
intensity will appear in each output channel. Similarly, if vertically polarized
light is input to a ⊗ sorter, then half of the input light intensity will appear in
each output channel.

Figure 1.2: Diagonally polarized light input to a ⊕ sorter (left) and vertically
polarized light input to a ⊗ sorter (right).

Repeat this experiment with very faint light. What happens? Near the
beginning of the twentieth century, the Einstein photoelectric effect and the
Compton scattering experiment demonstrated the “granularity” of faint light.
In fact, they suggested that light consists of particles whose energy is propor-
tional to the light’s classical temporal frequency

E = ~ω, (1.1)

whose momentum is proportional to the light’s classical spatial frequency

~p = ~~k, (1.2)

and whose spin angular momentum corresponds to the light’s classical (circular)
polarization

~S = ±~k̂, (1.3)

where the common proportionality ~ = h/2π is Planck’s (reduced) constant.
These particles are now called photons. Classical wave-like light emerges from a
large ensemble of particle-like photons. Electrons and other subatomic particles
(and even atoms and molecules . . . ) exhibit similar wave-particle duality. Such
“wavicles” or “matter-waves” have been called “the dreams stuff is made of” [2].

Use neutral density filters (NDFs) to reduce the intensity of the light so that
there is only one photon in the sorter at any one time. To count the photons in
each of the output channels, use photomultiplier tubes (PMTs), which exploit
the photoelectric effect to convert a single photon into a macroscopic cascade of
electrons. (Alternately, use a frog’s eye, which is apparently sensitive to single
photons!) For each experimental trial, each PMT will report “1” if it detects a
photon and “0” if it does not.

Input a diagonally polarized photon to a ⊕ sorter. What happens? The
input photon must emerge in one of the two output channels, if only because it
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must go somewhere, but why would it emerge in one channel and not the other?
In fact, as illustrated in Fig. 1.3, the experiment is not repeatable, which is
itself a disaster for classical physics; rather, the photon emerges half the time in
each channel, randomly. It is impossible to predict in which output channel any
given input photon will emerge, but it is possible to predict the probability that
it will emerge in either channel, and the equal probabilities of 1/2 correspond
well with the classical, bright-light result. The indeterminism of the individual
trials of this experiment is in striking disagreement with classical physics and is
a hallmark of quantum mechanics.

Figure 1.3: Diagonally polarized photons input to a ⊕ sorter emerge randomly
but equally in each output channel. Neutral density filters (left) reduce the
input intensity of the light to single photons at a time, while photomultipliers
(right) count the output photons.

Next recombine the two output channels with a reversed ⊕ sorter, as in
Fig. 1.4. Now the experiment is repeatable and determined! If the ⊕ sorter
randomizes the diagonal polarization, how does the recombination preserve
it? Surely, the diagonally polarized photon entering the first ⊕ sorter can not
“know” it will be recombined by the second, reversed ⊕ sorter?

Figure 1.4: One ⊕ sorter randomizes the diagonal polarization but adding a
second, reversed ⊕ sorter preserves the diagonal polarization.

Classically, the diagonal light can be thought of as a superposition of hori-
zontal and vertical light and constructive interference between the two channels
can preserve its polarization. Interference and superposition are keys to under-
standing quantum phenomena.

1.2 Interference & Superposition

The quantum analogues of the classic wave concepts of interference and super-
position reveal deep and surprising features of quantum reality.
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1.2.1 Beam Splitter Probabilities

A beam splitter is an optical device that transmits half the light incident on
it and reflects the other half. It could be a mirror with an unusually thin
metal layer or a dielectric slab whose thickness and index of refraction together
produce the desired constructive and destructive interference. Imagine it to be
two prisms separated by a small gap, as in Fig. 1.5. Varying the thickness of
the spacer, a thin film that separates the two prisms, can produce any ratio of
transmitted to reflected light, via an exponentially decaying evanescent wave
propagating through the spacer, a phenomenon called frustrated total internal
reflection.

Figure 1.5: Beam splitter reduces the reflected and transmitted bright light
intensity by 1/2 and amplitude by 1/

√
2.

For simplicity, imagine that the light source is monochromatic. This could be
a laser, which consists of an electrically excited medium bounded by two mirrors,
one of which is partially reflecting. De-excitation results in monochromatic,
coherent, and directional light escaping the partially reflecting mirror.

At sufficiently high intensity, light behaves like an electromagnetic wave.
The frequency of visible light is so high (ν = ω/2π ∼ 100THz) that human
eyes and cameras cannot follow its oscillations. Instead, eyes and cameras are
sensitive to the time averaged square of its electric field, which is called intensity
(or irradiance). Intensity is the energy per unit area per unit time transported
by the wave. If the electric field varies sinusoidally, E = E0 cos[kx − ωt], then
its intensity is proportional to the electric field amplitude squared, I ∝ 〈E2〉 ∝
E20 . In appropriate units, take I = E20 . Thus, in reducing the intensity of the
transmitted and reflected waves by 1/2, the beam splitter of Fig. 1.5 reduces
the electric field amplitude by 1/

√
2.

At sufficiently low intensity, the graininess of light becomes apparent, and
light behaves like a stream of particles, called photons. The energy of single
visible-light photons is so small (E = hν ∼ 1eV) that human eyes are not (quite)
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Figure 1.6: Beam Splitter reflects and transmits photons with probability 1/2.
For each trial, each PhotoMultiplier Tube reports “1” if it detected a photon
and “0” otherwise. Single Photon Source produces a pair of opposing photons
so that one enters the Beam Splitter and the other announces the trial.

able to detect them. Instead, detect them with either analog photomultiplier
tubes (PMTs) or semiconductor avalanche photodiodes (APDs), which exploit
the photoelectric effect to initiate an electron cascade that amplifies a single
photoelectron to a macroscopic current pulse with near 100% efficiency.

Radically dim the light source using neutral density filters (NDFs) or crossed
polarizers, so that there is only one photon in the beam splitter at any one time,
on average. To avoid photon bunching, use a single photon source. For example,
wait for positronium to decay into opposing photons and detect one to herald the
other. More practically, pump a nonlinear birefringent crystal, like β-BaB2O4

(BBO), with a UV laser to produce two opposing IR photons and again detect
one to announce the other.

What happens in repeated trials at the beam splitter? If the first photon is
reflected, shouldn’t they all be reflected? If the first is transmitted, shouldn’t
they all be transmitted? How then can the bright light classical results emerge
from the faint light quantum results by gradually increasing the light intensity?

Put nature to the test – and find that the experiment is not repeatable.
Instead, individual photons are transmitted or reflected with probability 1/2,
as in Fig. 1.6, where the binary data strings at each PMT indicate whether a
photon has been detected (1) or not (0) during each trial. More generally, find
that the probability of detecting a photon is proportional to the square of the
amplitude of the electric field of the corresponding classical wave. In this way,
faint light quantum experiments correspond to bright light classical experiments.

1.2.2 Two Interpretations

The conventional or Copenhagen interpretation (CI) is that quantum probabil-
ities are ontological rather than epistemological. They reflect how things really
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are, not merely what can be known about them. They are inherent in nature,
not merely limitations in the measuring apparatus.

Einstein famously objected, “God does not play dice with the universe”.
In the post-Einstein Many Worlds interpretation (MWI), the ontological

probabilities are eliminated. Instead, each photon is both transmitted and re-
flected, and the world splits into two histories, one for each possibility! Epis-
temological randomness is apparent only to observers, like physicists, confined
to single histories. From a God’s eye perspective, the MWI is deterministic
and, for the beam splitter, symmetric (both of two equally likely possibilities
are realized), but at the ontological expense of invoking an uncountable infinity
of equally real worlds to explain the single observable world.

There are other interpretations, but none preserve classical reality.

1.2.3 Mach-Zehnder Interferometer

Probabilities alone don’t exhaust the novelty of quantum reality.
Recombine the light from a beam splitter using two mirrors and a second

beam splitter, as in Fig. 1.7. Such a device is called a Mach-Zehnder interfer-
ometer. If “T” and “R” represent “transmitted” and “reflected”, then the four
paths through the interferometer can be denoted RRR, TRT, RRT, TRR, where
the first two paths exit up and the second two paths exit right. All paths have
the same length, but each transmission and reflection is accompanied by a phase
shift that depends on the details of the optics. However, light waves interfere
constructively when exiting right (and, by energy conservation, destructively
when exiting up), because the corresponding paths involve the same number of
transmissions and the same number of reflections. (In practice, a dielectric slab
in one path of the interferometer can be rotated slightly to adjust the phase
shifts. Also, if one of the mirrors or beam splitters is slightly canted, then the
interference produces a fringe pattern of parallel stripes.)

Figure 1.7: Mirrors (left) and a second beam splitter (right) recombine bright
light split by the first beam splitter.

Radically dim the light source so that only one photon is in the interferom-
eter at any one time, as in Fig. 1.8. What happens? Without the recombining
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beam splitter, the data strings at the PMTs are perfectly anticorrelated but
random. With the recombining beam splitter, the data strings are still per-
fectly anticorrelated but are now homogeneous, and all photons exit right, in
agreement with the high intensity experiment. Apparently, there is interference
even with only one photon in the apparatus at a time!

Figure 1.8: Mirrors (left) and a second beam splitter (right) recombine photon
paths split by the first beam splitter.

Note how the addition of the recombining beam splitter radically alters the
output of the device. If individual photons were somehow “splitting” (or not)
at the first beam splitter, how could they know whether (or not) the recom-
bining beams splitter was in place? In fact, since the speed of the photons is
c ∼ 109 km/hr ∼ 0.3 m/ns, nanosecond electronics in a table-top experiment
can decide to remove or introduce the recombining beam splitter after the pho-
ton has interacted with the first beam splitter! The results of such delayed
choice experiments are exactly the same: in those trials with the recombiner,
all photons exit right; in those trials without the recombiner, half the photons
exit right and half exit up.

Try to check the paths taken by the photons. Since each photon carries
momentum p = h/λ, if one of the two mirrors floats or glides on a low-friction
surface, then the mirror’s recoil (or not) reveals the photon’s path. However,
in such which-way experiments, the constructive and destructive interference,
which makes all photons exit right and none exit up, is destroyed, and instead
half the photons exit right and half exit up. Indeed, which-way information is
consistent with the particle nature of light but is inconsistent with the wave na-
ture of light. Particles take definite paths and do not interfere, while waves take
all paths and do interfere. Apparently, incompatible experimental arrangements
elicit complementary aspects of the wave-particle duality of light: which-way in-
formation (no recombiner or floating mirrors) elicits the particle aspect of light,
while no which-way information (recombiner and fixed mirrors) elicits the wave
aspect of light.
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1.2.4 Quantum Eraser

A quantum eraser is a measurement that destroys which-way information [3].
Because the eraser can restore an interference pattern, Neils Bohr’s classic argu-
ment that the interference pattern is lost because it has been randomly disrupted
by the measurement process is not applicable. Insert a 0◦ (horizontal) polarizer
in one path of the Mach-Zehnder interferometer, a 90◦ (vertical) polarizer in
the other path, a 45◦ (diagonal) polarizer at the input, and final (analyzing)
polarizers at the outputs, as in Fig. 1.9. The path polarizers encode which-way
information in a photon by altering its spin angular momentum, the quantum
counterpart to the polarization of the corresponding classical wave, while not
changing its linear momentum. (Floating one of the mirrors and observing it
recoil obtains which-way information at the expense of changing the photon’s
linear momentum, but floating one of the mirrors and observing it not recoil
obtains which-way information without affecting the photon.)

0

90

0

0

45

100%

12.5%

12.5%

0

90

45

45

45

100%

0%

25%

Figure 1.9: Path polarizers provide which-way information and interference is
lost (left diagram), where photons exit equally up and right. Rotating the final,
analyzing polarizers 45◦ destroys the which-way information and restores the
interference (right diagram), where photons exit right but not up.

Rotate the analyzers to 0◦ and observe light propagating in only one path
of the interferometer, so there is no interference, and half the photons exit right
and half exit up. Rotate the analyzers to 90◦ and obtain similar results. Remove
the analyzers and still observe no interference. Apparently, it is not necessary
to actually detect a particular path, as merely encoding which-way information
is sufficient to destroy the interference. However, rotate the analyzers to 45◦,
so 0◦ (horizontal) and 90◦ (vertical) polarizations are no longer distinguish-
able, which-way information is erased, all photons exit right, and interference is
restored – and this is so even if the quantum erasure is a delayed choice!
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1.2.5 Interaction-Free Measurement

Floating one of the two mirrors in the Mach-Zehnder interferometer loses single-
photon interference, even if the single photon reflects off the other, stationary
mirror. How can the floating mirror affect the photon if the photon doesn’t
even come near it or exchange energy with it? Quantum physics allows us to
test counterfactuals, things that might have happened but did not!

Figure 1.10: Interference (left) reveals a jammed detonator (and a fixed mir-
ror), while no interference (right) reveals a working detonator (and a recoilable
mirror).

The bomb testing problem of Avshalom Elitzur and Lev Vaidman [4] dra-
matically illustrates such interaction-free or null measurements. Consider bombs
so sensitive that even the slightest movement of their detonators will explode
them. Unfortunately, some fraction of the detonators are jammed and the at-
tached bombs are consequently duds. Classically, there is no way to identify
good bombs without exploding them, but quantum physics provides a way. Test
a bomb by attaching its detonator to one of the mirrors of the Mach-Zehnder
interferometer, as in Fig. 1.10.

If all photons exit right, the different alternatives are interfering, construc-
tively right and destructively up. The mirror and its attached detonator must
be fixed, so there is no which-way information. Hence, the bomb is a dud. How-
ever, if even one photon exits up, the different alternatives are not interfering.
The mirror and the attached detonator can, in principle, recoil and thereby
provide which-way information. Hence, the bomb is good, and if the photons
have all reflected off the stationary mirror, the bomb is unexploded.

In practice, this scheme harvests only

1

4
+

1

16
+

1

64
+ · · · = 1

3
(1.4)

of the working bombs. However, a variation of this technique can arbitrarily
reduce the fraction of wasted bombs.
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1.2.6 Quantum Computing

Classically, distinguishing a real coin, with a head and a tail, from a trick coin,
with two heads (or two tails) requires looking at each side separately and then
comparing the results. However, David Deutsch’s “two-bit” quantum algorithm
can do this all at once!

Figure 1.11: An “inverting” (π-phase shifting) dielectric is in one or both paths
of the interferometer. If the photon exits right (top row), the paths are identical.
If it exits up (bottom row), the paths are nonidentical.

As a slightly simplified quantum version of the problem, suppose that there
may or may not be a piece of π-phase-shifting dielectric in one or both paths of
a Mach-Zehnder interferometer, as in Figure 1.11. Classically, the presence of
the dielectric in one path but not the other converts, at the exit, constructive
interference to destructive interference, and vice versa. Quantumly, a single
photon explores both paths in parallel. If it exits right instead of up, then both
paths are the same, and one photon has obtained two bits of information.

Deutsch’s 1985 two-bit scheme [5] was the first quantum computing algo-
rithm. In 1994, Peter Shor discovered [6] a quantum computing algorithm to
factor numbers in polynomial time, so that factoring an N-bit number requires
time O[Nk], for constant k. This is something no classical computer can do.
Shor’s algorithm would revolutionize cryptography, if robustly implemented. (In
2001, an early quantum computer ran Shor’s algorithm and successfully factored
15 = 3× 5, while in 2012, another quantum computer factored 21 = 3× 7.) In
1996, Lov Grover discovered [7] a quantum computing algorithm to search a
database of N elements in time O[

√
N ], again faster than any classical com-

puter, which requires time O[N ].
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The MWI provides an easy heuristic for understanding the source of the
advantage of these quantum algorithms: they distribute the calculations among
many parallel universes!

1.2.7 Mach-Zehnder Classical Model

Prior to creating a more explicit quantum model of the Mach-Zehnder interfer-
ometer, first create a more quantitative classical model. At high intensity, light
is split into two wave trains at the first beam splitter, which are recombined at
the second beam splitter and exit up and right. Let the electric field magnitude
at the entrance be

E [0, t] = E0 cos[ωt], (1.5)

where t is the time elapsed, and ω = 2π/T is the temporal frequency of the
wave train. Then, the electric field magnitude at the exit due to the wave train
reflected by mirror n is

En[z, t] =
1√
2

1√
2
E0 cos[ωt− kz + δn], (1.6)

where z = 2` is the distance traveled, k = 2π/λ is the spatial frequency, and δn
is the extra phase shift due to reflections. Since ω/k = λ/T = c, the spacetime
phase ϕ = ωt − kz = k(ct − z) is zero at z = ct, and hence represents a wave
traveling in the ẑ direction at speed c. The factors of 1/

√
2 are due to the beam

splitters. The total electric field magnitude at the exit is the superposition

E = E1 + E2 =
1√
2

1√
2
E0(cos[ϕ+ δ1] + cos[ϕ+ δ2]). (1.7)

Eyes and cameras are sensitive to the time-averaged square of this electric field,
which is the intensity

I = 〈E2〉 =
1

2

1

2

〈
E20
(
cos2[ϕ+ δ1] + 2 cos[ϕ+ δ1] cos[ϕ+ δ2] + cos2[ϕ+ δ2]

)〉
.

(1.8)
Using the trigonometric identity 2 cosu cos v = cos[u + v] + cos[u − v], this
becomes

I =
1

2
E20

〈
cos2[ϕ+ δ1]

〉
+
〈
cos[2ϕ+ δ1 + δ2]

〉
+
〈
cos[δ1 − δ2]

〉
+
〈
cos2[ϕ+ δ2]

〉
2

.

(1.9)
Since the time average of a sinusoid (over an integer number of periods) vanishes,
and the time average of the square of a sinusoid is 1/2,

I = I0
1 + cos δ

2
, (1.10)

where I0 = E20 〈cos2[ωt]〉 = E20/2 is the entrance intensity and δ = δ1 − δ2 is the
difference between the reflection phase shifts of the two paths.
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Assume there is a phase shift of π/2 radians at each reflection. (The actual
phase shifts depend on the detailed characteristics of the optical elements, but
can always be adjusted by inserting dielectric slabs in one or both paths of the
interferometer). At the up exit, the difference in phase shifts δ = 3(π/2) −
(π/2) = π, and so the intensity I = 0. At the right exit, the difference in phase
shifts δ = 2(π/2)− 2(π/2) = 0, and so the intensity I = I0.

1.2.8 Mach-Zehnder Quantum Model 1

Next create a more quantitative quantum model of the Mach-Zehnder inter-
ferometer, one that works for faint light, when only single photons are in the
interferometer. How can it reproduce wave interference with particles? Adopt
a model due to Richard Feynman.

Figure 1.12: Vertical projection (left) of a rotating vector (right) varies sinu-
soidally.

The projection of a rotating arrow in a fixed direction varies sinusoidally,
like a wave train, as in Fig. 1.12. This suggests the following scheme. Imagine
that, along each path through the interferometer, a photon carries an arrow that
rotates at the frequency of the corresponding classical light. For the purposes
of the illustration in Fig. 1.13, assume that each arrow rotates π/4 radians per
step, plus an extra π/2 radians per reflection, and shortens by 1/

√
2 at each

beam splitter. At the mirrors and beam splitters, draw the arrow just before
in gray and just after in black. Adding the arrows for both paths at the exit
and squaring correctly gives the probability of detecting the photon. For bright
light, this corresponds to squaring the electric field amplitude to obtain the
intensity.

1.2.9 Mach-Zehnder Quantum Model 2

Conveniently and compactly represent the rotating arrows by complex numbers
ρeiϕ of modulus ρ and argument ϕ = kz − ωt, where z and t are the (real)
propagation distance and time, and ω/k = c. For definiteness, assume a π/2
phase shift upon reflections. Label the states of a photon in each segment of
the interferometer using the conventional quantum notation |•〉, called a ket



Chapter 1. Quantum Phenomenology 23

Figure 1.13: A photon carries an imaginary arrow that rotates at the frequency
of the corresponding classical light. Adding the arrows at the exit for both
paths and squaring gives the probability of detecting the photon: unity for
exiting right (top row) and zero for exiting up (bottom row).

(from the word bracket), as in Fig. 1.14. At the first beam splitter, the initial
photon state |a〉 evolves to a quantum superposition of a transmitted photon
state |b〉 and a reflected photon state |c〉. If ` is the length of one segment of the
interferometer, and the photon is at the first beam splitter at z = 0 and t = 0,
then

|a〉 −→ 1√
2
ei(k`/2−ωt) |b〉+

1√
2
ei(k`/2−ωt+π/2) |c〉 . (1.11)

The complex numbers multiplying each state record the amplitude and phase
of the rotating arrows: the moduli 1/

√
2 account for the passage through the

beam splitter, while the π/2 in the argument of the second complex number
accounts for the reflection phase shift.

According to the CI, if the experiment were stopped here, and the photon’s
transmittance or reflectance observed, the square of the moduli of these complex
numbers would be the corresponding probabilities

P[b] =

∣∣∣∣ 1√
2
ei(k`/2−ωt)

∣∣∣∣2 =
1

2
, (1.12a)

P[c] =

∣∣∣∣ 1√
2
ei(k`/2−ωt+π/2)

∣∣∣∣2 =
1

2
. (1.12b)



Chapter 1. Quantum Phenomenology 24

Figure 1.14: Photon states in the interferometer.

According to the MWI, the quotient of these two numbers P[b]/P[c] = 1 is the
branching ratio for the two different histories.

In practice, to calculate the interference only a record of the difference in
the phases of the two paths is needed. Consequently, abbreviate the effect of
the first beam splitter by the evolution

|a〉 −→ 1√
2
|b〉+

i√
2
|c〉 , (1.13)

where i = eiπ/2 accounts for the reflection phase shift. Similarly, the mirrors
induce

|b〉 −→ i |d〉 , (1.14a)

|c〉 −→ i |e〉 , (1.14b)

while the second beam splitter induces

|d〉 −→ i√
2
|f〉+

1√
2
|g〉 (1.15a)

|e〉 −→ 1√
2
|f〉+

i√
2
|g〉 . (1.15b)

The complete evolution is

|a〉 −→ 1√
2

(i |d〉 − |e〉) =
1

2
(− |f〉+ i |g〉 − |g〉 − i |g〉) = − |f〉 (1.16)

or
|a 〉 −→ − |f〉+ 0 |g 〉 . (1.17)

Hence, the probabilities

P[f ] = |−1|2 = 1, (1.18a)

P[g] = | 0 |2 = 0, (1.18b)
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as expected. The certainty of |f〉 (exiting right) and the impossibility of |g〉
(exiting up) is an example of quantum interference.

1.3 Measurement & Entanglement

Light elucidates the measurement problem and quantum entanglement.

1.3.1 Hilbert Space Preview

In general, if |ϕ〉 and |ψ〉 are quantum states, then any linear combination
a|ϕ〉+ b|ψ〉, with complex coefficients a and b, is also a quantum state. In fact,
such states form a Hilbert space: a linear vector space with a complex scalar
product. For example, the calcite crystal of Section 1.1 can induce a photon to
evolve to a state |ψ〉 that is a superposition of horizontal |h〉 and vertical |v〉
polarization, namely

|ψ〉 = a |h〉+ b |v〉 , (1.19)

where |a|2 + |b|2 = 1 to conserve probability. (Measurement will certainly find
the photon in one of the two states.) The set of all such states form a quantum
bit or qubit, which is of fundamental importance in quantum computing: while
a classical bit can be in one of two states, a qubit can be in an infinite number
of superpositions of states.

A quantum superposition is a kind of complex-number-weighted coexistence
of possibilities (or potentialities). According to the CI, the absolute square
of the weights correspond to the probabilities of measuring the alternatives.
According to the MWI, the quotient of the weights is the branching ratio for
the two different histories. (The branching ratio must be a rational number,
but rationals can approximate real numbers arbitrarily well.)

1.3.2 Quantum Evolution

As shown below, superpositions evolve continuously and deterministically under
the Schrödinger differential equation, in both the CI and the MWI. For example,

|ψ〉 S−→ |ψ′〉 = a′ |h〉+ b′ |v〉 . (1.20)

In the CI, but not in the MWI, there is also a discontinuous and probabilistic
collapse of a superposition to classical probability-weighted alternatives when
the system is measured (or observed or registered). For example,

|ψ′ 〉 M−→

 |h 〉 , P[h] = |a′|2

|v 〉 , P[v] = |b′|2

 . (1.21)

While the S-evolution is uncontroversial, the same cannot be said about the
M-evolution.
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1.3.3 Schrödinger’s Cat and the Measurement Problem

Consider a variation of the (in)famous Schrödinger cat experiment, wherein a
(working) bomb amplifies a microscopic superposition to macroscopic propor-
tions, as in Fig. 1.15, where a single photon interacts with a beam splitter. In
the absence of a measurement, the system |ψ〉 evolves into a superposition of
reflected and transmitted photons

|ψ〉 S−→ |ψ′〉 =
1√
2
|↑〉+

1√
2
|→〉 , (1.22)

and unexploded and exploded bombs

|ψ′〉 S−→ |ψ′′〉 =
1√
2
|↑, •〉+

1√
2
|→, ?〉 (1.23)

and calm and distressed observers

|ψ′′〉 S−→ |ψ′′′〉 =
1√
2
|↑, •,, 〉+

1√
2
|→, ?,/〉 . (1.24)

Such macroscopic superpositions are called Schrödinger cat states. (In the orig-
inal thought experiment, the observer was a cat.) However, superpositions of
unexploded and exploded bombs are not observed, nor of calm and distressed
people, whatever that might mean. According to the CI, to collapse the super-
position

|ψ′′′ 〉 M−→

 |↑, •,, 〉 , P =
∣∣1/√2

∣∣2 = 1/2

|→, ?,/ 〉 , P =
∣∣1/√2

∣∣2 = 1/2

 , (1.25)

a measurement must occur at the beam splitter, or at the bomb, or at the
observer, or . . . .

But exactly where and when does the superposition collapse? Are not the
beam splitter, the bomb, and the observer all ultimately quantum systems?
Where is the threshold between microscopic and macroscopic, between experi-
ment and experimenter, between phenomenon and observer, between quantum
and classical? Physicist Eugene Wigner argued that the threshold is human con-
sciousness. The chief architect of the CI, Neils Bohr, argued that the threshold
is relative; it depends on one’s point of view, on how one chooses to analyze the
experiment, so there is no one right answer to where and when the superpo-
sition’s complex-number-weighted coexistence of multiple possibilities collapses
into a probability-weighted single reality.

The MWI dispenses with this so-called “measurement” problem by entirely
eliminating the discontinuous, probabilistic M-evolution. According to the MWI,
two histories continuously and deterministically emerge from the experiment,
one including a calm observer, an unexploded bomb, and a reflected photon,
the other including a distressed observer, an exploded bomb, and a transmitted
photon. The apparent probabilities and discontinuities are merely artifacts of
individual observers being confined to single histories.
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Figure 1.15: Single photon incident on a beam splitter is reflected and detected
by a PMT, calming the observer (left), or is transmitted and detonates a bomb,
distressing the observer (right). The S-evolution places the photon, the bomb,
and the observer in a macroscopic quantum superposition, a Schrödinger cat
state.

1.3.4 Polarization

Beam splitters and mirrors control the direction of classical light and the lin-
ear momenta of photons. Calcite crystals, quarter wave plates, and polarizers
control the polarization of classical light and the angular momenta (or spin) of
photons. This latter capability facilitates investigation of additional aspects of
quantum reality.

In classical optics, polarization refers to the oscillation of the light’s electric
field. If light is traveling in the z-direction at speed c = ω/k, then

~Eh[δh] = x̂ E0 cos[kz − ωt+ δh], (1.26a)

~Ev[δv] = ŷ E0 cos[kz − ωt+ δv] , (1.26b)

represent horizontal and vertical linearly polarized light, because the electric
field is oscillating in a line. Superpose this light with different relative phases
δh − δv to create differently polarized light. For example, if the relative phase
shift is zero, then

~Ed = ~Eb[0] + ~Ev[0] = (x̂+ ŷ) E0 cos[kz − ωt] , (1.27)

represents diagonally polarized light, which is just linearly polarized light in a
different direction. If the relative phase shift is ±π/2, then

~Er = ~Eh[0] + ~Ev[+π/2] = (x̂ cos[kz − ωt]− ŷ sin[kz − ωt]) E0, (1.28a)

~E` = ~Eh[0] + ~Ev[−π/2] = (x̂ cos[kz − ωt] + ŷ sin[kz − ωt]) E0, (1.28b)

represent right hand and left hand circularly polarized light, because the electric
field rotates in a circle at each place in space. In the particle physics convention,
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at each place, right hand light rotates as the right hand fingers curl when the
right thumb points in the propagation direction. The corresponding relations
for photons correspond to the classical relations for light waves. A “diagonal”
photon is a superposition

|d〉 =
1√
2
|h〉+

1√
2
|v〉 . (1.29)

“Circular” or natural photons are the superpositions

|r〉 =
1√
2
|h〉+

i√
2
|v〉 , (1.30a)

|`〉 =
1√
2
|h〉 − i√

2
|v〉 , (1.30b)

where the ±i = e±iπ/2 account for the relative phase shifts. Since photons are
naturally circular, it is appropriate to invert these relations and write

|h〉 =
1√
2

(|r〉+ |`〉) , (1.31a)

|v〉 =
−i√

2
(|r〉 − |`〉) . (1.31b)

In a measurement of the linear polarization of |v〉, |r〉 and |`〉 are equally likely,

|v 〉 M−→

 |r 〉 , P =
∣∣−i/√2

∣∣2 = 1/2

|` 〉 , P =
∣∣+i/√2

∣∣2 = 1/2

 , (1.32)

but the complex numbers ±i are crucial to recovering |r〉 when superposing |h〉
and |v〉, as in Eq. 1.30a.

Measuring the linear polarization of a photon places it in a superposition of
right and left circular polarizations, while measuring the circular polarization
places the photon in a superposition of linear polarizations. In fact, a photon
cannot have both linear and circular polarization simultaneously; knowing one
type of polarization leaves the other type indeterminate, a special case of the
Heisenberg indeterminacy principle.

Optically anisotropic materials with different indices of refraction in different
directions can transform light from one polarization to another. A calcite crystal
can convert a diagonal light beam into parallel beams of horizontal and vertical
light. A quarter wave plate can convert diagonal light into circular light (by
retarding one component by a distance λ/4).

1.3.5 Crossed Polarizers

An ideal polarizer converts unpolarized light into linearly polarized light by
selectively transmitting only one polarization. Consider light traveling in the
z-direction, and linearly polarized in the x-direction, incident on a polarizer with
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transmission axis an angle θ from the x-direction, as in Figure 1.16. If the trans-
mission direction is x′ and the perpendicular direction is y′, then decompose the
incident electric field amplitude as the superposition

~E0 = x̂′E0 cos θ + ŷ′E0 sin θ. (1.33)

Therefore, the transmitted amplitude is

E ′0 = E0 cos θ (1.34)

and, since intensity is proportional to the amplitude squared, the transmitted
intensity is

I ′ = Icos2θ, (1.35)

which is Malus’s Law.

Figure 1.16: A polarizer transmits the component of light parallel to its trans-
mission axis.

Similarly, a photon polarized in the x-direction is a superposition of a photon
polarized in the parallel and perpendicular directions,

|x〉 = cos θ |x′〉+ sin θ |y′〉 . (1.36)

Therefore

|x 〉 M−→

 |x′ 〉 , P = |cos θ|2 = cos2θ

|y′ 〉 , P = |sin θ|2 = sin2θ

 , (1.37)

and hence the probability of transmission is cos2θ, which corresponds to Malus’s
law.

Consider next a single photon incident on crossed polarizers, as in Fig. 1.17.
If the probability of transmission at the first polarizer is 1/2 and the proba-
bility of transmission at the second polarizer is cos2θ, then the probability of
transmission through both polarizers is (1/2)cos2θ. If the relative angle between
the two transmission axes is θ = π/2, then no photons get through. However,
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Figure 1.17: Single photon incident on crossed polarizers. Transmission proba-
bilities correspond to Malus’s law.

inserting a third polarizer between the previous two with transmission axis at
θ = π/4 causes one in eight photons gets through — adding an intermediate po-
larizer has increased the probability of transmission! These faint light, quantum
experiments correspond well to the analogous bright light, classical experiments.

1.3.6 Entangled States

Pairs of quantum particles can be entangled so that a property of one, such as its
polarization (spin), is linked intimately with that of the other. Such entangled
or “twinned” pairs of particles are superpositions of states.

Consider positronium, a bound state of an electron e- and its antiparticle, the
positron e+. Its ground state has zero angular momentum and odd (negative)
parity. It is unstable and decays after about 10−10 s into a pair of entangled
photons, as in Fig. 1.18. To conserve linear momentum, the photons must
have equal but opposite momenta. To conserve angular momentum, the spin
of the photons must also be equal but opposite, implying identical circular
polarization. To conserve parity, these two indistinguishable alternatives must
superpose with a minus sign to form the entangled state

|ψ〉 =
1√
2
|r〉 |r〉 − 1√

2
|`〉 |`〉 =

1√
2

(|rr〉 − |``〉) . (1.38)

(Parity refers to the behavior of a system under coordinate inversion. If P is
the parity operator, then P |rr〉 = |``〉 and P |``〉 = |rr〉, and so P |ψ〉 = −|ψ〉.)

Although photons correspond to circular rather than linear light, they can
be analyzed into completely anticorrelated plane polarizations. Using Eq. 1.30
to express circular polarizations as superpositions of linear polarizations, the
entangled state becomes

|ψ〉 =
i√
2
|h〉 |v〉+

i√
2
|v〉 |h〉 =

i√
2

(|hv〉+ |vh〉) . (1.39)
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Figure 1.18: Positronium (top) annihilates into a pair of right circular photons
(middle) or a pair of left circular photons (bottom). Both possibilities superpose
to form an entangled state. The photon emission is isotropic.

Any linear polarization measurement induces a nonlocal collapse of the super-
position

|ψ 〉 M−→

 |hv 〉 , P =
∣∣i/√2

∣∣2 = 1/2

|vh 〉 , P =
∣∣i/√2

∣∣2 = 1/2

 , (1.40)

at least in the CI. After the measurement, one photon is horizontally polarized
and the other is vertically polarized.

1.3.7 EPR-Bohm Experiment

Consider an experiment first proposed in the 1930s by Albert Einstein, Boris
Podolsky, and Nathan Rosen (EPR) [9] and modernized in the 1950s by David
Bohm. Suppose two observers, Alice and Bob, intercept entangled photons with
linear polarizers at a relative angle of θ, as in Fig. 1.19. For each photon pair,
the two polarization measurements can be separated by a spacelike interval, so
far apart that not even light can join them. Each measurement can be reduced
to a binary digit, 1 or 0, indicating a photon transmitted or not. Alice and
Bob’s binary data for many measurements imply the correlation function

C[θ] =
#matches

#trials
= P[match]. (1.41)

For θ = 0, Alice and Bob’s data are sequences of random digits, with 0 and
1 equally likely, but perfectly anticorrelated, in agreement with Eq. 1.40, so that
C[0] = 0. For θ = π/2, Alice and Bob’s data are other sequences of random
digits, but now perfectly correlated, again in agreement with Eq. 1.40, so that
C[π/2] = 1. To calculate the quantum prediction for the correlation function
at an arbitrary angle, begin with basic probability theory. If the conventional
symbols ∧, ∨, |, denote “and”, “or”, “given”, then

P[match] = P[(A = 0 ∧B = 0) ∨ (A = 1 ∧B = 1)], (1.42a)

= P[A = 0]P[B = 0|A = 0] + P[A = 1]P[B = 1|A = 1], (1.42b)

= P[A = 0] (1− P[B = 1|A = 0]) + P[A = 1]P[B = 1|A = 1]. (1.42c)
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Figure 1.19: Polarization cross correlations of entangled photon pairs.

The Section 1.3.5 Malus’s law results and the identity C[θ] = P[match] imply

C[θ] =
1

2

(
1− cos2θ

)
+

1

2
cos2

[π
2
− θ
]

(1.43)

or
C[θ] = sin2θ, (1.44)

which agrees with the extreme cases C[0] = 0 and C[π/2] = 1. For small nonzero
angles, sin θ ∼ θ � 1 and C[θ] ∼ θ2, so C[2θ] ∼ 4θ2 > 2θ2 = 2C[θ], or

C[2θ] > 2C[θ]. (1.45)

1.3.8 Bell’s Inequality

In 1964, John Bell demonstrated [10] that any classical (local realistic) explana-
tion for an EPR-Bohm-type experiment must produce weaker correlations. To
show this, if Alice and Bob’s polarizer are aligned, so that their relative angle
θ = 0, then their binary data are completely anticorrelated, C[0] = 0. If Bob
now rotates his polarizer through an angle θ > 0, the misalignment introduces
some matches into his data (by, say, flipping a 1 to a 0), so C[θ] > 0. If Alice
next rotates her polarizer through the same angle, the realignment removes the
matches from her data (by flipping a 1 to a 0), so again C[0] = 0. If Bob next
rotates his polarizer through an additional angle θ > 0, the second misalignment
once more introduces some matches into his data, so again C[θ] > 0. However,
if Alice had not rotated her polarizer, the successive misalignments of Bob’s
polarizer might have cancelled some matches (by flipping a 0 to a 1 and then
back to a 0 again). Hence

C[2θ] ≤ 2C[θ], (1.46)

which is an example of a Bell inequality.
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The quantum prediction of Eq. 1.45 contradicts the classical prediction of
Eq. 1.46, so put nature to the test. By the 1980s, in a culmination of a series
of increasingly better experiments by many research groups, Alain Aspect and
colleagues convincingly demonstrated that Bell’s inequality is decisively violated
in these kind of experiments. Consequently, there must be something wrong
with Bell’s argument, as Bell himself anticipated.

The argument seems to rest on two assumptions: locality and reality. Local-
ity means no superluminal connections, so what happens here and now doesn’t
depend on what happens then and there. For example, the argument implic-
itly assumes locality when it reasons that, when Bob rotates his polarizer, he
alters his data but not Alice’s, and vice versa. Reality means counterfactual
definiteness, the ability to consistently discuss what might have happened but
did not. For example, the argument reasons that if Bob had rotated his polar-
izer through θ, then he would have introduced some matches, and if he had then
rotated through an additional θ, then some of the matches might have cancelled.
One of these two classically reasonable assumptions must be wrong.

A popular nonlocal interpretation of the EPR-Bohm experiment is that it is
impossible to force a two-particle interpretation on an entangled particle pair.
While this may violate the spirit of special relativity, it does not violate the
letter of special relativity. In the CI, quantum randomness prevents using en-
tangled states for superluminal telegraphs, because any message introduced by
rotating one of the polarizers is found only in the correlations between possibly
remote and spacelike experiments. In the MWI, measurements don’t collapse
superpositions, nonlocally or otherwise, and locality is restored.
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Problems

1. Complex numbers are used extensively in quantum physics. Common
notations are

z = x+ iy = r(cos θ + i sin θ) = reiθ, (1.47)

and a fundamental operation is complex conjugation

z∗ = z̄ = x− iy = r(cos θ − i sin θ) = re−iθ, (1.48)

where i =
√
−1. Find the principal values of the following numbers in the

form x+ iy, where x, y ∈ R are real numbers.

(a)
1

1 + i
.

(b) 25e2i (Caution: The angle is 2 radians not 2π radians.)

(c)
3i− 7

i+ 4
(Caution: The numerator is not 3− 7i.)

(d)

(
1 + i

1− i

)2718

(Hint: Don’t use a calculator or computer!)

(e)
√
i

(f) ii

2. Prove the following equations.

(a) eiθ = cos θ + i sin θ (Hint: Use Taylor series expansions.)

(b) eiπ + 1 = 0 (Euler’s tombstone.)

(c) sin θ =
eiθ − e−iθ

2i

(d) cos θ =
eiθ + e−iθ

2

3. Malus’s law and the inverse quantum Zeno effect. Consider a
sequence of N + 1 polarizers each rotated at an angle π/2N relative to its
neighbors. Suppose a photon passes through the first polarizer.

(a) What is the probability that it passes through the second polarizer?
(Hint: Consult Eq. 1.37.)

(b) What is the probability that it passes through all the rest of the
polarizers?

(c) Show that the probability of transmission increases to unity as the
number of polarizers increases to infinity. Thus, a dense set of “mea-
surements” can rotate the photon’s plane of polarization through a
right angle!
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4. Experimental interaction-free measurements. A nonlinear optical
crystal down-converts a UV laser photon to a pair of low-energy photons
traveling 30◦ from each other. The detection of one confirms the existence
of the other, which is directed into a Michelson interferometer (left below).
Without the “Medusa” mirror in the interferometer’s orthogonal path,
virtually all photons exit the way they came, with virtually no photons
exiting down, due to destructive interference.

(a) With the Medusa mirror in place, what fraction of photons exit down,
thereby registering the Medusa without seeing it?

(b) By reducing the beam splitter’s reflection probability p� 1/2, what
fraction of measurements can be made interaction-free? (Hint: Ex-
clude cases where a photon exits the way it enters.)

5. Improved null measurements. This interferometer (right above) ex-
ploits the inverse quantum Zeno effect. Time the switchable mirror to
allow the photon to go back-and-forth through the system N times. Sugar
water rotates the polarization plane π/4N each time the photon passes
through it. The time-reversible polarizing beam splitter sends horizontally
and vertically polarized light in orthogonal directions. Input photons are
horizontally polarized.

(a) By how much does the sugar water rotate the polarization when the
photon pass back and forth through it?

(b) When the vertical path is clear of the “Medusa” bomb, why does the
photon exit the system vertically polarized?

(c) When the Medusa blocks the vertical path, why does the photon exit
nearly horizontally polarized (when it isn’t absorbed) for large N?

(d) Now quantitatively, with what probability does the Medusa not ab-
sorb the photon when it blocks the vertical path?

(e) Consequently, what fraction of measurements are interaction-free as
N →∞?
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6. Photon Polarization. First consider classic light propagating in the
z-direction.

(a) Show that

~ER = E0(x̂ cos[kz − ωt] + ŷ cos[kz − ωt+ π/2]), (1.49a)

~EL = E0(x̂ cos[kz − ωt] + ŷ cos[kz − ωt− π/2]), (1.49b)

represent right and left circularly polarized light. Hint: Sketch the
rotation of the electric fields at a fixed point in space.

(b) Show that

~Ex = ~EL + ~ER, (1.50a)

~Ey = ~EL − ~ER, (1.50b)

represent linear polarized light.

(c) Express circular light as linear superpositions of linear light.

(d) In order to correspond with classical light, assume that circularly
polarized photons are superpositions of linearly polarized photons
and their states are related by

|r〉 =
1√
2
|x〉+

1√
2
e+iπ/2|y〉, (1.51a)

|`〉 =
1√
2
|x〉+

1√
2
e−iπ/2|y〉. (1.51b)

Show that

|x〉 =
1√
2
|`〉+

1√
2
|r〉, (1.52a)

|y〉 =
i√
2
|`〉 − i√

2
|r〉. (1.52b)

(e) Rotate the coordinate system through an angle ϕ in the xy-plane.
Justify

|x′〉 = + cosϕ|x〉+ sinϕ|y〉, (1.53a)

|y′〉 = − sinϕ|x〉+ cosϕ|y〉. (1.53b)

(f) Show that the rotated circular polarizations satisfy

|r′〉 = e−iϕ|r〉, (1.54a)

|`′〉 = e+iϕ|`〉. (1.54b)

(g) Show then that the probability of measuring a circularly polarized
photon to have a particular linear polarization is the same at any
angle. Why is this so physically?
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7. Create a single photon model of the Fig. 1.9 quantum eraser. Assume
an initial diagonal polarization state |D〉 = (|h〉 + |v〉)/

√
2. The effect

of the vertical polarizer is |ψ〉 → |v〉〈v|ψ〉, where the complex “bra-ket”
scalar products 〈v|v〉 = 1 and 〈h|v〉∗ = 〈v|h〉 = 0, for example. Gen-
eralizing Section 1.2.9, track both location and polarization by work-
ing in the product Hilbert space |LP 〉 = |L〉|P 〉 ∈ HL ⊗ HP , where
〈Lh|L′v〉 = 〈L|L′〉〈h|v〉 = 0, for example. Track phase shifts by modeling
the beam splitter with transmission and reflection coefficients t = 1/

√
2

and r = i/
√

2.

(a) Compute the probabilities for the photon to exit up and right with
the analyzers horizontal.

(b) Compute the probabilities for the photon to exit up and right with
the analyzers diagonal.
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Chapter 2

Hilbert Spaces

Generalize Euclidean space to mathematically describe quantum phenomena.

2.1 Euclidean Space

The familiar real scalar product defines distances and angles. Completeness
(the inclusion of all limited points) makes possible calculus. If places

~u,~v, ~w ∈ R3 (2.1)

and real coefficients
a, b, c ∈ R, (2.2)

then the linear superposition

a~u+ b~v + c~w ∈ R3. (2.3)

is also a place. Use the real and symmetric scalar or dot product

~u · ~v = ~v · ~u ∈ R (2.4)

to define an orthonormal basis

x̂m · x̂n = m̂ · n̂ = δmn. (2.5)

Decompose a vector

~v = v1x̂1 + v2x̂2 + v3x̂3 =
∑
n

vnx̂n =
∑
n

x̂nvn, (2.6)

where the projections
vn = x̂n · ~v ∈ R (2.7)

imply

~v = x̂1(x̂1 · ~v) + x̂2(x̂2 · ~v) + x̂3(x̂3 · ~v) =
∑
n

x̂n (x̂n · ~v) (2.8)

and
v2 = ~v · ~v =

∑
n

(x̂n · ~v) (x̂n · ~v) =
∑
n

(x̂n · ~v)
2

=
∑
n

v2n. (2.9)

39



Chapter 2. Hilbert Spaces 40

2.2 Generic Hilbert Space

2.2.1 Vectors

To describe quantum phenomena requires more general n-dimensional Hilbert
spaces H equipped with complex scalar products. (If x, y ∈ R are real numbers
and i =

√
−1, then z = x+ iy ∈ C is a complex number, and z∗ = z̄ = x− iy is

its complex conjugate.) In conventional Dirac bra(c)ket notation, if states

|ϕ〉, |χ〉, |ψ〉 ∈ H, (2.10)

(pronounced “ket phi, ket chi, ket psi”) and complex coefficients

a, b, c ∈ C, (2.11)

then the linear superposition

a|ϕ〉+ b|χ〉+ c|ψ〉 ∈ H (2.12)

is also a state. Use the complex symmetric scalar product

〈ϕ|ψ〉 = 〈ψ|ϕ〉∗ ∈ C (2.13)

(pronounced “bra phi ket psi equals bra psi ket phi star”) to define an orthonor-
mal basis

〈ψm|ψn〉 = 〈m|n〉 = δmn, (2.14)

where the Kronecker delta

δmn =

 1 : m = n

0 : m 6= n

 . (2.15)

Decompose a state

|ψ〉 = ψ1|1〉+ ψ2|2〉+ · · · =
∑
n

ψn|n〉 =
∑
n

|n〉ψn, (2.16)

where the projections
ψn = 〈n|ψ〉 ∈ C (2.17)

imply

|ψ〉 = |1〉〈1|ψ〉+ |2〉〈2|ψ〉+ · · · =
∑
n

|n〉〈n|ψ〉. (2.18)

and

〈ψ|ψ〉 =
∑
n

〈ψ|n〉〈n|ψ〉 =
∑
n

〈n|ψ〉∗〈n|ψ〉 =
∑
n

|〈n|ψ〉|2 =
∑
n

|ψn|2. (2.19)

Among other advantages, the bra ket notation makes it easy to label states
without needing to miniaturize the text in a subscript; for example,

|0〉 = |ψ0〉 = |ground state〉. (2.20)
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2.2.2 Operators

In the Hilbert spaces H, scalar products map vectors to numbers, and operators
map vectors to vectors. If operators

A,B,C ∈ L[H], (2.21)

then they linearly

A (a|ϕ〉+ b|χ〉+ c|ψ〉) = aA|ϕ〉+ bA|χ〉+ cA|ψ〉 (2.22)

map vectors to other vectors

A|ψ〉 = |ψ′〉, (2.23)

or vectors to multiples of vectors

A|ψa〉 = a|ψa〉, (2.24)

which can be abbreviated as

A|a〉 = a|a〉, (2.25)

where |a〉 ∈ H is an eigenvector or eigenstate of A and a ∈ C is the corresponding
eigenvalue or eigenscalar. The set of all eigenvalues {a} of A is the spectrum of
A.

2.2.3 Dual Space

In a countable Hilbert space, every ket |ψ〉 ∈ H corresponds to a bra in the dual
space, |ψ〉† = 〈ψ| ∈ H∗ (pronounced “ket psi dagger equals bra psi in h star”).
Every operator A that maps kets to kets

|ψ〉 −→
A
|ψ′〉 = A|ψ〉 ∈ H (2.26)

corresponds to an adjoint operator A† that maps bras to bras

〈ψ| −→
A†
〈ψ′| = 〈ψ|A† ∈ H∗. (2.27)

The adjoint reverses the order of operations. For example, if

|χ〉 ≡ B|ϕ〉, (2.28)

then

|ψ〉 ≡ AB|ϕ〉 = A|χ〉 (2.29)

so

〈ψ| = 〈ϕ|(AB)† = 〈χ|A† = 〈ϕ|B†A† (2.30)

and

(AB)† = B†A†. (2.31)
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The adjoint generalized complex conjugation. For example, the adjoint of a
complex number

c† = 〈ψ|ϕ〉† = |ϕ〉†〈ψ|† = 〈ϕ|ψ〉 = 〈ψ|ϕ〉∗ = c∗, (2.32)

using the Eq. 2.13 complex symmetry. Furthermore

〈ψ|A|ϕ〉∗ = 〈ψ|A|ϕ〉† = |ϕ〉†A†〈ψ|† = 〈ϕ|A†|ψ〉. (2.33)

For base states |m〉, the matrix elements

(A†)mn = 〈m|A†|n〉 = 〈n|A|m〉∗ = A∗nm. (2.34)

To adjoint an expression, reverse the order of the factors (although numbers
commute with everything), interchange kets and bras, replace operators by their
adjoints and numbers by their complex conjugates.

2.2.4 Hermitian Operators

In a countable Hilbert space, Hermitian operators are self-adjoint, so

H† = H. (2.35)

Hermitian operators have real eigenvalues and orthogonal eigenstates.
If

H|h〉 = h|h〉, (2.36)

then
〈h|H = h∗〈h| (2.37)

implies via projection
〈h|H|h〉 = h〈h|h〉 (2.38)

and
〈h|H|h〉 = h∗〈h|h〉. (2.39)

The difference
0 = (h− h∗)〈h|h〉 (2.40)

implies the eigenvalue
h = h∗ (2.41)

is real.
If there are two distinct eigenvalues, h1 6= h2 ∈ C,

H|1〉 = h1|1〉, (2.42a)

H|2〉 = h2|2〉, (2.42b)

then projection implies
〈2|H|1〉 = h1〈2|1〉 (2.43)
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and

〈1|H|2〉 = h2〈1|2〉, (2.44a)

〈1|H|2〉∗ = (h2〈1|2〉)∗, (2.44b)

〈2|H†|1〉 = h∗2〈2|1〉, (2.44c)

〈2|H|1〉 = h2〈2|1〉. (2.44d)

The difference
0 = (h1 − h2)〈2|1〉 (2.45)

implies the eigenstates
〈2|1〉 = 0 (2.46)

are orthogonal.

2.2.5 Unitary Operators

The adjoint of a unitary operator is its inverse,

U† = U−1, (2.47)

so
U†U = I = UU†, (2.48)

where I is the identity operator. Unitary operators have unit eigenvalues and
preserve scalar products.

If
U |u〉 = u|u〉, (2.49)

then
〈u|U† = 〈u|u∗ = u∗〈u|. (2.50)

The product
〈u|u〉 = 〈u|I|u〉 = 〈u|U†U |u〉 = u∗u〈u|u〉. (2.51)

implies
1 = |u|2, (2.52)

so the eigenvalue is a phase factor, u = eiϕ, where ϕ ∈ R. In fact, if H is a
Hermitian operator, then

U = eiH ≡ I + iH − 1

2
H2 − i 1

3!
H3 + · · · (2.53)

is a unitary operator, where the infinite series expansion defines the exponential
of an operator. The adjoint

U† = e−iH
†

= e−iH = I − iH − 1

2
H2 + i

1

3!
H3 + · · · , (2.54)

and because −iH and iH commute,

U†U = e−iHeiH = e−iH+iH = e0 = I, (2.55)
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and similarly UU† = I. (However, in general, if AB 6= BA, then eAeB 6= eA+B .)

If a unitary operator transforms two states

|ψ′〉 = U |ψ〉, (2.56a)

|ϕ′〉 = U |ϕ〉, (2.56b)

then their scalar product

〈ψ′|ϕ′〉 = 〈ψ|U†U |ϕ〉 = 〈ψ|ϕ〉 (2.57)

is preserved.

2.3 Matrix Representations

If column matrices represent kets

|ψ〉 ↔
a

b
, (2.58)

then row matrices represent bras

〈ψ| ↔ a∗ b∗ ↔ |ψ〉†, (2.59)

square matrices represent ket bras

|ψ〉〈ψ| ↔
a

b
a∗ b∗ =

aa∗ ab∗

ba∗ bb∗
, (2.60)

and complex numbers or 1× 1 matrices represent bra kets

〈ψ|ψ〉 = a∗a+ b∗b↔ a∗ b∗
a

b
= a∗a+ b∗b , (2.61)

where the color guides the eye in checking the matrix multiplication.

Table 2.1 summarizes the matrix representations. Bras map kets to num-
bers like functionals, while operators map kets to kets. The adjoint operation
simultaneously generalizes complex conjugation and matrix transposition; even
the adjoint symbol † is a kind of compromise between the complex conjugation
symbol ∗ and the matrix transposition symbol T .
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Table 2.1: Matrix representations for bra and kets.

vector ket |ψ〉
a

b

functional bra 〈ψ| a∗ b∗

operator ket bra |ψ〉〈ψ|
aa∗ ab∗

ba∗ bb∗

scalar bra ket 〈ψ|ψ〉 a∗a+ b∗b

2.4 Uncountable Hilbert Spaces

Georg Cantor discovered [8] that there are different degrees of infinity. In par-
ticular, while rational numbers can be counted by placing them in one-to-one
correspondence with natural numbers, the real numbers cannot, as in Fig. 2.1.

Figure 2.1: Cantor’s first diagonal argument (left) counts the rational numbers,
while Cantor’s second diagonal argument (right) with d̃nn 6= dnn proves the real
numbers uncountable.

In an uncountably infinite Hilbert space, base states are labeled by uncount-
able, continuous indices, like x ∈ R for position, instead of countable, discrete
indices like n ∈ N . Linear superpositions involve uncountable, continuous sums
or integrals

|ψ〉 =

∫
dx |x〉〈x|ψ〉 =

∫
dx |x〉ψ[x], (2.62)

where ψ[ ] is a wave function. Generalized functions express orthogonality

〈x|y〉 = δ[x− y], (2.63)
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where the Dirac delta
δ[x] = lim

ε→0
δε[x], (2.64)

is the limit of infinitely tall, infinitesimally thin functions that bound a unit
area,

δε[x] =

 1/ε : |x| < ε/2

0 : |x| > ε/2

 . (2.65)

The Dirac delta’s resulting normalization

1 =

∫ ∞
−∞

dx δ[x− x0] (2.66)

implies the sifting property∫ ∞
−∞

dx δ[x− x0]ψ[x] = ψ[x0]

∫ ∞
−∞

dx δ[x− x0] = ψ[x0]. (2.67)

For example, project Eq. 2.62 onto the state |y〉 to get

〈y|ψ〉 =

∫
dx 〈y|x〉ψ[x] =

∫
dx δ[x− y]ψ[x] = ψ[y]. (2.68)

Table 2.2 compares countable and uncountable bases.

Table 2.2: Comparison between discrete and continuous bases formulas.

property discrete or countable continuous or uncountable

orthogonality 〈m|n〉 = δmn 〈x|y〉 = δ[x− y]

sifting ψn =
∑
m ψmδmn ψ[y] =

∫∞
−∞ dx δ[x− y]ψ[x]

closure |ψ〉 =
∑
m |m〉〈m|ψ〉 |ψ〉 =

∫
dx |x〉〈x|ψ〉

2.5 Quantum Example

As an example of the quantum Hilbert space formalism, with suggestively chosen
notation, consider the energy observable H such that

H|ε〉 = ε|ε〉. (2.69)

Since the operator H = H† is hermitian, its eigenvalues ε = ε∗ ∈ H are real.
Assume an initial state as a symmetric superposition of orthonormal eigenstates

|ψ0〉 =
1√
2
|ε1〉+

1√
2
|ε2〉 ≡ |s〉 (2.70)
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normalized such that

〈ψ0|ψ0〉 =

(
1√
2
〈ε1|+

1√
2
〈ε2|
)(

1√
2
|ε1〉+

1√
2
|ε2〉
)

=
1

2
〈ε1|ε1〉+

1

2
〈ε1|ε2〉+

1

2
〈ε2|ε1〉+

1

2
〈ε2|ε2〉

=
1

2
+ 0 + 0 +

1

2
= 1. (2.71)

Given a norm-preserving unitary time translation operator

Ut = e−itH/~, (2.72)

with real parameter t ∈ R and dimensional constant ~, the state at a later time

|ψt〉 = Ut|ψ0〉 = e−itH/~|ψ0〉 =
1√
2
e−itH/~|ε1〉+

1√
2
e−itH/~|ε2〉

=
1√
2
e−itε1/~|ε1〉+

1√
2
e−itε2/~|ε2〉. (2.73)

The amplitude for again observing the initial symmetric state is the projection

〈s|ψt〉 =

(
1√
2
〈ε1|+

1√
2
〈ε2|
)(

1√
2
e−itε1/~|ε1〉+

1√
2
e−itε2/~|ε2〉

)
=

1

2
e−itε1/~ +

1

2
e−itε2/~, (2.74)

and the probability is the absolute square

Ps = |〈s|ψt〉|2

=

(
1

2
e+itε1/~ +

1

2
e+itε2/~

)(
1

2
e−itε1/~ +

1

2
e−itε2/~

)
=

1

4
+

1

4
e+it(ε1−ε2)/~ +

1

4
e−it(ε1−ε2)/~ +

1

4

=
1

2
+

1

2
cos

[
t
ε1 − ε2

~

]
= cos2

[
ε1 − ε2

2~
t

]
. (2.75)

In quantum mechanics, normalized vectors represent states and complex
vector projections represent probability amplitudes. The absolute square of
amplitudes represent probabilities. Hermitian operators represent observables
and their real eigenvalues represent observed values. Unitary operators represent
transformations like translations and rotations.
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2.6 Commutation

Let A = A† and B = B† be Hermitian operators representing observable quan-
tities like energy and momentum. If they commute, so that AB = BA and their
commutator

[A,B] = AB −BA = 0 (2.76)

vanishes, then they share common eigenstates and can be known exactly si-
multaneously. If they do not commute, the measurement of one “contaminates”
measurement of the other, and perfectly knowing one leaves the other completely
indeterminate.

Assume the operators do commute, and let |a〉 be an eigenstate of A with
eigenvalue a,

A|a〉 = a|a〉. (2.77)

The vanishing of the commutator implies the vanishing of the matrix elements

0 = 〈a|[A,B]|a′〉 = 〈a|AB|a′〉 − 〈a|BA|a′〉 = (a− a′)〈a|B|a′〉. (2.78)

If the eigenvalues a 6= a′ are nondegenerate (or can be made so), then 〈a|B|a′〉 =
0 and the operator B is “diagonal” in the {|a〉} basis,

〈a|B|a′〉 = Baa′δaa′ ≡ b〈a|a′〉. (2.79)

Since this is true for all |a〉,
B|a′〉 = b|a′〉, (2.80)

and |a′〉 = |a′, b〉 is also an eigenstate of B,

A|a, b〉 = a|a, b〉, (2.81a)

B|a, b〉 = b|a, b〉. (2.81b)

Now assume the operators do not commute. If the state |ψ〉 =
∑
|a〉ψa ∈

H characterizes the system, then the probability of measuring the observable
corresponding to the operator A and getting the result a is

Pa = |〈a|ψ〉|2 = |ψa|2, (2.82)

the average or mean of many such measurements on identical systems is

〈A〉 = 〈ψ|A|ψ〉 =
∑
a,a′

〈a′|A|a〉ψ∗a′ψa =
∑
a,a′

aδa′,aψ
∗
a′ψa =

∑
a

a|ψa|2 =
∑
a

aPa,

(2.83)
and the spread or uncertainty in the results is the standard deviation

∆A =
√〈

(A− 〈A〉I)2
〉

=
√〈

(A− 〈A〉)2
〉
. (2.84)

Remove the mean from the operators by defining

A0 = A− 〈A〉, (2.85a)

B0 = B − 〈B〉. (2.85b)
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Define the linear combination

C0 = A0 − iεB0, (2.86)

where ε ∈ R is a real number, and the state

|ϕ〉 = C0|ψ〉 (2.87)

so that

0 ≤ 〈ϕ|ϕ〉 = 〈ψ|C†0C0|ψ〉
= 〈ψ|(A0 + iεB0)(A0 − iεB0)|ψ〉
= 〈ψ|A2

0 − iεA0B0 + iεB0A0 + ε2B2
0 |ψ〉

= 〈A2
0〉 − ε〈i[A0, B0]〉+ ε2〈B2

0〉
= ∆A2 − ε〈i[A,B]〉+ ε2∆B2. (2.88)

This quadratic equation in ε defines a vertical parabola confined to the upper-
half plane. Since it cannot cross the ε axis, it cannot have two real roots, and
its quadratic discriminant must be non-positive,

D = 〈i[A,B]〉2 − 4∆A2∆B2 ≤ 0. (2.89)

Hence, the product of the uncertainties

∆A∆B ≥ 1

2

∣∣∣∣〈i[A,B]
〉∣∣∣∣, (2.90)

which is conventionally known as the (generalized) Heisenberg uncertainty prin-
ciple. For example, if two operators Q and P have the commutator

[Q,P ] = i~I, (2.91)

then the products of the uncertainties in measurements of the corresponding
observables satisfy

∆Q∆P ≥ 1

2
~, (2.92)

so if one is certain, say ∆Q = 0, the other is indeterminate, ∆P =∞.
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Problems

1. Given the states

|ψ〉 = 3i|1〉+ 2|2〉, (2.93a)

|ϕ〉 = 2|1〉+ i|2〉, (2.93b)

and the Section 2.3 standard matrix representation

〈1| ↔ 1 0 , (2.94a)

〈2| ↔ 0 1 , (2.94b)

evaluate the following both with and without the representation.

(a) 〈ψ|ϕ〉
(b) 〈ϕ|ψ〉
(c) |ψ〉〈ϕ|
(d) |ϕ〉〈ψ|

2. Given the operator and states

A = i|1〉〈1|+ |1〉〈2|+ 2|2〉〈1|+ 3|2〉〈2|, (2.95a)

|ψ〉 = |1〉+ i|2〉 (2.95b)

|ϕ〉 = 2|1〉+ |2〉, (2.95c)

verify that 〈ψ|A†|ϕ〉 = 〈ϕ|A|ψ〉∗ both with and without a matrix repre-
sentation.

3. Simplify the following by removing the dagger †. Assume c ∈ C is a
complex number and all the operators are hermitian, as in Section 2.2.4.

(a) c†

(b) (A|ψ〉)†

(c) 〈ψ|A|ϕ〉†

(d) (c〈φ|A|ψ〉|χ〉〈ψ|)†

(e) (|ψ〉 =
∑
n |n〉ψn)

†

(f)
(
|ϕ〉 =

∫
dx |x〉ϕ[x]

)†
(g)

(
A†B†C†

)†
4. Simplify the following by removing the deltas.

(a)
∑∞
n=1 n

2δmn

(b)
∫∞
−∞ dxx2δ[x− y]

(c)
∫∞
−∞ dx eikxδ[x]
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(d)
∑N
n=1 δmn (Hint: 2 cases.)

(e)
∫ z
−∞ dx δ[x− y] (Hint: 2 cases.)

5. Let Pn = |n〉〈n| be a projection operator onto a 2-dimensional Hilbert
space.

(a) Prove that P 2
n = Pn, and interpret this result graphically.

(b) Prove that Pn is hermitian.

(c) What are the (real!) eigenvalues of Pn?

(d) Find a matrix representation for Pn.

(e) Find a matrix representation for
∑
n Pn =

∑
n |n〉〈n|. Surprised?

6. Let σy = −i|1〉〈2|+ i|2〉〈1| be a Pauli operator.

(a) Prove that σy is hermitian.

(b) Find its eigenstates and eigenvalues.

(c) Verify that its eigenvalues are real and its eigenstates are orthogonal.

(d) Find projection operators Pn onto the normalized eigenstates.

(e) Verify that these projectors satisfy the closure relation P1 + P2 = I.

7. Let σx = |1〉〈2|+ |2〉〈1| be another Pauli operator.

(a) Prove that H = ασx is hermitian, where α ∈ R is a real parameter.

(b) Prove that U = I cosα+ iσx sinα is unitary.

(c) Verify that U = eiH or equivalently I cosα+ iσx sinα = eiασx .

8. Repeat the Section 2.5 quantum example with the antisymmetric initial
state

|a〉 =
1√
2
|ε1〉 −

1√
2
|ε2〉. (2.96)

9. Show that if two operators share common eigenstates, as in Eq. 2.81, they
commute.
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Chapter 3

Symmetry Commutators

Fundamental physical variables like energy and momentum are intimately re-
lated to spacetime symmetry transformations [11, 12].

3.1 Spacetime Symmetries

Something is symmetric if it is invariant under a transformation. For example,
a sphere is unchanged by rotations about its center. Nonrelativistic physics is
invariant under the Galilei group of spacetime transformations, which consists
of translations, rotations, and boosts. If the column matrix

~xt ↔

x0

x1

x2

x3

1

=

t

x

y

z

1

↔ ~rt (3.1)

represents an event in spacetime, then a space translation through a distance δ
in the y-direction is

Sŷδ

t

x

y

z

1

=

1 0 0 0 0

0 1 0 0 0

0 0 1 0 δ

0 0 0 1 0

0 0 0 0 1

t

x

y

z

1

=

t

x

y + δ

z

1

, (3.2)

53
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where the color guides the eye in checking the matrix multiplication. A time
translation through a duration ε is

Tε

t

x

y

z

1

=

1 0 0 0 ε

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

t

x

y

z

1

=

t+ ε

x

y

z

1

, (3.3)

A space rotation through an angle θ about the x-direction is

Rx̂θ

t

x

y

z

1

=

1 0 0 0 0

0 1 0 0 0

0 0 cos θ − sin θ 0

0 0 sin θ cos θ 0

0 0 0 0 1

t

x

y

z

1

=

t

x

y cos θ − z sin θ

y sin θ + z cos θ

1

. (3.4)

The orthogonal rotations are cyclic permutations of the rows and columns of
the 3 × 3 space part of the rotation matrix, as in Problem 3.1. A boost by a
speed v in the y-direction is

Bŷv

t

x

y

z

1

=

1 0 0 0 0

0 1 0 0 0

v 0 1 0 0

0 0 0 1 0

0 0 0 0 1

t

x

y

z

1

=

t

x

y + vt

z

1

. (3.5)

Boosts or velocity translations connect references frames in relative motion.
Figure 3.1 compares Galilei boosts with space rotations and spacetime rotations,
which are the Lorentz transformations of special relativity, as well as with space
translations.
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Figure 3.1: Active Galilei boost B compared with a Lorentz boost L and a
rotation R (left) and translations S (right) in 1+1 dimensional spacetime {t, s}.

Figure 3.2: Finite rotations about different axes do not commute, as the final
orientation depends on the order of the rotations.

3.2 Spacetime Closures

Abbreviate S[x̂aε] = Sx̂aε = Sâε = Sa, and so on. The 10 spacetime transfor-
mations

Ta ∈ {T, S1, S2, S3, R1, R2, R3, B1, B2, B3} (3.6)

form a group because inverses T −1a and an identity I exist, and because any two
successive transformations is equivalent to a third, Tc = TbTa. However, some
of the spacetime transformations do not commute,

TbTa 6= TaTb (3.7)

or
TbTa − TaTb = [Ta, Tb] 6= 0. (3.8)
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or
T −1b T

−1
a TbTa 6= I. (3.9)

For example, rotating a book 90◦ about its cover and then 90◦ about its spine
orients it differently than rotating it 90◦ about its spine and then 90◦ about its
cover, as in Fig. 3.2.

For small translations, rotations, and boosts, by amounts ε � 1, Fig 3.3
illustrates the nontrivial commutators. To O[ε2], sin ε = ε and cos ε = 1− 1

2ε
2.

Hence, for successive rotations about orthogonal axes,

R−1
2̂ε
R−1

3̂ε
R

2̂ε
R

3̂ε

= R−1
2̂ε
R−1

3̂ε

1 0 0 0 0

0 1− 1
2ε

2 0 ε 0

0 0 1 0 0

0 −ε 0 1− 1
2ε

2 0

0 0 0 0 1

1 0 0 0 0

0 1− 1
2ε

2 −ε 0 0

0 ε 1− 1
2ε

2 0 0

0 0 0 1 0

0 0 0 0 1

= R−1
2̂ε

1 0 0 0 0

0 1− 1
2ε

2 ε 0 0

0 −ε 1− 1
2ε

2 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1− ε2 −ε ε 0

0 ε 1− 1
2ε

2 0 0

0 −ε ε2 1− 1
2ε

2 0

0 0 0 0 1

=

1 0 0 0 0

0 1− 1
2ε

2 0 −ε 0

0 0 1 0 0

0 ε 0 1− 1
2ε

2 0

0 0 0 0 1

1 0 0 0 0

0 1− 1
2ε

2 0 ε 0

0 0 1 −ε2 0

0 −ε ε2 1− 1
2ε

2 0

0 0 0 0 1

=

1 0 0 0 0

0 1 0 0 0

0 0 1 −ε2 0

0 0 ε2 1 0

0 0 0 0 1

= R
1̂ε2
, (3.10)
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where the colors help guide the eye in checking the matrix multiplication. Geo-
metrically, this gap arises because the rotations and their inverses involve circles
of different radii, as in Fig. 3.3. It can be closed by a single orthogonal rotation.
(Space rotations are a subgroup of the Galilei group.)

For a rotation followed by a translation,

S−1
2̂ε
R−1

3̂ε
S
2̂ε
R

3̂ε

= S−1
2̂ε
R−1

3̂ε

1 0 0 0 0

0 1 0 0 0

0 0 1 0 ε

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1− 1
2ε

2 −ε 0 0

0 ε 1− 1
2ε

2 0 0

0 0 0 1 0

0 0 0 0 1

= S−1
2̂ε

1 0 0 0 0

0 1− 1
2ε

2 ε 0 0

0 −ε 1− 1
2ε

2 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1− 1
2ε

2 −ε 0 0

0 ε 1− 1
2ε

2 0 ε

0 0 0 1 0

0 0 0 0 1

=

1 0 0 0 0

0 1 0 0 0

0 0 1 0 −ε

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 ε2

0 0 1 0 ε

0 0 0 1 0

0 0 0 0 1

=

1 0 0 0 0

0 1 0 0 ε2

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

= S1̂ε2 . (3.11)

Geometrically, this gap arises because the rotation and its inverse involve circles
of different radii, as in Fig. 3.3. It can be closed by a single translation.
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For a rotation followed by a boost,

B−1
2̂ε
R−1

3̂ε
B

2̂ε
R

3̂ε

= B−1
2̂ε
R−1

3̂ε

1 0 0 0 0

0 1 0 0 0

ε 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1− 1
2ε

2 −ε 0 0

0 ε 1− 1
2ε

2 0 0

0 0 0 1 0

0 0 0 0 1

= B−1
2̂ε

1 0 0 0 0

0 1− 1
2ε

2 ε 0 0

0 −ε 1− 1
2ε

2 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1− 1
2ε

2 −ε 0 0

ε ε 1− 1
2ε

2 0 0

0 0 0 1 0

0 0 0 0 1

=

1 0 0 0 0

0 1 0 0 0

−ε 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

ε2 1 0 0 0

ε 0 1 0 0

0 0 0 1 0

0 0 0 0 1

=

1 0 0 0 0

ε2 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

= B1̂ε2 . (3.12)

Geometrically, this gap arises again because the rotation and its inverse involve
circles of different radii, as in Fig. 3.3. It can be closed by a single boost.
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For a time translation followed by a boost,

B−1
2̂ε
T−1
ε
B

2̂ε
T
ε

= B−1
2̂ε
T−1
ε

1 0 0 0 0

0 1 0 0 0

ε 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 ε

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

= B−1
2̂ε

1 0 0 0 −ε

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 ε

0 1 0 0 0

ε 0 1 0 ε2

0 0 0 1 0

0 0 0 0 1

=

1 0 0 0 0

0 1 0 0 0

−ε 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

ε 0 1 0 ε2

0 0 0 1 0

0 0 0 0 1

=

1 0 0 0 0

0 1 0 0 0

0 0 1 0 ε2

0 0 0 1 0

0 0 0 0 1

= S2̂ε2 . (3.13)

Geometrically, this gap arises because the boost and its inverse involve different
times, as in Fig. 3.3. It can be closed by a single space translation.

All other spacetime transformations commute, as is summarized in Table 3.1,
where the Levi-Civita symbol ε123 = 1 is antisymmetric on interchange of any
index (so it vanishes if any two indices are the same) and repeated indices are
summed over.
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Figure 3.3: Some spacetime transformations do not commute (top four exam-
ples), while others do (bottom two examples).
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Table 3.1: Summary of nontrivial spacetime closures to O[ε2].

S−1a S−1b SaSb = I R−1a T−1RaT = I R−1a R−1b RaRb = εabcRc

B−1a B−1b BaBb = I S−1a T−1SaT = I R−1a S−1b RaSb = εabcSc

B−1a S−1b BaSb = I B−1a T−1BaT = Sa R−1a B−1b RaBb = εabcBc

3.3 State Space Symmetry Generators

3.3.1 Generic Commutator

Every spacetime transformation

T ~rt = ~r ′t , (3.14)

corresponds a state space unitary transformation

U [T ] |ψ〉 = |ψ′〉 . (3.15)

A hermitian operator H = H† generates each unitary transformation U−1 = U†

of size ε by

U
[
Tε
]

= eiεH = I + iεH − 1

2
ε2H2 + · · · , (3.16)

where

dU

dε

∣∣∣∣
ε=0

= iH ≡ iT ′ε . (3.17)

Successive spacetime transformations and their inverses

T −1
b̂ε
T −1
âε
T
b̂ε
T
âε

= T
ĉε2

(3.18)

correspond on state space to

U
[
T −1
b̂ε

]
U
[
T −1
âε

]
U
[
T
b̂ε

]
U
[
T
âε

]
= U

[
T
ĉε2

]
, (3.19)

In terms of the generators,

e−iεHbe−iεHaeiεHbeiεHa = eiε
2Hc , (3.20)
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which to O[ε2] is

I + iε2Hc

=

(
I − iεHb −

1

2
ε2H2

b

)(
I − iεHa −

1

2
ε2H2

a

)
×(

I + iεHb −
1

2
ε2H2

b

)(
I + iεHa −

1

2
ε2H2

a

)
=

(
I − iε(Hb +Ha)− ε2HbHa −

1

2
ε2(H2

b +H2
a)

)
×(

I + iε(Hb +Ha)− ε2HbHa −
1

2
ε2(H2

b +H2
a)

)
= I − 2ε2HbHa + ε2(�

�H2
b +HbHa +HaHb +@@H

2
a )− ε2(�

�H2
b +@@H

2
a )

= I + ε2(−HbHa +HaHb)

= I + ε2[Ha, Hb], (3.21)

so the commutator of the hermitian generators

[Ha, Hb] = iHc. (3.22)

However, a shift of Ha → Ha + ϕI in the generators implies an unobservable
shift |ϕ〉 → eiϕ|ψ〉 in the states along with the more general commutator

[Ha, Hb] = iHc + iϕI. (3.23)

3.3.2 Commutator Antisymmetries

Commutators, and commutators involving commutators, are antisymmetric.
Add

[A,B] =��AB −HHBA, (3.24a)

[B,A] =HHBA −��AB, (3.24b)

to get
[A,B] + [B,A] = 0 (3.25)

or
[A,B] = −[B,A]. (3.26)

Add

[[A,B], C] = [AB −BA,C] =���ABC −���BAC −���CAB +XXXCBA, (3.27a)

[[C,A], B] = [CA−AC,B] =���CAB −XXXACB −XXXBCA +���BAC , (3.27b)

[[B,C], A] = [BC − CB,A] =XXXBCA −XXXCBA −���ABC +XXXACB, (3.27c)
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to get the Jacobi identity

[[A,B], C] + [[B,C], A] + [[C,A], B] = 0 (3.28)

or
[[A,B], C] = [[C,B], A] + [[A,C], B]. (3.29)

Furthermore, commutators of hermitian operators are antihermitian. As-
sume A† = A and B† = B. If [A,B] = C, then

C† = (AB−BA)† = (AB)†−(BA)† = B†A†−A†B† = BA−AB = −C. (3.30)

Thus, if [A,B] = iH, then H is hermitian.

3.3.3 Phase Constants

Table 3.2 summarizes the tentative generator commutation relations with the
real phase constants ϕnab ∈ R (where n is an index and not an exponent). The
commutator relations allow the phase constants to be zeroed in all but one case.

Table 3.2: Nontrivial symmetry generator commutators with phase constants.

[S′a, S
′
b] = iϕ1

abI [R′a, T
′] = iϕ4

a0I [R′a, R
′
b] = iεabcR

′
c + iϕ7

abI

[B′a, B
′
b] = iϕ2

abI [S′a, T
′] = iϕ5

a0I [R′a, S
′
b] = iεabcS

′
c + iϕ8

abI

[B′a, S
′
b] = iϕ3

abI [B′a, T
′] = iS′a + iϕ6

a0I [R′a, B
′
b] = iεabcB

′
c + iϕ9

abI

Eliminable

Commutator antisymmetry implies that every operator commutes with itself,
[A,A] = −[A,A] implies [A,A] = 0. Hence ϕnaa = 0.

In fact, all the phase constants in the red top left corner of Table 3.2 can
be eliminated by antisymmetry. Since the constants commute with everything,
the Eq. 3.28 Jacobi antisymmetry of {R′2, S′3, T ′},

0 = [[R′2, S
′
3], T ′] + [[T ′, R′2], S′3] + [[S′3, T

′], R′2],

= i[S′1, T
′]− iϕ4

20[I, S′3] + iϕ5
30[I,R′2],

= −ϕ5
10I − 0 + 0, (3.31)

implies
0 = [S′a, T

′] = iϕ5
a0I. (3.32)

Similarly,

0 = [R′a, T
′] = iϕ4

a0I, (3.33)

0 = [S′a, S
′
b] = iϕ1

abI, (3.34)

0 = [B′a, B
′
b] = iϕ2

abI. (3.35)
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Absorbable

The phase constants in the blue last column of Table 3.2 can be absorbed into
the symmetry generators. Antisymmetry of the rotation-rotation commutator

��
��iεbacR
′
c + iϕ7

baAI =��
���−iεabcR′c − iϕ7

abAI (3.36)

implies the antisymmetry of the corresponding phase constant

ϕ7
ba = −ϕ7

ab ≡ εabcϕ7
c . (3.37)

Then the substitution
R′a → R′a − ϕ7

aI, (3.38)

which is equivalent to the unobservable global phase change

|ψ′〉 = e−iϕ
7
a |ψ〉, (3.39)

converts the commutator

[R′a, R
′
b] = iεabcR

′
c + iεabcϕ

7
cI (3.40)

into
[R′a, R

′
b] = iεabcR

′
c. (3.41)

Next, the Jacobi antisymmetry of {R′1, R′2, B′3},

0 = [[R′1, R
′
2], B′3] + [[B′3, R

′
1], R′2] + [[R′2, B

′
3], R′1],

= i[R′3, B
′
3]− i[B′2, R′2] + i[B′1, R

′
1], (3.42)

implies, by cyclically permuting the space axes,

0 = +[R′3, B
′
3]−XXXX[B′2, R

′
2] +��

��[B′1, R
′
1] , (3.43a)

0 = +��
��[R′1, B
′
1] − [B′3, R

′
3] +XXXX[B′2, R

′
2] . (3.43b)

Adding implies [R′3, B
′
3] = 0 and similarly

[R′a, B
′
a] = 0. (3.44)

Using this result, the Jacobi antisymmetry of {R′3, R′1, B′3},

0 = [[R′3, R
′
1], B′3] + [[B′3, R

′
3], R′1] + [[R′1, B

′
3], R′3],

= i[R′2, B
′
3] + i[0, R′1]− i[B′2, R′3], (3.45)

implies the index antisymmetry of the commutator

[R′a, B
′
b] = −[R′b, B

′
a] (3.46)

and the antisymmetry of the corresponding phase constant

ϕ9
ba = −ϕ9

ab ≡ εabcϕ9
c . (3.47)
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Then the substitution
B′a → B′a − ϕ9

aI (3.48)

converts the commutator

[R′a, B
′
b] = iεabcB

′
c + iεabcϕ

9
cI (3.49)

into
[R′a, B

′
b] = iεabcB

′
c. (3.50)

A similar procedure yields

[R′a, S
′
b] = iεabcS

′
c. (3.51)

These results imply that phase constant in the teal middle bottom of Table 3.2
can be eliminated. The Jacobi antisymmetry of {R′1, B′2, T ′},

0 = [[R′1, B
′
2], T ′] + [[T ′, R′1], B′2] + [[B′2, T

′], R′1]

= i[B′3, T
′] + [0, B′2] + i[S′2, R

′
1]

= i[B′3, T
′] + 0 + S′3, (3.52)

implies, by cycling axes,
[B′a, T

′] = iS′a. (3.53)

Irremovable

The final unaccounted phase constant is in the black bottom left corner of
Table 3.2. The Jacobi antisymmetry of {R′1, B′2, S′1},

0 = [[R′1, B
′
2], S′1] + [[S′1, R

′
1], B′2] + [[B′2, S

′
1], R′1]

= i[B′3, S
′
1] + [0, B′2] + iϕ3

21[I,R′1]

= i[B′3, S
′
1] + 0 + 0, (3.54)

implies, by cycling axes,
[B′a, S

′
b] = 0, (3.55)

for a 6= b. The Jacobi antisymmetry of {R′1, B′2, S′3},

0 = [[R′1, B
′
2], S′3] + [[S′3, R

′
1], B′2] + [[B′2, S

′
3], R′1]

= i[B′3, S
′
3] + i[S′2, B

′
2] + iϕ3

23[I,R′1]

= i[B′3, S
′
3] + i[S′2, B

′
2] + 0, (3.56)

implies, by cycling axes,
[B′a, S

′
a] = [B′b, S

′
b]. (3.57)

Combine Eq. 3.55 and Eq. 3.57 to write

[B′a, S
′
b] = iδabµI, (3.58)

where µ is a real but undetermined constant, and the Kronecker symbol δab is
unity if its indices are the same but is zero otherwise. Table 3.3 summarizes the
final generator commutation relations.
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Table 3.3: Nontrivial symmetry generator commutators.

[S′a, S
′
b] = 0 [R′a, T

′] = 0 [R′a, R
′
b] = iεabcR

′
c

[B′a, B
′
b] = 0 [S′a, T

′] = 0 [R′a, S
′
b] = iεabcS

′
c

[B′a, S
′
b] = iδabµI [B′a, T

′] = iS′a [R′a, B
′
b] = iεabcB

′
c
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Problems

1. Show that the matrices

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

,

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

,

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

,

represent right-hand rotations and can be obtained by cyclicly permuting
the rows and columns of any one of them. Note the minus signs.

2. After years of thought and in a moment of inspiration, while walking with
his wife on the evening of 1843 October 16, William Rowan Hamilton
famously carved into the Brougham Bridge on the Royal Canal in Dublin
Ireland the algebra governing three-dimensional rotation combinations.

(a) The hermitian and unitary Pauli spin matrices

{I, σx, σy, σz} =

 1 0

0 1
,

0 1

1 0
,

0 −i

i 0
,

1 0

0 −1

 ,

(3.59)
span a two-dimensional Hilbert space and are isomorphic to Hamil-
ton’s quaternions {1, i, j,k}. Prove the following identities.

i. σaσb = −σbσa (anticommuting).

ii. σ2
a = I (unit squares).

iii. (~u ·~σ)(~v ·~σ) = I~u ·~v+ i ~u×~v ·~σ (dot and cross product relation).

(b) Show geometrically that the rotation of vector ~v about an axis θ̂
through an angle θ is

~v ′ = ~v⊥ cos θ + θ̂ × ~v⊥ sin θ + ~v‖

=
(
~v − θ̂

(
θ̂ · ~v

))
cos θ + θ̂ × ~v sin θ + θ̂

(
θ̂ · ~v

)
. (3.60)

(c) Expand the vector
~v = vxx̂+ vy ŷ + vz ẑ (3.61)

in Pauli matrices

~v · ~σ = vxσx + vyσy + vzσz (3.62)

and show that the Eq. 3.60 rotation is equivalent to

~v ′ · ~σ = U~θ
~v · ~σ U†~θ = e−i~σ·

~θ/2 ~v · ~σ e+i~σ·~θ/2, (3.63)

where the unitary operator

U~θ = e−i~σ·
~θ/2 = I cos

θ

2
− i~σ · θ̂ sin

θ

2
. (3.64)
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(d) To combine rotations, simply multiply the Eq. 3.64 unitary transfor-
mations, U3 = U2U1, or

e−i~σ·
~θ3/2 = e−i~σ·

~θ2/2e−i~σ·
~θ1/2. (3.65)

Expand and equate real and imaginary parts to show

cos
θ3
2

= cos
θ2
2

cos
θ1
2
− θ̂2 · θ̂1 sin

θ2
2

sin
θ1
2
, (3.66a)

θ̂3 sin
θ3
2

= θ̂2 sin
θ2
2

cos
θ1
2

+ θ̂1 cos
θ2
2

sin
θ1
2

+ θ̂2 × θ̂1 sin
θ2
2

sin
θ1
2
.

(3.66b)

Note that generally ~θ3 6= ~θ2 + ~θ1, but if θ̂1 = θ̂2, then θ3 = θ2 + θ1
and θ̂3 = θ̂2 = θ̂1.

(e) As an example, use Eq. 3.66 to combine a 90◦ rotation about the
z-axis followed by a 90◦ rotation about the y-axis, and interpret it
graphically.

3. Group theory has important applications to both classical and quantum
physics. As an example, the symmetry group of an equilateral triangle
consists of 6 operations: A and B rotate 120◦ and 240◦ about a line
perpendicular to the center, C and D and E reflect about lines through
a vertex and the center, and I doesn’t change anything. Show that these
6 operations form a group. To demonstrate closure, explicitly construct a
6× 6 multiplication table.

4. Prove the “product rule” commutator identity

[AB,C] = [A,C]B +A[B,C], (3.67)

and compare it to the product differentiation rule d(fg)/dx.

5. Verify that the Table 3.2 phase constants ϕ8
ab is absorbable.

6. Verify that the Table 3.2 phase constants ϕ1
ab, ϕ

2
ab, and ϕ4

ab are eliminable.
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Dynamics Commutators

Each symmetry generator corresponds to an observable dynamical variable.

4.1 Position Operator

To associate dynamical operators with the symmetry generators, assume the
position operator ~Q has commuting components Qa with eigenvalues ~x and
eigenstates |~x〉, so

~Q |~x〉 = ~x |~x〉 (4.1)

or
Qa |~x〉 = xa |~x〉 (4.2)

for a ∈ {1, 2, 3}.

Figure 4.1: A translated function at a translated point is the original function
at the original point, f ′[x′] = f [x].

Fix sign conventions by assuming, as in Fig. 4.1, that a transformed position
eigenstate at a transformed position is the original eigenstate at the original
position,

|~x ′〉′ = U [T~ε ]|T~ε ~x〉 = |~x〉 , (4.3)

69
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so that
U [T~ε ]|~x〉 =

∣∣T −1~ε ~x
〉
. (4.4)

Consequently, the position eigenvalue Eq. 4.1 transforms as

U ~QU−1U |~x〉 = ~xU |~x〉 , (4.5a)

U ~QU−1
∣∣T −1~ε ~x

〉
= ~x

∣∣T −1~ε ~x
〉
, (4.5b)

~Q′ |~x〉 = T~ε ~x |~x〉 , (4.5c)

where the position operator transforms like

~Q′ = U [T~ε ] ~QU [T~ε ]−1 = U [T~ε ] ~QU [T~ε ]† = ei~ε·
~T ′ ~Qe−i~ε·

~T ′ . (4.6)

For small transforms, to O[ε], this becomes

~Q′ =
(

1 + i~ε · ~T ′
)
~Q
(

1− i~ε · ~T ′
)

= ~Q+ i~ε · ~T ′ ~Q− i ~Q~ε · ~T ′

= ~Q+ i
[
~ε · ~T ′, ~Q

]
, (4.7)

and the mixed commutator of a symmetry generator and a position operator

i
[
~ε · ~T ′, ~Q

]
= ~Q′ − ~Q = T~ε ~xI − ~Q. (4.8)

4.1.1 Position and Space Translations

More specifically, under space translations,

S~ε ~x = ~x+ ~ε, (4.9)

the Eq. 4.1 position eigenvalue equation transforms as

U ~QU−1U |~x〉 = ~xU |~x〉 , (4.10a)

U ~QU−1
∣∣S−1~ε ~x

〉
= ~x

∣∣S−1~ε ~x
〉
, (4.10b)

~Q′ |~x〉 = S~ε ~x |~x〉
= (~x+ ~ε) |~x〉

= ( ~Q+ ~ε I) |~x〉 , (4.10c)

Since the state |~x〉 is arbitrary,

~Q′ = ~Q+ ~ε I. (4.11)

But under space translations the position operator also transforms like

~Q′ = U [S~ε ] ~QU [S~ε ]−1 = ei~ε·
~S′ ~Qe−i~ε·

~S′ , (4.12)
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which to O[ε] becomes

~Q′ =
(

1 + i~ε · ~S′
)
~Q
(

1− i~ε · ~S′
)

= ~Q+ i~ε · ~S′ ~Q− i ~Q~ε · ~S′

= ~Q+ i
[
~ε · ~S′, ~Q

]
. (4.13)

By comparison, the mixed commutator of translation generator and position
operator

i
[
~ε · ~S′, ~Q

]
= ~ε I (4.14)

or

i
[
~ε · ~S′, Qa

]
= εaI. (4.15)

If εa = εδab, then

i[S′b, Qa] = δabI (4.16)

or

[Qa, S
′
b] = iδabI. (4.17)

Figure 4.2: Cross product produces an infinitesimal rotation.

4.1.2 Position and Rotations

Under space rotations,

R~ε ~x = ~x+ ~ε× ~x+O[ε2], (4.18)
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as in Fig. 4.2, the Eq. 4.1 position eigenvalue equation transforms as

U ~QU−1U |~x〉 = ~xU |~x〉 , (4.19a)

U ~QU−1
∣∣R−1~ε ~x

〉
= ~x

∣∣R−1~ε ~x
〉
, (4.19b)

~Q′ |~x〉 = R~ε ~x |~x〉
= (~x+ ~ε× ~x) |~x〉

= ( ~Q+ ~ε× ~Q) |~x〉 , (4.19c)

Since the state |~x〉 is arbitrary,

~Q′ = ~Q+ ~ε× ~Q. (4.20)

But under space rotations the position operator also transforms like

~Q′ = U [R~ε ] ~QU [R~ε ]−1 = ei~ε·
~R′ ~Qe−i~ε·

~R′ , (4.21)

which to O[ε] becomes

~Q′ =
(

1 + i~ε · ~R′
)
~Q
(

1− i~ε · ~R′
)

= ~Q+ i~ε · ~R′ ~Q− i ~Q~ε · ~R′

= ~Q+ i
[
~ε · ~R′, ~Q

]
. (4.22)

By comparison, the mixed commutator of rotation generator and position op-
erator

i
[
~ε · ~R′, ~Q

]
= ~ε× ~Q. (4.23)

Projecting on the vector ~v,

i
[
~ε · ~R′, ~v · ~Q

]
= ~v · ~ε× ~Q. (4.24)

If ~ε = εx̂a and ~v = vx̂b, then

i[R′a, Qb] = x̂b · x̂a × ~Q = x̂b × x̂a · ~Q = −εabcx̂c · ~Q (4.25)

or

[R′a, Qb] = iεabcQc. (4.26)

4.1.3 Position and Boosts

Under velocity translations or boosts,

B~ε ~xt = ~xt + ~ε t, (4.27)
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the Eq. 4.1 position eigenvalue equation transforms as

U ~QU−1U |~xt〉 = ~xt U |~x〉 , (4.28a)

U ~QU−1
∣∣B−1~ε ~xt

〉
= ~xt

∣∣B−1~ε ~xt
〉
, (4.28b)

~Q′ |~xt〉 = B~ε ~xt |~xt〉
= (~xt + ~ε t) |~xt〉

= ( ~Q+ ~ε tI) |~xt〉 , (4.28c)

Since the state |~xt〉 is arbitrary,

~Q′ = ~Q+ ~ε tI. (4.29)

But under boosts the position operator also transforms like

~Q′ = U [B~ε ] ~QU [B~ε ]−1 = ei~ε·
~B′ ~Qe−i~ε·

~B′ , (4.30)

which to O[ε] becomes

~Q′ =
(

1 + i~ε · ~B′
)
~Q
(

1− i~ε · ~B′
)

= ~Q+ i~ε · ~B′ ~Q− i ~Q~ε · ~B′

= ~Q+ i
[
~ε · ~B′, ~Q

]
. (4.31)

By comparison, the mixed commutator of boost generator and position operator

i
[
~ε · ~B′, ~Q

]
= ~ε tI (4.32)

or

i
[
~ε · ~B′, Qa

]
= εatI. (4.33)

If ~ε = εδab, then

i[B′b, Qa] = δabtI (4.34)

or

[Qa, B
′
b] = iδabtI. (4.35)

Without loss of generality, at t = 0 there is no position change, and

[Qa, B
′
b] = 0, (4.36)

where U [B~ε] = exp[i~ε · ~B′] hereafter describes the instantaneous effects of a
velocity translation or boost.



Chapter 4. Dynamics Commutators 74

4.1.4 Position and Time Translations

Nonrelativistic quantum mechanics does not treat time and space equally: time t
is a parameter while space ~x is associated with the position operator ~Q. Hence,
discovering the mixed commutator of the time translation generator and the
position operators requires a different technique.

Under time translations,
Tε~xt = ~xt+ε, (4.37)

in order for the new state at the new time to be the old state at the old time,

|ψt′〉′ = U [Tε]
∣∣ψTεt〉 = |ψt〉. (4.38)

then the new state at the old time

|ψt〉′ = eiεT
′
|ψt〉 = U [Tε]|ψt〉 =

∣∣ψT−1
ε t

〉
= |ψt−ε〉. (4.39)

If ε = t, then
eitT

′
|ψt〉 = |ψ0〉. (4.40)

and
|ψt〉 = e−itT

′
|ψ0〉. (4.41)

Differentiate both sides with respect to the time t parameter to find

|ψt+dt〉 − |ψt〉
dt

=
d

dt
|ψt〉 = −iT ′|ψt〉 (4.42)

and its adjoint
〈ψt+dt| − 〈ψt|

dt
=

d

dt
〈ψt| = 〈ψt|iT ′. (4.43)

4.2 Velocity Operator

Introduce the velocity operator by the classical correspondence of expectation
values 〈

~V
〉

=
d

dt

〈
~Q
〉

(4.44)

or, more explicitly,〈
ψt

∣∣∣~V ∣∣∣ψt〉 =
d

dt

〈
ψt

∣∣∣ ~Q∣∣∣ψt〉
=

(
d

dt
〈ψt|

)
~Q |ψt〉+ 〈ψt| ~Q

(
d

dt
|ψt〉

)
= 〈ψt| iT ′ ~Q |ψt〉 − 〈ψt| i ~QT ′ |ψt〉

= 〈ψt| i
[
T ′, ~Q

]
|ψt〉 . (4.45)
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Since this is true for all state vectors,

~V = i
[
T ′, ~Q

]
(4.46)

or

[Qa, T
′] = iVa. (4.47)

Compute the mixed commutators of the velocity operator with the sym-
metry generators using the Section 4.1 position operator techniques or by the
antisymmetry of the existing commutators. For example,[

~ε · ~B′, Vb
]

= εa[B′a, Vb]

= −iεa[B′a, [Qb, T
′]]

= iεa
(
[T ′, [B′a, Qb]] + [Qb, [T

′, B′a]]
)

= iεa
(
[T ′, 0]− i[Qb, S′a]

)
= iεa(0 + δbaI)

= iεbI (4.48)

with ~ε = εx̂a implies

[B′a, Vb] = iδabI. (4.49)

Note that the boost of the velocity operator is

U [B~ε]~V U [B~ε]
−1 = ei~ε·

~B′ ~V e−i~ε·
~B′

=
(

1 + i~ε · ~B′
)
~V
(

1− i~ε · ~B′
)

= ~V + i~ε · ~B′ ~V − i~V ~ε · ~B′

= ~V + i
[
~ε · ~B′, ~V

]
= ~V − ~ε I (4.50)

to O[ε] (and by Eq. 4.113, this is true to all orders of ε). As a consequence, the
operator transformation

~V ′ = ei~ε·
~B′ ~V e−i~ε·

~B′ = ~V − ~ε I, (4.51)

which is plausible, as boosts are velocity translations.

Table 4.1 summarizes the commutations relations of the position and velocity
operators with the Galilei symmetry generators for free particles, while Table 4.2
summarizes the infinitesimal transformations of states and observables.
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Table 4.1: Mixed commutators of position and velocity operators with the free
particle symmetry generators representing Galilei transformations.

[Qa, T
′] = iVa [Va, T

′] = 0

[Qa, S
′
b] = iδabI [Va, S

′
b] = 0

[Qa, R
′
b] = iεabcQc [Va, R

′
b] = −iεabcVc

[Qa, B
′
b] = 0 [Va, B

′
b] = −iδabI

Table 4.2: Infinitesimal Hilbert space transformations of states (vectors) and
observables (operators) corresponding to Galilei real space transformations.

operation ~T ′ ei~ε·
~T ′
∣∣ψt[~x]

〉
ei~ε·

~T ′ ~Qe−i~ε·
~T ′ ei~ε·

~T ′ ~V e−i~ε·
~T ′

time translations T ′
∣∣ψt−ε[~x]

〉
~Q+ ~V ε ~V

space translations ~S′
∣∣ψt[~x− ~ε ]

〉
~Q+ ~ε I ~V

space rotations ~R′
∣∣ψt[~x− ~ε× ~x]

〉
~Q+ ~ε× ~Q ~V + ~ε× ~V

instant boosts ~B′
∣∣ψt[~x]

〉
~Q ~V − ~ε I

4.3 Symmetry Generators Dynamical Identities

The preceding commutation relations suffice to associate each generator with a
dynamical operator.

4.3.1 Free Particle Without Spin

Introduction

The consistency of Tables 3.3 & 4.1 suggests that boost generators are propor-
tional to position operators, ~B′ ∝ ~Q. Identifying boost generators with position
operators ~B′a = MQa implies

iδabI = [Qa, S
′
b] = ~[B′a, S

′
b]/M = ~ iδabµI/M (4.52)

which itself implies that the particle’s mass

M = µ~, (4.53)

where ~ (pronounced “h-bar”) is a dimensional constant. The Table 4.1 position
time translation commutator then identifies space translation generators with
momentum operators,

Pa = MVa = −i[MQa, T
′] = −i[~B′a, T ′] = −i~ iS′a = ~S′a. (4.54)
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This obvious first identification,

~ ~B′ = M ~Q ≡ ~C, (4.55a)

~~S′ = M~V ≡ ~P , (4.55b)

and Table 4.1 implies the famous position-momentum commutator

[Qa, Pb] = i~δabI, (4.56)

which implies (in popular notation)

[X,Px] = i~. (4.57)

Irreducible Sets

For a particle with no internal degrees of freedom, the position and momentum
operators { ~Q, ~P} are irreducible: if an operator commutes with ~Q, it cannot be

a function of ~P , and if it commutes with ~P , it cannot be a function of ~Q, and
if it commutes with both ~Q and ~P , it must be a constant. This is plausible
physically, as classical Hamiltonian dynamics uniquely determines orbits based
on single initial points in position-momentum “phase space”. The Eq. 4.55
identification thus implies that the generators of velocity and space translations
{ ~B′, ~S′} are also irreducible.

Position

Assuming { ~B′, ~S′} irreducibility, check that the identification of boost genera-

tors with position operators is unique by noting that since ~ ~B′−M ~Q commutes
with space translation generators ~S′,

[~B′a −MQa, S
′
b] = ~[B′a, S

′
b]−M [Qa, S

′
b]

=��
��~ iδabµI −����MiδabI = 0, (4.58)

assuming M = µ~, it cannot be a function of ~S′. Since it commutes with velocity
translation generators ~B′,

[~B′a −MQa, B
′
b] = ~[B′a, B

′
b]−M [Qa, B

′
b] = 0− 0 = 0, (4.59)

it cannot be a function of ~B′. Thus, if there are no internal degrees of freedom,
it must be a constant,

~ ~B′ −M ~Qa = ~kI. (4.60)

But from Table 4.1,

[R′a, Qb] = iεabcQc, (4.61a)

[R′a,MQb] = iεabcMQc, (4.61b)

[R′a, ~B′b − kbI] = iεabc(~B′c − kcI), (4.61c)

��
���~[R′a, B
′
b] =��

���~ iεabcB′c − iεabckcI, (4.61d)

so the constant ~k = ~0.
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Linear Momentum

Still assuming { ~B′, ~S′} irreducibility, check that the identification of space trans-
lation generators with momentum operators is unique by noting that since
~~S′ − ~P commutes with space translation generators ~S′,

[~S′a − Pa, S′b] = ~[S′a, S
′
b]−M [Va, S

′
b] = 0− 0 = 0, (4.62)

it cannot be a function of ~S′. Since it commutes with velocity translation
generators ~B′,

[~S′a − Pa, B′b] = ~[S′a, B
′
b]−M [Va, B

′
b] = ~(−iδabµI) +M i~δabI = 0, (4.63)

as M = µ~, it cannot be a function of ~B′. Thus, if there are no internal degrees
of freedom, it must be a constant,

~~S′ − ~P = ~kI. (4.64)

But from Table 4.1,

iεabcS
′
c = [R′a, S

′
b], (4.65a)

iεabc~S′c = [R′a, ~S′b], (4.65b)

iεabc(MVc + kcI) = [R′a,MVb + kbI], (4.65c)

���
��iεabcMVc + iεabckcI = M [R′a, Vb],

= −iM [R′a, [Qb, T
′]]

= iM([T ′, [R′a, Qb]] + [Qb, [T
′, R′a]])

= −εabcM([T ′, Qc] + [Qb, 0])

=���
��iεabcMVc , (4.65d)

so the constant ~k = ~0.

Angular Momentum

Furthermore, identifying rotation generators with angular momenta operators
~R′a = εabcQbPc = Lc implies

���
�[R′a, B
′
b] = εacd[QcPd, B

′
b]/~

= εacd[B
′
cS
′
d, B

′
b]~/M

= εacd(B
′
c[S
′
d, B

′
b] + [B′c, B

′
b]S
′
d)~/M

= εacd(−iδbdµB′c + 0)~/M
= −iεacbB′c
=���

�iεabcB
′
c , (4.66)
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and similarly for the other Table 3.3 blue commutators. Now { ~B′, ~S′} irre-

ducibility implies { ~Q, ~P} irreducibility, so check that this identification is nec-

essary by noting that since ~R′a − εabcQbPc commutes with momentum ~P ,

[~R′a − εabcQbPc, Pb] = ~[R′a, Pb]− εabc[QbPc, Pb]
= ~2[R′a, S

′
b]− εabc(Qb[Pc, Pb] + [Qb, Pb]Pc)

= ~2iεabcS′c − εabci~Pc = 0, (4.67)

it cannot be a function of ~P . Since it commutes with position ~Q,

[~R′a − εabcQbPc, Qb] = ~[R′a, Qb]− iεabc[QbPc, Qb]
= ~iεabcQc − iεabc(Qb[Pc, Qb] + [Qb, Qb]Pc)

= −~iεabcQb + εabci~Qb = 0, (4.68)

it cannot be a function of ~Q. Thus, if there are no internal degrees of freedom,
it must be a constant,

~R′a − εabcQbPc = kaI. (4.69)

But from Tables 3.3 & 4.1 and the Eq. 4.111b identity,

[R′a, R
′
b] = iεabcR

′
c,

[~R′a, R′b] = iεabc~R′c,
[εacdQcPd + kaI,R

′
b] = iεabc(εcdeQdPe + kcI),

εacd~2[B′cS
′
d, R

′
b] = iεabc~2(εcdeB

′
dS
′
e +MkcI),

εacd(B
′
c[S
′
d, R

′
b] + [B′c, R

′
b]S
′
d) = iεabcεcdeB

′
dS
′
e + iεabcMkc/I~2,

εacd(−iεbdeB′cS′e − iεbceB′eS′d) = i(δadδbe − δaeδbd)B′dS′e + iεabcMkcI/~2,
εdacεdbeB

′
cS
′
e − εcadεcbeB′eS′d = (δadδbe − δaeδbd)B′dS′e + εabcMkcI/~2,

(δabδce − δaeδcb)B′cS′e − (δabδde − δaeδdb)B′eS′d = B′aS
′
b −B′bS′a + εabcMkcI/~2,

���
��

δab ~B
′ · ~S ′ −HHHB′bS

′
a −���

��
δab ~B

′ · ~S ′ +��
�B′aS
′
b =��

�B′aS
′
b −HHHB′bS

′
a + εabcMkcI/~2,

0 = εabcMkcI/~2, (4.70)

so the constant ~k = ~0.

Energy

Finally, identifying time translation generators with the energy operator ~T ′ =
PaPa/2M = H implies

���
�[B′a, T
′] = [B′a, PbPb]/2M~

= [B′a, S
′
bS
′
b]~/2M

= (S′b[B
′
a, S

′
b] + [B′a, S

′
b]S
′
b)~/2M

= (S′b iδabµI + iδabµI S
′
b)~/2M

=��iS
′
a . (4.71)
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Again assuming { ~Q, ~P} irreducibility, check that this identification is unique by
noting that since ~T ′ − PaPa/2M commutes with momentum Pb,

[~T ′ − PaPa/2M,Pb] = ~[T ′, Pb]− [PaPa, Pb]/2M

= ~[T ′, S′b]− Pa[Pa, Pa]/2M − [Pa, Pa]Pa/2M

= 0− 0− 0 = 0, (4.72)

it cannot be a function of Qa. Since it commutes with position Qa,

2M [~T ′ − PbPb/2M,Qb] = 2M~[T ′, Qb]− [PaPa, Qb]

= 2~2[T ′, B′b]− ~3S′a[S′a, B
′
b]/M − ~3[S′a, B

′
b]S
′
a/M

= −2~2iS′b + S′biδab~3µ/M + S′biδab~3µ/M
= −����2S′bi~2 +���

�2S′bi~2 = 0, (4.73)

it cannot be a function of Pa. Thus, if there are no internal degrees of freedom,
it must be a constant,

~T ′ − PaPa
2M

= E0I, (4.74)

or

~T ′ =
~P · ~P
2M

+ E0I, (4.75)

where E0 is undetermined by the symmetries, but reflects the familiar freedom
to choose the zero of energy.

Recap

The simplest identification of generators with dynamical operators that satisfy
the commutation relations in vector form is

~T ′ = 1
2M

~V · ~V ≡ H, (4.76a)

~~S′ = M~V ≡ ~P , (4.76b)

~~R′ = ~Q×M~V ≡ ~L, (4.76c)

~ ~B′ = M ~Q ≡ ~C, (4.76d)

where H is the Hamiltonian energy, ~P is the momentum, ~L is the angular
momentum, and ~C =

∑
Mn

~Qn is proportional to the center-of-mass in the
multiple particle generalization. The identification in component form is

~T ′ = H = PaPa/2M, (4.77a)

~S′a = Pa = MVa, (4.77b)

~R′a = La = εabcQbPc, (4.77c)

~B′a = Ca = MQa, (4.77d)

where the Hamiltonian energy H = ~T ′ generates time translations, the lin-
ear momentum ~P = ~~S′ generates space translations, the angular momentum
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~L = ~~R′ generates space rotations, the center-of-mass ~C = M ~Q generates ve-
locity translations or boosts, and the proportionality constant ~ fixes M = µ~
to be the free particle’s mass. Experimentally, Planck’s constant

h = 2π~ ≈ 6.6× 10−34 J s = 0.66
zJ

THz
(4.78)

is (for example) the rate of change of photon energy with frequency. The fi-
nal dynamical commutation relations, summarized by Table 4.3, form a Lie
(pronounced “lee”) algebra.

Table 4.3: Nontrivial dynamical commutators for a free particle without spin.

[Pa, Pb] = 0 [La, H] = 0 [La, Lb] = i~ εabcLc
[Qa, Qb] = 0 [Pa, H] = 0 [La, Pb] = i~ εabcPc
[Qa, Pb] = i~ δabI [Qa, H] = i~Pa/M [La, Qb] = i~ εabcQc

4.3.2 Interacting Particles Without Spin

Interactions modify a state’s time evolution, invalidating the Table 3.3 symmetry
generators involving time. Consequently, redefine ~T ′ = H to be the genera-
tor of dynamic time evolution, rather than merely geometric time translation.
However, still constrain time evolution by the independent velocity operator
definition 〈

~V
〉

=
d

dt

〈
~Q
〉

(4.44 reminder)

and the resulting commutator

[Qa, T
′] = iVa (4.47 reminder)

and operator transform

~V − ~ε I = ei~ε·
~B′ ~V e−i~ε·

~B′ . (4.51 reminder)

With interactions, boost generators still correspond to position operators,
~ ~B′ = M ~Q, because its derivation does not involve the symmetry generators
involving time. Space translation generators still correspond to momentum
operators, but the relationship with velocities is generalized. Since ~~S′ −M~V
commutes with ~Q,

[~S′a −MVa, Qb] = ~[S′a, Qb]−M [Va, Qb]

= ~[S′a, B
′
b]/M − ~[Va, B

′
b]

= −iδabµ~I/M + ~δabI
= 0, (4.79)
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and there are no internal degrees of freedom, it must be a function of ~Q,

~~S′ −M~V = ~A
[
~Q
]

(4.80)

or
~P ≡ ~~S′ = M~V + ~A

[
~Q
]
, (4.81)

where ~A represents momentum stored in the interacting fields.

Similarly, the time translation generator still corresponds to the Hamiltonian
energy operator but in a generalized way. Since ~A and ~Q commute, identifying
time translation generators with the energy operator

~H ≡ ~T ′ =
(
~P − ~A

)2
/2M (4.82)

implies

XXXXi[H,Qa] = i[(Pb −Qb)(Pb −Qb), Qa]/2M

= i ([PbPb, Qa]− [PbAb, Qa]− [AbPb, Qa] + [AbAb, Qa]) /2M

= i (Pb [Pb, Qa] + [Pb, Qa]Pb − [Pb, Qa]Ab −Ab [Pb, Qa] + 0) /2M

= i (−Pb i~δab − i~δabPb + i~δabAb +Ab i~δab) /2M
= (Pa −Aa)/M

=ZZVa . (4.83)

However, this identification is not unique, as adding or subtracting any function
of position V

[
~Q
]

also works. With the most general identification allowed by the
Galilei group of symmetry transformations, external fields shift the free energy
and linear momentum operators by functions of position, so

H − V
[
~Q
]

=
1

2M

(
~P − ~A

[
~Q
])2

. (4.84)

4.3.3 Free Particle With Spin

The internal degrees of freedom are independent of position ~Q and momentum
~P . In particular, spin degrees of freedom generalize the relation between space
rotation generators and angular momentum operators to

~J = ~L+ ~S , (4.85)

where the spin angular momentum operators satisfy

[Sa,Sb] = iεabcSc, (4.86)

and S is pronounced “big script s”. The other identifications proceed similarly.
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4.4 Position Space Schrödinger Equation

Assuming a time translated state at a time translated instant is the original
state at the original instant,

|ψ′t〉′ = U [Tε]|ψTεt〉 = |ψt〉 , (4.87)

the infinitesimal time translation of a generic state

eiεH/~|ψt〉 = eiεT
′
|ψt〉 = U [Tε]|ψt〉 =

∣∣ψT−1
ε t

〉
=
∣∣ψt−ε〉 (4.88)

or ∣∣ψt−ε〉 = eiεH/~|ψt〉, (4.89)

To O[ε], ∣∣ψt−ε〉 =

(
1 + iε

H

~

)
|ψt〉 (4.90)

implies the differential equation

− iH
~
|ψt〉 =

|ψt〉 − |ψt−ε〉
ε

=
∂

∂t
|ψt〉 (4.91)

or

H |ψt〉 = i~ ∂t |ψt〉 , (4.92)

which is the state space Schrödinger equation. Since the state |ψt〉 is arbitrary,
the Hamiltonian energy operator acts like the time derivative

H = +i~ ∂t. (4.93)

Assuming a space translated position eigenstate at a space translated posi-
tion is the original eigenstate at the original position,

|~x ′〉′ = U [S~ε]|S~ε ~x〉 = |~x〉 , (4.94)

the infinitesimal space translation of a position eigenstate

ei~ε·
~P/~|~x〉 = ei~ε·

~S′ |~x〉 = U [S~ε]|~x〉 = |S−1~ε ~x〉 = |~x− ~ε 〉. (4.95)

and its adjoint

〈~x− ~ε | = 〈~x|e−i~ε·~P/~ (4.96)

projected onto a generic state

〈~x− ~ε |ψt〉 = 〈~x|e−i~ε·~P/~|ψt〉 (4.97)

or

ψt[~x− ~ε ] = e−i~ε·
~P/~ψt[~x], (4.98)
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where the operators Pa on state space and the corresponding operators Πa on
wave function space are identified Pa ↔ Πa by 〈~x|Pa|ψt〉 = Πa〈~x|ψt〉. To O[ε],

ψt[~x− ~ε ] =

(
1− i~ε ·

~P

~

)
ψt[~x] (4.99)

implies the differential equation

iε̂ ·
~P

~
ψt[~x] =

ψt[~x]− ψt[~x− ~ε ]

ε
= ε̂ · ~∇ψt[~x]. (4.100)

Since the direction ε̂ is arbitrary,

~Pψt[~x] = −i~~∇ψt[~x], (4.101)

and since the wave function ψt[~x] is arbitrary, the position representation of the
momentum operator acts like the space derivative or gradient

~P = −i~~∇. (4.102)

The position operator definition

~Q|~x〉 = ~x|~x〉 (4.103)

and its adjoint
〈~x| ~Q = 〈~x|~x (4.104)

projected onto a generic state

〈~x| ~Q|ψt〉 = 〈~x|~x|ψt〉 (4.105)

implies
~Qψt[~x] = ~xψt[~x], (4.106)

where again state and wave function operators are identified Qa ↔ Θa by
〈~x|Qa|ψt〉 = Θa〈~x|ψt〉. Since the wave function ψt[~x] is arbitrary, the position
representation of the position operator (unsurprisingly) acts like multiplication
by position

~Q = ~x. (4.107)

Finally, “sandwich” the ~A = ~0 Eq. 4.84 Hamiltonian

H =
1

2M
~P · ~P + V

[
~Q
]

(4.108)

between the position eigenstate 〈~x| and the state |ψt〉 to write

〈~x|H|ψt〉 =
〈
~x
∣∣ 1
2M

~P · ~P + V
[
~Q
]∣∣ψt〉 (4.109)

and use the Eq. 4.93, Eq. 4.102, and Eq. 4.107 position representations to write
the position space Schrödinger equation

i~ ∂tψt[~x] = − ~2

2M
∇2ψt[~x] + V[~x]ψt[~x]. (4.110)
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Problems

1. Prove the following ε-δ identities, with implied sums over repeated indices,

εabcεmno = det

δam δan δao

δbm δbn δbo

δcm δcn δco

= +δamδbnδco + δaoδbmδcn + δanδboδcm

− δamδboδcn − δanδbmδco − δaoδbnδcm, (4.111a)

εsabεsmn = δamδbn − δanδbm, (4.111b)

εrsaεrsm = 2δam, (4.111c)

εrstεrst = 6, (4.111d)

and use one of them to prove the “bac-cab” identity

~a×
(
~b× ~c

)
= ~b
(
~a · ~c

)
− ~c
(
~a ·~b

)
. (4.112)

2. Prove that [Ua, Ub] = iεabcWc is equivalent to ~U × ~U = i ~W .

3. If A and B are operators and x is a parameter, prove that

exABe−xA = B + [A,B]x+
1

2!
[A, [A,B]]x2 +

1

3!
[A, [A, [A,B]]]x3 + · · · .

(4.113)
(Hint: If f [x] = exABe−xA, then show df/dx = [A, f ], and so on.)

4. Use Eq. 4.113 to verify the Table 4.2 operator transformations.

5. Substitute the Eq. 4.76 identifications into the Table 4.1 mixed commuta-
tors, and show they are consistent with the Table 4.3 final commutators.

6. Compare and contrast the hermitian boost generators ~B′ and

~ ~B′ = M ~Q− t ~P . (4.114)

In particular, use Eq. 4.113 to compute the effects of the corresponding
unitary transformations on the position and momentum operators ~Q and
~P . Why are boosts also known as velocity translations?

7. Prove the Eq. 4.57 position-momentum commutator in the position basis
using the Eq. 4.102 momentum operator representation. (Hint: Apply the
commutator to the generic wave function ψt[x] and use calculus.)

8. By Eq. 4.102, the momentum acts like a derivative in the position basis,

〈x|Px|ψ〉 = −i~ ∂xψ[x] = −i~ ∂x〈x|ψ〉. (4.115)
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(a) Consider |ψ〉 = |p〉 to be a state of definite momentum Px|p〉 = p|p〉
and solve

〈x|Px|p〉 = −i~ ∂x〈x|p〉 (4.116)

to find
〈x|p〉 = Ceipx/~. (4.117)

(b) To find the constant C, use the orthonormalization 〈p|p′〉 = δ[p−p′],
the resolution of the identity I =

∫
dx |x〉〈x|, and the Dirac delta

representation δ[p] =
∫
dx eipx/~/(2π~).

(c) Use the state expansion

|ψ〉 = I|ψ〉 =

∫
dx |x〉〈x|ψ〉 (4.118)

to show that the position wave functions ψ[x] = 〈x|ψ〉 are the Fourier
transforms of the momentum wave functions ψ̃[p] = 〈p|ψ〉.



Chapter 5

Harmonic Oscillator

The harmonic oscillator is the most important model system in both classical
and quantum physics.

5.1 Classical Harmonic Oscillator

Consider a simple (or ideal) harmonic oscillator, a mass m connected to a
Hooke’s law spring of stiffness k. If the displacement is x, then the linear
restoring force is Fx = −kx, and the quadratic (or parabolic) potential energy
function is

V [x] =
1

2
kx2. (5.1)

The equation of motion follows from Newton’s second law ax = Fx/m, namely

ẍ = ∂2t x = − 1

m
∂xV = − 1

m
V ′[x] = − k

m
x. (5.2)

This has the well-known sinusoidal solution

x[t] = A sin[ωt+ ϕ], (5.3)

provided the angular frequency ω =
√
k/m. The constants A and ϕ depend on

the initial conditions. In phase space {x, px}, energy

E =
1

2
mv2x + V [x] =

1

2m
p2x +

mω2

2
x2 (5.4)

conservation implies elliptical orbits.
Real springs, of course, aren’t so simple. Stretch them too far, for example,

and they break. However, almost any potential energy function is approximately
parabolic near a local minimum. If the potential V [x] has a minimum at x0,
expand in a Taylor series to get

V [x] = V [x0] + V ′[x0] (x− x0) +
1

2
V ′′[x0](x− x0)

2
+ · · · . (5.5)

87
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Since V ′[x0] = 0, near x0

V [x]− V [x0] ∼ 1

2
V ′′[x0](x− x0)

2
(5.6)

or

δV ∼ 1

2
k(δx)

2
, (5.7)

where k = V ′′[x0]. Thus, the simple harmonic oscillator is a canonical system
of widespread importance.

5.2 Commutator Solution

Quantum mechanically, the Eq. 5.4 harmonic oscillator oscillator implies the
Hamiltonian operator

H =
1

2m
P 2 +

mω2

2
Q2, (5.8)

where the energy spectrum of H follows algebraically from the Table 4.3 com-
mutation relation

[Q,P ] = i~I, (5.9)

and the hermeticity of the position and momentum operators.

5.2.1 Dimensionless Variables

An oscillator of energy

1

2
~ω =

1

2m
p2x +

mω2

2
x2 =

1

2m
p20 + 0 = 0 +

mω2

2
x20 (5.10)

defines a maximum position x0 =
√
~/mω and momentum p0 =

√
m~ω, which

define dimensionless operators

q =
Q

x0
=

√
mω

~
Q, (5.11a)

p =
P

p0
=

√
1

m~ω
P, (5.11b)

so that

[q, p] =

[√
mω

~
Q,

√
1

m~ω
P

]
=

1

~
[Q,P ] = i, (5.12)

where the identity operator I is implicit in the final step, as is conventional.
The Eq. 5.8 Hamiltonian becomes

H =
1

2m

(
m~ω p2

)
+
mω2

2

(
~
mω

q2
)

=
1

2
~ω
(
p2 + q2

)
. (5.13)
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5.2.2 Creation & Annihilation Operators

Introduce creation and annihilation operators

a =
q + ip√

2
, (5.14a)

a† =
q − ip√

2
, (5.14b)

such that

q =
a+ a†√

2
, (5.15a)

p =
a− a†

i
√

2
, (5.15b)

and

[a, a†] =
1

2

(
[q, q]− i[q, p] + i[p, q] + [p, p]

)
= −i[q, p] = 1. (5.16)

Substitute the Eq. 5.15 dimensionless operators into the Eq. 5.119 Hamiltonian
to “factorize” it into

H =
1

2
~ω
(
−(a− a†)2 + (a+ a†)2

2

)
=

1

2
~ω
(
aa† + a†a

)
= ~ω

(
a†a+

1

2

)
= ~ω

(
N +

1

2

)
, (5.17)

where the hermitian number operator

N = a†a = (a†a)† = N† (5.18)

obeys

[N, a] = [a†a, a] = a†[a, a] + [a†, a]a = −a, (5.19a)

[N, a†] = [a†a, a†] = a†[a, a†] + [a†, a†]a = +a†. (5.19b)

5.2.3 Number Operator Spectrum

Let |λ〉 be an eigenstate of the number operator N with eigenvalue λ so that

N |λ〉 = λ|λ〉. (5.20)
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First “annihilate” or “lower” an eigenstate to a|λ〉 and apply the number oper-
ator

Na|λ〉 = (aN + [N, a])|λ〉 = (aN − a)|λ〉 = (aλ− a)|λ〉 = (λ− 1)a|λ〉 (5.21)

to show that
a|λ〉 ∝ |λ− 1〉 (5.22)

is an eigenstate with eigenvalue λ− 1,

N |λ− 1〉 = (λ− 1)|λ− 1〉. (5.23)

Similarly, show that
a2|λ− 2〉 ∝ |λ− 2〉 (5.24)

is an eigenstate with eigenvalue λ− 2,

N |λ− 2〉 = (λ− 2)|λ− 2〉. (5.25)

Continue to create a downward “ladder” of eigenstates and eigenvalues. The
ladder must have a bottom rung, because if |µ〉 = a|λ〉, then

0 ≤ 〈µ|µ〉 = 〈λ|a†a|λ〉 = 〈λ|N |λ〉 = λ〈λ|λ〉 = λ (5.26)

must be nonnegative. Let |ψ〉 = |0〉 be the vacuum state such that

a|0〉 = 0, (5.27)

so that further annihilations will produce no more eigenstates. Normalize the
annihilation operator such that

a|n〉 = cn|n− 1〉, (5.28)

where
n = 〈n|N |n〉 = 〈n|a†a|n〉 = 〈n− 1|c∗ncn|n− 1〉 = |cn|2. (5.29)

Choose a real and positive normalization cn =
√
n so that

a|n〉 =
√
n|n− 1〉. (5.30)

Next “create” or “raise” an eigenstate to a†|λ〉 and apply the number oper-
ator

Na†|λ〉 = (a†N + a†)|λ〉 = (a†λ+ a†)|λ〉 = (λ+ 1)a†|λ〉 (5.31)

to show that
a†|λ〉 ∝ |λ+ 1〉 (5.32)

is an eigenstate with eigenvalue λ+ 1,

N |λ+ 1〉 = (λ+ 1)|λ+ 1〉. (5.33)

Similarly, show that
(a†)2|λ+ 2〉 ∝ |λ+ 2〉 (5.34)
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is an eigenstate with eigenvalue λ+ 2,

N |λ+ 2〉 = (λ+ 2)|λ+ 2〉. (5.35)

Continue to create an upward “ladder” of eigenstates and eigenvalues. The
ladder does not have a top rung. Normalize the creation operator by

a†|n〉 =
√
n+ 1|n+ 1〉. (5.36)

5.2.4 Energy Spectrum

Thus, the orthonormal eigenstates of the number operator satisfy

N |n〉 = n|n〉 (5.37)

for nonnegative integers n = 0, 1, 2, . . ., and by Eq. 5.17, the orthonormal eigen-
states of the Hamiltonian operator satisfy

H|En〉 = En|En〉, (5.38)

where

En =

(
n+

1

2

)
~ω. (5.39)

The ground state or zero-point energy E0 = ~ω/2 is nonzero due to the
Heisenberg uncertainty principle. If it were zero, the oscillator’s position and
momentum would be both be exactly zero, but if one of the two is exact, the
other must be indeterminate. The zero-point energy of the quantum vacuum
may be related to the Dark Energy (or Clear Tension) that seems to be accel-
erating the expansion of the universe.

The regular energy spacing ∆E = En+1−En = ~ω makes possible the pho-
ton model of light. Transitions between adjacent energy levels are accompanied
by the emission or absorption of photons of energy ~ω, corresponding to classical
light of temporal frequency ω.

5.2.5 Wave Functions

The harmonic oscillator wave functions

ψn[x] = 〈x|n〉 (5.40)

are the projections of the eigenstates |n〉 in the position basis. For example, find
the ground state wave function by projecting the vacuum state annihilation

0 = a|0〉 =
q + ip√

2
|0〉 =

1√
2

(√
mω

~
Q+ i

√
1

m~ω
P

)
|0〉 (5.41)

on the position basis

0 =

√
mω

~
〈x|Q|0〉+ i

√
1

m~ω
〈x|P |0〉 =

√
mω

~
xψ0[x] + i

√
1

m~ω
(−i~∂xψ0[x])

(5.42)
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using the Eq. 4.107 and Eq. 4.102 representations for the position and momen-
tum operators in the position basis to get the differential equation

− mω

~
xψ0 =

dψ

dx
. (5.43)

Separate variables

− mω

~
xdx =

dψ

ψ0
(5.44)

and integrate

− mω

~
x2

2
= logψ0 − logN0 (5.45)

to find the gaussian ground state wave function

ψ0[x] = N0e
−mωx2/2~ = N0e

− 1
2 (x/x0)

2

, (5.46)

where N0 is a normalization constant.

5.3 Differential Equation Solution

An alternate approach to finding the spectrum of the quantum harmonic oscil-
lator is to solve the eigenvalue problem

H|E〉 = E|E〉 (5.47)

for the Eq. 5.8 Hamiltonian in the position basis

〈x|H|E〉 = E〈x|E〉, (5.48)

which implies the differential equation

1

2m
(−i~∂x)2ψE [x] +

mω2

2
x2ψE [x] = EψE [x] (5.49)

or

− ~2

2m
ψ′′ +

mω2

2
ψ = Eψ, (5.50)

where ψ = ψE [x] ∈ R is real for simplicity, subject to the normalization con-
straint

1 = 〈E|E〉 =

∫
dx 〈E|x〉〈E|x〉 =

∫ ∞
−∞

dxψE [x]∗ψE [x] =

∫ ∞
−∞

dxψ2. (5.51)

This famous problem is nontrivial.



Chapter 5. Harmonic Oscillator 93

5.3.1 Dimensionless Variables

Again introduce dimensionless variables. For the position scale, let x0 be the
classical turning point for a harmonic oscillator with energy E0 = ~ω/2. Thus

1

2
~ω = E0 =

1

2
mv2 +

1

2
kx2 = 0 +

1

2
kx20, (5.52)

which implies

x0 =

√
~ω
k

=

√
~
mω

. (5.53)

Use this scale to define a dimensionless position

ξ =
x

x0
(5.54)

and a dimensionless eigenfunction

ϕ[ξ] =
√
x0ψ[x]. (5.55)

Then the derivatives transform like

ψ′ =
dψ

dx
=

1
√
x0

dϕ

dx
=

1
√
x0

dξ

dx

dϕ

dξ
=

1

x03/2
ϕ′ (5.56)

and

ψ′′ =
dψ′

dx
=

1

x03/2
dϕ′

dx
=

1

x03/2
dξ

dx

dϕ′

dξ
=

1

x05/2
ϕ′′, (5.57)

where, as usual, the prime denotes derivative with respect to the argument (x or
ξ, as appropriate). Putting this altogether, our problem transforms to solving

ϕ′′ =
(
ξ2 − ε

)
ϕ (5.58)

subject to the constraint

1 =

∫ ∞
−∞

dξ ϕ2, (5.59)

where the dimensionless energy

ε =
E

E0
. (5.60)

5.3.2 Asymptotic Behavior

When ξ is large, neglect ε and write

ϕ′′ ∼ ξ2ϕ, (5.61)

which has the approximate exponential solutions

ϕ ∼ ±e± 1
2 ξ

2

. (5.62)
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To verify this, note that

ϕ′ ∼ ξe± 1
2 ξ

2

(5.63)

and
ϕ′′ ∼

(
±1 + ξ2

)
e±

1
2 ξ

2

∼ ξ2ϕ. (5.64)

Since only the decaying exponential is square normalizable, strip off the
asymptotic behavior by assuming solutions of the form

ϕ[ξ] = h[ξ]e−
1
2 ξ

2

, (5.65)

and expect the functions h[ξ] to be polynomials. Then

ϕ′ = (h′ − ξh) e−
1
2 ξ

2

(5.66)

and
ϕ′′ =

(
h′′ − 2ξh′ +

(
ξ2 − 1

)
h
)
e−

1
2 ξ

2

. (5.67)

With these substitutions, the exponentials cancel, and our differential equation
becomes

h′′ − 2ξh′ + (ε− 1)h = 0. (5.68)

5.3.3 Power Series Solution

Write the solution as a power series

h[ξ] = a0 + a1ξ + a2ξ
2 + a3ξ

3 + · · · =
∞∑
m=0

amξ
m, (5.69)

and its first derivative

h′[ξ] = 0 + a1 + 2a2ξ + 3a3ξ
2 + · · · =

∞∑
m=0

mamξ
m−1, (5.70)

and its second derivative

h′′[ξ] = 0 + 0 + 2a2 + 3 · 2a3ξ + · · · =
∞∑
m=0

m (m− 1) amξ
m−2. (5.71)

Substituting these power series into Eq. 5.68 gives

∞∑
m=0

m (m− 1) amξ
m−2 − 2ξ

∞∑
m=0

mamξ
m−1 + (ε− 1)

∞∑
m=0

amξ
m = 0. (5.72)

By shifting the dummy index m → m + 2 in first summation, consolidate this
as

∞∑
m=0

((m+ 2) (m+ 1) am+2 − 2mam + (ε− 2) am) ξm = 0. (5.73)
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The only way this can be true for all ξ is if the coefficients are all zero, which
means

am+2 =
2m+ 1− ε

(m+ 1) (m+ 2)
am. (5.74)

This recursion relation separately links coefficients of odd and even indices.
It thereby specifies two independent solutions, corresponding to the two arbi-
trary constants determined by the initial conditions of our second-order differ-
ential equation. The constant a0 specifies symmetric solutions h[−ξ] = h[ξ]
in even powers of ξ, while the constant a1 specifies antisymmetric solutions
h[−ξ] = −h[ξ] in odd powers of ξ. This is consistent with our expectation that
symmetric potentials V [−x] = V [x] imply eigenfunctions of definite symmetry
ψ[−x] = ±ψ[x].

5.3.4 Power Series Diverges

For large m� 1, the recursion relation simplifies to

am+2 ∼
2m

m ·m
am =

am
m/2

. (5.75)

This has the approximate solution

am ∼
K

(m/2)!
, (5.76)

for some constant K, because it implies

am+2 ∼
K

(m/2 + 1)!
=

K

(m/2 + 1) (m/2)!
∼ am
m/2 + 1

∼ am
m/2

. (5.77)

However, this means

h[ξ] ∼
∑
m�1

K

(m/2)!
ξm = K

∑
m�1

(
ξ2
)m/2

(m/2)!
∼ K

∞∑
l=0

(
ξ2
)l
l!

= Keξ
2

. (5.78)

Thus
ϕ[ξ] = h[ξ]e−

1
2 ξ

2

∼ K̃e+ 1
2 ξ

2

, (5.79)

for some constant K̃. This divergent and unnormalizable behavior is unaccept-
able.

5.3.5 Truncate Series

The only way to avoid nonphysical solutions is for the infinite power series to
terminate. This can happen if the numerator of the recursion relation vanishes
for some m = n <∞, in which case an+2 = 0 and hence am≥n+2 = 0. The only
way for the numerator to vanish is if the dimensionless energy ε is quantized
according to
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εn = 2n+ 1, (5.80)

which implies that the dimensional energy E is quantized according to

En = εnE0 = (2n+ 1)
~ω
2

=

(
n+

1

2

)
~ω, (5.81)

for n = 0, 1, 2, . . .. Thus, the physically relevant recursion relation is

am+2 =
2m+ 1− εn

(m+ 1) (m+ 2)
am = − 2 (n−m)

(m+ 1) (m+ 2)
am, (5.82)

where m = 0, 1, 2, . . . , n. This defines a symmetric or antisymmetric nth order
hermite polynomial Hn[ξ].

5.3.6 Standard Form Solutions

Write the harmonic oscillator eigenfunctions in standard form as

ψn[x] = NnH[x/x0]e−
1
2 (x/x0)

2

, (5.83)

where x0 is the classical turning point of Eq. 5.53 and the normalization constant

Nn =
1√

x02nn!
√
π

(5.84)

is fixed by the constraint Eq. 5.51. The first few eigenfunctions are listed in
Table 5.1 and graphed in Figure 5.1.

Table 5.1: First few harmonic oscillator eigenvalues and eigenfunctions.

n En ψn[x]

0 1
2E0 N0e

− 1
2 (x/x0)

2

1 3
2E0 N12(x/x0)e−

1
2 (x/x0)

2

2 5
2E0 N2(−2 + 4(x/x0)

2
)e−

1
2 (x/x0)

2

3 7
2E0 N3(−12(x/x0) + 8(x/x0)

3
)e−

1
2 ((x/x0))

2
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Figure 5.1: First few harmonic oscillator eigenfunctions superimposed on the
corresponding energy eigenvalues of the quadratic potential. The dots denote
concavity changes, the smooth joining of sinusoids and exponentials, at the
classical turning points.

5.3.7 Classical Correspondence

Quantum harmonic oscillator states of small quantum number n do not have
classical analogues. In fact, such eigenfunctions are very wave-like, dominated
by nodes near which the probability of finding the particle is near zero. How-
ever, recover a classical correspondence by considering states of large quantum
number.

For comparison, first compute the probability distribution for a classical
harmonic oscillator. The sinusoidally oscillating position of Eq. 5.3,

x = A sin[ωt+ ϕ], (5.85)

implies a sinusoidally oscillating velocity

ẋ = vx = ωA cos[ωt+ ϕ]. (5.86)

Together, these imply an elliptical phase space {x[t], vx[t]} trajectory

x2 +
(vx
ω

)2
= A2 (5.87)

and a speed

|vx| = ω
√
A2 − x2. (5.88)

Suppose the oscillator mass m spends a time dt in distance dx about position
x. The probability of finding it there is inversely proportional to its speed, so

dP = ρc[x]dx = Cdt = C
dx

|vx|
= C

dx

ω
√
A2 − x2

, (5.89)
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Figure 5.2: At even the modest quantum number n = 20, the quantum proba-
bility density corresponds well to the classical probability density.

where the normalization constant C is determined by the constraint

1 =

∫ A

−A
ρc[x]dx =

∫ t0+T/2

t0

Cdt = C
T

2
. (5.90)

Thus, C = 2/T = ω/π, and the classical probability density is

ρc[x] =
1

π
√
A2 − x2

. (5.91)

The classical turning point coordinate xn corresponding to the energy En is
defined by

(2n+ 1)E0 = En = V [xn] = E0

(
xn
x0

)2

, (5.92)

or

xn = x0
√

2n+ 1. (5.93)

The quantum probability density follows the classical probability density with
A = xn, as in Figure 5.2, for n = 20.

5.4 Angular Momentum

Harmonic oscillators in higher dimensions can have nonzero angular momentum.
To model such oscillators, first study the eigenstates and eigenvalues of the
angular momentum operators Ja = J†a, which are completely determined by the
Table 4.3 commutation relations

[Ja, Jb] = i~ εabcJc. (5.94)
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Although the components of angular momenta don’t commute with each other,
they do commute with the the total angular momentum squared,

[J2, Jb] = [JaJa, Jb]

= Ja[Ja, Jb] + [Ja, Jb]Ja

= JaεabcJc + εabcJcJa

= εabcJaJc + εcbaJaJc

= (εabc + εcba)JaJc

= (εabc − εabc)JaJc
= 0, (5.95)

and therefore share common eigenstates

J2|s, c〉 = ~2s|s, c〉, (5.96a)

Jz|s, c〉 = ~ c|s, c〉, (5.96b)

where the index choice a = 3 = z is conventional (from its special role in
cylindrical and spherical coordinates), and the factors of ~ make the squared
and component quantum numbers s and c dimensionless.

The expectation of any component squared〈
J2
a

〉
=
〈
s, c
∣∣J2
a

∣∣s, c〉 =
(〈
s, c
∣∣J†a)(Ja

∣∣s, c〉) = 〈ϕ|ϕ〉 ≥ 0 (5.97)

must be positive, and so the expectation of the total momentum squared〈
s, c
∣∣J2
∣∣s, c〉 =

〈
s, c
∣∣J2
x |s, c

〉
+
〈
s, c
∣∣J2
y

∣∣s, c〉+
〈
s, c
∣∣J2
z

∣∣s, c〉 (5.98)

implies
~2s =

〈
J2
x

〉
+
〈
J2
y

〉
+ ~2c2 ≥ ~2c2 (5.99)

and
−
√
s ≤ c ≤ +

√
s. (5.100)

As with the harmonic oscillator, define the raising and lowering operators

J± = Jx ± iJy, (5.101)

which satisfy

[Jz, J±] = [Jz, Jx ± iJy] = [Jz, Jx]± i[Jz, Jy] = i~Jy ± ~Jx = ±~J± (5.102)

and

[J+, J−] = [Jx + iJy, Jx − iJy] = [Jx, Jx]− i[Jx, Jy] + i[Jy, Jx] + [Jy, Jy] = 2~Jz.
(5.103)

First raise an eigenstate to J+|s, c〉 and measure Jz by applying the compo-
nent operator to get

JzJ+|s, c〉 = (J+Jz + [Jz, J+])|s, c〉 = (J+Jz + ~J+)|s, c〉 = ~(c+ 1)J+|s, c〉
(5.104)
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and show that
J+|s, c〉 ∝ |s, c+ 1〉 (5.105)

is an eigenstate of Jz with eigenvalue ~(c + 1). The raising operator must
annihilate the state with the maximum component

J+|s, cmax〉 = 0 (5.106)

or it would create an eigenstate with eigenvalue larger than the maximum. Since

J−J+ = (Jx−iJy)(Jx+iJy) = J2
x+J2

y+i(JxJy−JyJx) = J2−J2
z−~Jz, (5.107)

multiply Eq. 5.106 by the lowering operator to find

0 = J−J+|s, cmax〉 = ~2(s− c2max − cmax)|s, cmax〉 (5.108)

so
s = cmax(cmax + 1). (5.109)

Next lower an eigenstate to J−|s, c〉 and measure Jz by applying the com-
ponent operator to get

JzJ−|s, c〉 = (J−Jz + [Jz, J−])|s, c〉 = (J−Jz − ~J−)|s, c〉 = ~(c− 1)J−|s, c〉
(5.110)

and show that
J−|s, c〉 ∝ |s, c− 1〉 (5.111)

is an eigenstate of Jz with eigenvalue ~(c − 1). The lower operator must anni-
hilate the state with the minimum component

J−|s, cmin〉 = 0 (5.112)

or it would create an eigenstate with eigenvalue smaller than the minimum.
Since

J+J− = (Jx+iJy)(Jx−iJy) = J2
x+J2

y−i(JxJy−JyJx) = J2−J2
z +~Jz, (5.113)

multiply Eq. 5.112 by the raising operator to find

0 = J+J−|s, cmin〉 = ~2(s− c2min + cmin)|s, cmin〉 (5.114)

so
s = −cmin(−cmin + 1). (5.115)

Equations 5.109 & 5.115 imply cmax = −cmin ≡ j so that s = j(j+ 1). Since
the component quantum numbers c differ by integers, cmax − cmin = 2j is an
integer, and j is a “half integer”. Conventionally label the common eigenstates
of J2 and Jz by quantum numbers j and m = c so that

J2|j,m〉 = ~2j(j + 1)|j,m〉, (5.116a)

Jz|j,m〉 = ~ m|j,m〉, (5.116b)

where each angular momentum squared quantum number j = 0, 1/2, 1, 3/2, 2, . . .
corresponds to 2j+1 values of angular momentum component quantum number
m = −j,−j + 1, . . . , j − 1, j, as in Fig. 5.3. In nature, fermions (like electrons)
realize the half integer spin angular momentum and bosons (like photons) realize
the integer spin angular momentum.
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Figure 5.3: Angular momentum quantum numbers for fermions (red dots) and
bosons (black dots).

5.5 Two-Dimensional Harmonic Oscillator

5.5.1 Classical Case

An isotropic harmonic oscillator in the two-dimensional xy-plane has energy

E =
1

2m
p2x +

1

2m
p2x +

mω2

2
(x2 + y2), (5.117)

and angular momentum

~L = ~r × ~p = ẑ(xpy − ypx). (5.118)

5.5.2 Eigenstates of Energy

Quantum mechanically, the Eq. 5.117 harmonic oscillator oscillator implies the
Hamiltonian operator

H =
1

2m
P 2
x +

1

2m
P 2
y +

mω2

2
(X2 + Y 2), (5.119)

where the energy spectrum of H follows algebraically from the Table 4.3 com-
mutation relations

[X,Px] = i~, (5.120a)

[Y, Py] = i~, (5.120b)

with all others vanishing, and the hermeticity of the position and momentum
operators.
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Mirroring the solution of the one-dimensional oscillator, introduce the di-
mensionless position and momentum operators

x =
X

x0
=

√
mω

~
X, (5.121a)

y =
Y

x0
=

√
mω

~
Y, (5.121b)

px =
Px
p0

=

√
1

m~ω
Px, (5.121c)

py =
Py
p0

=

√
1

m~ω
Py, (5.121d)

and the annihilation or creation operators

ax =
x+ ipx√

2
, (5.122a)

ay =
y + ipy√

2
, (5.122b)

a†x =
x− ipx√

2
, (5.122c)

a†y =
y − ipy√

2
, (5.122d)

such that

x =
ax + a†x√

2
, (5.123a)

y =
ay + a†y√

2
, (5.123b)

px =
ax − a†x
i
√

2
, (5.123c)

py =
ay − a†y
i
√

2
, (5.123d)

and
[ax, a

†
x] = 1 = [ay, a

†
y], (5.124)

with all others vanishing. The Hamiltonian “factorizes” into

H = ~ω
(
a†xax +

1

2

)
+ ~ω

(
a†yay +

1

2

)
= ~ω

(
Nx +

1

2

)
+ ~ω

(
Ny +

1

2

)
,

= ~ω (Nx +Ny + 1) . (5.125)
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Since [Nx, Ny] = 0, there are simultaneous eigenstates |nx, ny〉 that can be
lowered

ax|nx, ny〉 =
√
nx|nx − 1, ny〉, (5.126a)

ay|nx, ny〉 =
√
ny|nx, ny − 1〉, (5.126b)

and raised

a†x|nx, ny〉 =
√
nx + 1|nx + 1, ny〉, (5.127a)

a†y|nx, ny〉 =
√
ny + 1|nx, ny + 1〉. (5.127b)

The orthonormal eigenstates of the number operators satisfy

Nx|nx, ny〉 = nx|nx, ny〉, (5.128a)

Ny|nx, ny〉 = ny|nx, ny〉, (5.128b)

and the orthonormal eigenstates of the Hamiltonian operator satisfy

H|nx, ny〉 = (nx + ny + 1)~ω|nx, ny〉, (5.129)

or
H|E~n〉 = E~n|E~n〉, (5.130)

where
E~n = (n+ 1)~ω, (5.131)

and n = nx + ny. Because the eigenstates |3, 2〉 and |2, 3〉 correspond to the
same energy of 6~ω, the states are two-fold degenerate.

5.5.3 Eigenstates of Energy & Angular Momentum

Using Eqs. 5.121 & 5.123, the angular momentum operator

Lz = XPy − Y Px = i~(axa
†
y − a†xay) = L†z, (5.132)

as in Problem 5. Adding the relations

[axa
†
y − a†xay, a†xax] = +axa

†
y + a†xay, (5.133a)

[axa
†
y − a†xay, a†yay] = −axa†y − a†xay, (5.133b)

implies
[Lz, H] = 0, (5.134)

as in Problem 6, so the angular momentum and Hamiltonian operators will have
common eigenstates. Obtain these by defining new raising and lower operators

a+ =
ax + iay√

2
, (5.135a)

a− =
ax − iay√

2
, (5.135b)
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such that

ax =
a+ + a−√

2
, (5.136a)

ay =
a+ − a−
i
√

2
, (5.136b)

and

[a+, a
†
+] = 1 = [a−, a

†
−], (5.137)

with all others vanishing.

The Hamiltonian operator

H

~ω
= a†xax + a†yay + 1

=
(a†+ + a†−)(a+ + a−)

2
+

(a†+ − a
†
−)(a+ − a−)

2
+ 1

= a†+a+ + a†−a− + 1

= N+ +N− + 1, (5.138)

and the angular momentum operator

Lz
~

= iaxa
†
y − ia†xay

= ia†yax − ia†xay

= −
(a†+ − a

†
−)(a+ + a−)

2
−

(a†+ + a†−)(a− − a−)

2

= −a†+a+ + a†−a−

= N− −N+. (5.139)

The lowering operators satisfy

a+|n+, n−〉 =
√
n+|n+ − 1, n−〉, (5.140a)

a−|n+, n−〉 =
√
n−|n+, n− − 1〉, (5.140b)

and the raising operators satisfy

a†+|n+, n−〉 =
√
n+ + 1|n+ + 1, n−〉, (5.141a)

a†−|n+, n−〉 =
√
n− + 1|n+, n− + 1〉, (5.141b)

The orthonormal eigenstates of the number operators satisfy

N+|n+, n−〉 = n+|n+, n−〉, (5.142a)

N−|n+, n−〉 = n−|n+, n−〉, (5.142b)
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and the orthonormal eigenstates of the Hamiltonian and angular momentum
operators satisfy

H|n+, n−〉 = (n+ + n− + 1) ~ω |n+, n−〉, (5.143a)

Lz|n+, n−〉 = (n− − n+) ~ |n+, n−〉. (5.143b)

In terms of the sum and difference quantum numbers

n = n+ + n−, (5.144a)

m = n− − n+, (5.144b)

the dynamic operators are

H|n,m〉 = (n+ 1) ~ω |n,m〉, (5.145a)

Lz|n,m〉 = m ~ |n,m〉, (5.145b)

where n = 0, 1, 2, . . . and m = −n,−n + 2, . . . , n − 2, n. Thus for each energy,
there are n + 1 angular momentum states, with equal numbers of positive and
negative momenta.
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Problems

1. Justify the Eq. 5.36 creation operator normalization.

2. Sketch the five top-left rows and columns of the infinite square matrix rep-
resentations for the annihilation a, creation a†, and number N operators.

3. Find the constant N0 in the Eq. 5.46 ground state wave function by en-
forcing Eq. 5.51 normalization.

4. Generalize the technique of Section 5.2.5 to find the harmonic oscillator
first excited state position wave function ψ1[x] = 〈x|1〉.

5. Derive the Eq. 5.132 angular momentum operator expression, and show
that it is hermitian.

6. Derive the Eq. 5.133 identities and use them to show that the isotropic
oscillator’s Hamiltonian and angular momentum operators commute.



Chapter 6

Hydrogen Atom

The hydrogen atom is the exactly solvable model that unlocked the quantum
world and underlies chemistry.

6.1 Classical Kepler Problem

The hydrogen atom problem is the quantum Kepler problem. The classical
Kepler problem consist of a reduced mass article bound to an inverse distance
potential

V [r] = −κ
r
, (6.1)

where κ = GMm and 1/µ = 1/m + 1/M . Associated with the 3 degrees of
freedom of the particle are 2 ∗ 3 − 1 = 5 constants of the motion (and a 6th
related to the arbitrary origin of time). They are the total energy

E =
p2

2µ
− κ

r
, (6.2)

the angular momentum
~L = ~r × ~p, (6.3)

and the eccentricity (or Laplace-Runge-Lenz vector)

~e = r̂ +
~L× ~p
µκ

, (6.4)

subject to the constraints
~e · ~L = 0 (6.5)

and

e2 = 1 +
2EL2

µκ2
, (6.6)

giving 1 + 3 + 3 − 1 − 1 = 5 constants of the motion. The last constant of the
motion, the eccentricity vector ~e, ensures that all bound orbits are closed, which

107
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is only true for the harmonic oscillator and hydrogen atom potential energies.
Solve Eq. 6.6 to find the energy

E = −µκ2 1− e2

2L2
< 0. (6.7)

6.2 Quantum Kepler Problem

In generalizing the classical Kepler problem to the quantum Kepler problem,
the position and momentum variables become hermitian operators

~r = {x, y, z} = {r1, r2, r3} = {Q1, Q2, Q3}, (6.8a)

~p = {px, py, pz} = {p1, p2, p3} = {P1, P2, P3}, (6.8b)

satisfying the Table 4.3 commutation relations. In the present notation, these
imply the additional Table 6.1 commutation relations.

Table 6.1: Kepler Problem 2 commutators, where where the commutator of two
vectors implicitly utilizes the scalar product, [~u,~v] ≡ ~u · ~v − ~v · ~u.[
p2, ~r

]
= −2i~ ~p [~r · ~p, ~r ] = −i~~r

[~p, 1/r] = i~~r/r3 [~r · ~p, ~p ] = i~ ~p[
p2, 1/r

]
= 2i~~r · ~p/r3

[
~r · ~p, p2

]
= 2i~ p2[

~p, 1/r3
]

= 3i~~r/r5 [~r · ~p, 1/r] = i~/r

[~p, ~r ] = −3i~
[
~r · ~p, 1/r3

]
= 3i~/r3

6.2.1 Angular Momentum

To remove the ambiguity associated with the noncommutativity of the position
and momentum operators, symmetrize the expression for angular momentum

~L =
~r × ~p− ~p× ~r

2
=
~r × ~p+ ~r × ~p

2
= ~r × ~p = ~L†, (6.9)
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as the different components of position and linear momentum commute (for
example, [r1, p2] = [x, py] = 0). The angular momentum squared

L2 = ~L · ~L = LaLa

= εajkrjpk εamnrmpn

= εajkεamnrjpkrmpn

= (δjmδkn − δjnδkm)rjpkrmpn

= rjpkrjpk − rjpkrkpj
= rj(rjpk + [pk, rj ])pk − rjpk(pjrk + [rk, pj ])

= rjrjpkpk − rji~ δkjpk − rjpkpjrk − rjpki~ δkj
= rjrjpkpk − i~ rjpj − rjpkpjrk − i~ rjpj
= rjrjpkpk − i~ rjpj − rjpjpkrk − i~ rjpj
= rjrjpkpk − i~ rjpj − rjpj(rkpk + [pk, rk])− i~ rjpj
= rjrjpkpk − i~ rjpj − rjpj(rkpk − i~ δkk)− i~ rjpj
= rjrjpkpk − i~ rjpj − rjpjrkpk + 3i~ rjpj − i~ rjpj
= r2p2 − (~r · ~p)2 + i~(~r · ~p), (6.10)

as δkk = 1 + 1 + 1 = 3 unless k is a fixed index.

6.2.2 Eccentricity

Symmetrize the expression for eccentricity

~e = r̂ +
~L× ~p− ~p× ~L

2µκ
= r̂ +

~L× ~p
µκ

− i~ ~p

µκ
= ~e †, (6.11)

as the different components of position and angular momentum do not com-
mute. However, Planck’s constant is macroscopically small, and the limit ~→ 0
recovers the classical expression.

To derive the Eq. 6.11 eccentricity, write

µκ~e = µκ r̂ + ~C, (6.12)

where the symmetrized cross product

~C =
~L× ~p− ~p× ~L

2
. (6.13)
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In components

2Ca = εajkLjpk − εajkpjLk
= εajkεjmnrmpnpk − εajkpjεkmnrmpn
= −εajkεkmn(rmpnpj + pjrmpn)

= −(δamδjn − δanδjm)(rmpnpj + pjrmpn)

= −rapjpj + rjpapj − pjrapj + pjrjpa

= −rapjpj + rjpapj − (rapj − i~ δja)pj + (rjpj − i~ δjj)pa
= −rapjpj + rjpapj − rapjpj + i~ pa + rjpjpa − 3i~ pa
= −2rapjpj + 2rjpjpa − 2i~ pa, (6.14)

so two forms of the cross product are

~C = −~r p2 + (~r · ~p)~p− i~ ~p = (~r × ~p)× ~p− i~ ~p = ~L× ~p− i~ ~p, (6.15a)

~C = −~r p2 + ~p(~r · ~p), (6.15b)

where the second form is courtesy of Table 6.1. Thus, two forms of the eccen-
tricity are

µκ~e = µκ r̂ + ~L× ~p− i~ ~p, (6.16a)

µκ~e = ~p(~r · ~p)− ~r
(
p2 − µκ

r

)
. (6.16b)

If φ = ~r · ~p and θ = p2 − µκ/r, then the eccentricity squared

(µκ e)2 = µκ~e · µκ~e
= (~pφ− ~rθ) · (~pφ− ~rθ)

= ~pφ · ~pφ− ~pφ · ~r~θ − ~rθ · ~pφ+ ~rθ · ~rφ. (6.17)

The Table 6.1 commutators imply

~pφ · ~pφ = pnφ pnφ

= pn(pnφ+ i~ pn)φ

= pnpnφ
2 + i~ pnpnφ

= p2φ2 + i~ p2 (6.18)

and similarly

−~pφ · ~r~θ = −p2φ2 − ~2p2 +
µκ

r
φ2 − 2i~

µκ

r
φ (6.19)

and

−~rθ · ~pφ = −p2φ2 +
µκ

r
φ2 − 2i~ p2φ (6.20)
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and

+~rθ · ~rφ = +p2r2p2 + 2~2p2 − 2µκ rp2 + (µκ)2 − 2~2
µκ

r
+ 2i~ p2. (6.21)

Hence, the eccentricity squared

(µκ e)2 = + p2φ2 + i~ p2φ

− p2φ2 − ~2p2 +
µκ

r
φ2 − 2i~

µκ

r
φ

− p2φ2 +
µκ

r
φ2 − 2i~ p2φ

+ p2r2p2 + 2~2p2 − 2µκ rp2 + (µκ)2 − 2~2
µκ

r
+ 2i~ p2φ

= (µκ)2 + p2r2p2 − p2φ2 + i~ p2φ− 2µκ rp2 + 2
µκ

r
φ2 − 2i~

µκ

r
φ+ ~2p2 − 2~2

µκ

r

= (µκ)2 + p2
(
r2p2 − φ2 + i~φ

)
− 2

µκ

r

(
r2p2 − φ2 + i~φ

)
+ ~2p2 − 2~2

µκ

r

= (µκ)2 + p2L2 − 2
µκ

r
L2 + ~2p2 − 2~2

µκ

r

= (µκ)2 + 2µ

(
p2

2µ
− κ

r

)
L2 + 2µ~2

(
p2

2µ
− κ

r

)
= (µκ)2 + 2µH(L2 + ~2), (6.22)

omitting factors of the identity operator I.

6.2.3 Hamiltonian

From the eccentricity, the Hamiltonian

H =
p2

2µ
− κ

r
= −µκ2 1− e2

2(L2 + ~2)
= H†. (6.23)

The Hamiltonian commutes with the eccentricity and the angular momentum
squared

[H, ea] = 0, (6.24a)

[H,L2] = 0, (6.24b)

as in Problem 3, and the three vector operates obey the commutation relations

[La, Lb] = i~ εabcLc, (6.25a)

[La, eb] = i~ εabc ec, (6.25b)

[ea, eb] = i εabc Lc
(
−2H~2/µκ2

)
, (6.25c)

as in Problem 4. Restrict the operators to act only on those vectors in the
Hilbert space that are eigenstates of the Hamiltonian H, an eigensubspace in
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which Hamiltonian acts like a number H = EI, with E < 0, and introduce the
scaled eccentricity

~ε =

√
µκ2

−2E~2
~e (6.26)

to simplify the Eq. 6.25 commutation relations

[La, Lb] = i~ εabcLc, (6.27a)

[La, ~εb] = i~ εabcεc, (6.27b)

[~εa, ~εb] = i~ εabcLc, (6.27c)

which define a Lie algebra with structure constants ~εabc.
Different combinations of basis vectors ~ε and ~L imply different structure

constants. “Uncouple” ~ε and ~L by the “rotation”

~J± =
~L± ~~ε

2
(6.28)

to further simplify the commutation relations

[J+
a , J

−
b ] = 0, (6.29a)

[J+
a , J

+
b ] = i~ εabcJ+

c , (6.29b)

[J−a , J
−
b ] = i~ εabcJ−c , (6.29c)

and the Hamiltonian

H = −µκ2 1

2(4J2 + ~2)
, (6.30)

where J2 = J+J+ = J−J−.

6.2.4 Eigenvalues

Since J obey the angular momentum commutation relations, there exist states
states |j〉 such that

J2|j〉 = j(j + 1)~2|j〉, (6.31)

for j = 0, 1/2, 1, 3/2, 2, . . .. Since [H,J2] = 0, there exist states |E, j〉 such that

H|E, j〉 = E|E, j〉, (6.32a)

J2|E, j〉 = j(j + 1)~2|E, j〉, (6.32b)

If the state |ψ〉 is in the space spanned by these states, then

H|ψ〉 = −µκ2 1

2(4J2 + ~2)
|ψ〉 (6.33)

and

E|ψ〉 = −µκ2 1

2(4j(j + 1)~2 + ~2)
|ψ〉. (6.34)
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Since this is true for all such states,

E = − µκ2

2(2j + 1)2~2
< 0 (6.35)

or

En =
E1

n2
< 0, (6.36)

where the ground state

E1 = −µκ
2

2~2
= −1

2
mec

2

(
k
q2e
~c

)2

≈ −1

2
511 keV

(
1

137

)2

= −13.6 eV, (6.37)

for n = 2j + 1 = 1, 2, 3, . . ..
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Problems

1. Let Q and P be position and momentum operators satisfying [Q,P ] =
i~I = i~. Derive the following commutators.

(a) [Q,P 2] = 2i~P .

(b) [Q,Pn] = ni~Pn−1.

(c) [Q, f [P ]] = i~f ′[P ] = i~ df/dP .

(d) [P, f [Q]] = −i~f ′[Q] = −i~ df/dQ.

2. Derive the Table 6.1 commutators.

3. Verify the Eq. 6.24 commutators.

4. Verify the Eq. 6.25 commutators.



Appendix A

Notation

Table A.1 summarizes the symbols of this text. Some symbols are more universal
than others.

Table A.1: Symbols used in this text.

Quantity Symbol Alternates

state |ψ〉, |ψt〉 Ψ

unitary operator U

hermitian operator H

time translation T, T ′ St

space translation Sa, S
′
a Sa

space rotation Ra, R
′
a R~θ

boost Ba, B
′
a Ga

coordinates xa, x, y, z, t

small change ε, δ

position operator Qa Xa, ra

momentum operator Pa pa

velocity operator Va va

angular momentum operator Ja, Ja,Sa

Hamiltonian energy operator H

Standard mathematics notation suffers from a serious ambiguity involving
parentheses. In particular, parentheses can be used to denote multiplication, as
in a(b + c) = ab + ac and f(g) = fg, or they can be used to denote functions
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evaluated at arguments, as in f(t) and g(b+c). It can be a struggle to determine
the intended meaning from context.

To avoid ambiguity, this text always uses round parentheses (•) to group
for multiplication and square brackets [•] to list function arguments. Thus,
a(b) = ab denotes the product of two factors a and b, while f [x] denotes a
function f evaluated at an argument x. Mathematica [13] employs the same
convention.
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