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Chapter 0

Three Teasers

0.1 Abstract Algebra

Rotate a book 90� clockwise about an upward axis and then 90� clockwise about
a leftward axis. Repeat the rotations in the reverse order and the book ends in
a di↵erent orientation, as in Fig. 0.1! Symbolically,

R1R2 6= R2R1. (0.1)

What kind of numbers can represent rotations that don’t commute?

Figure 0.1: Finite rotations do not commute.
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0.2 Fourier Analysis

Consider the motion of an ideal string fixed at both ends, like a guitar string.
Musically, the string’s motion is well-known to be a superposition of sinusoidal
normal modes called harmonics. Symbolically,

y[x, t] =
X

n

an sin[2⇡x/�n] sin[2⇡fnt]. (0.2)

Yet the motion consists of a line segment bouncing back-and-forth inside a
parallelogram envelope, as in Fig. 0.2. How can the harmonics synthesize this
kinked motion and with what amplitudes?

Figure 0.2: Sinusoidal normal modes synthesize kinked string dynamics.



Chapter 0. Three Teasers 11

0.3 Di↵erential Equations

Suppose water in a bucket increases at a rate equal to the cube root of water
already there. If the bucket begins empty, then symbolically

d

dt
V [t] = V [t]1/3, (0.3a)

V [0] = 0. (0.3b)

This initial value problem has two easily-checked solutions

V [t] =

✓
2

3

◆3/2

t3/2, (0.4a)

V [t] = 0. (0.4b)

How can the bucket both remain empty and fill with water? How can this
evolution be nonunique?

Figure 0.3: Evolution of water in the bucket has an ambiguous future.
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Chapter 1

Complex Numbers

Complex numbers complete real numbers.

Figure 1.1: Illustrating the fundamental theorem of algebra, peaks represent 4
complex roots of the 4th-order polynomial equation fk[z] = kz4 + z + 1 = 0 for
two di↵erent values of the parameter k, where z = x+ iy and x and y are real.

1.1 Euler’s Identity

The algebraic equation x2 + 1 = 0 has no real solutions. Imagine that it has
solutions ±i. Leverage these imaginary solutions to prove the fundamental

theorem of algebra: an nth order polynomial has exactly n roots, as illus-
trated by Fig. 1.1. The beauty of this result convinced mathematicians of the
utility of imaginary numbers.

By successive multiplication, the imaginary number i satisfies

i2 = �1, (1.1a)

i3 = �i, (1.1b)

i4 = +1, (1.1c)

13
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i5 = +i (1.1d)

i6 = �1, (1.1e)

and so on in a 4-cycle. Hence the absolutely convergent Taylor expansions of
common functions, as in Fig. 1.2, dramatically reorganize when evaluated at
imaginary numbers. For example, the exponential

eix = 1 + ix+
(ix)2

2!
+

(ix)3

3!
+

(ix)4

4!
+

(ix)5

5!
+

(ix)6

6!
+

(ix)7

7!
+

(ix)8

8!
+ · · ·

= 1 + ix�
x2

2!
� i

x3

3!
+

x4

4!
+ i

x5

5!
�

x6

6!
� i

x7

7!
+

x8

8!
+ · · ·

=

✓
1�

x2

2!
+

x4

4!
�

x6

6!
+

x8

8!
� · · ·

◆
+ i

✓
x�

x3

3!
+

x5

5!
�

x7

7!
+ · · ·

◆

= cosx+ i sinx, (1.2)

becomes a linear superposition of sinusoids known as Euler’s identity. The
choice x = ⇡ generates the famously beautiful special case

ei⇡ + 1 = 0, (1.3)

which relates the five most important mathematical constants e, i,⇡, 1, 0 in a
simple formula.

Figure 1.2: Convergent power series approximations to a sine, where the darker
curves include more terms.

1.2 2D Division Algebra

A general complex number is the linear combination

z = zR + zIi = x+ iy = {x, y}, (1.4)
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where the real and imaginary components x = zR and y = zI are real numbers.
The product of two complex numbers

zz0 = (x+ iy)(x0 + iy0) = xx0
� yy0 + i(yx0 + xy0) (1.5)

is another complex number. A complex number’s conjugate

z⇤ = z̄ = x� iy (1.6)

negates the imaginary part, so the norm

|z| =
p
zz⇤ =

p
x2 + y2 (1.7)

is the square root of the product with the conjugate, and the inverse

z�1 =
z⇤

|z|2
(1.8)

is the conjugate divided by the norm squared. The inverse enables complex
number division, such as

z0

z
=

x0 + iy0

x+ iy
=

x0 + iy0

x+ iy

x� iy

x� iy
=

x0x+ y0y

x2 + y2
+ i

xy0 � x0y

x2 + y2
. (1.9)

Figure 1.3: Complex number z = rei✓ = x+ iy = {x, y}. Unit disk is yellow.

1.3 2D Rotations

In the complex plane z = {x, y}, a complex numbers has the polar represen-

tation

z = x+ iy = r cos ✓ + i r sin ✓ = rei✓ (1.10)
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using Euler’s identity, where r = |z| is the modulus and ✓ is its phase. The
polar presentation illustrates how complex numbers can model two dimensional
rotations. For example, multiplying a complex number by ei' rotates it through
an angle ✓,

z0 = zei' = rei✓ei' = rei(✓+'). (1.11)

Multiplying by i = ei⇡/2 rotates a complex number through ⇡/2 = 90� counter
clockwise, as illustrated in Fig. 1.3. Multiplying by ei⇡ rotates a complex num-
ber through 180�, which when applied to +1 produces �1, thereby providing a
geometric interpretation of Euler’s Eq. 1.3 identity.

1.4 Trigonometric Identities

Complex numbers facilitate the derivation of useful trigonometric identities. For
real angle a 2 R, if z = eia 2 C, then

1 = |z|2 = zz⇤ = eiae�ia

= (cos a+ i sin a)(cos a� i sin a)

= cos2 a+ sin2 a. (1.12)

For real angles a, b 2 R,

ei(a+b) = eiaeib,

cos[a+ b] + i sin[a+ b] = (cos a+ i sin a)(cos b+ i sin b)

= cos a cos b� sin a sin b+ i(sin a cos b+ cos a sin b),
(1.13)

so equating real and imaginary parts generates two addition angle formulas at
once,

cos[a+ b] = cos a cos b� sin a sin b, (1.14a)

sin[a+ b] = sin a cos b+ cos a sin b. (1.14b)

Setting a = b generates two double angle formulas,

cos[2a] = cos2 a� sin2 a, (1.15a)

sin[2a] = 2 sin a cos a. (1.15b)

1.5 Complex Functions

Complex functions map complex numbers to complex numbers. Given the com-
plex number z = x+ iy = rei✓, the complex function

f [z] = z0 (1.16)
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generates the rectangular map

{x, y} ! {x0, y0} (1.17)

and the polar map
{r, ✓} ! {r0, ✓0}. (1.18)

Such mappings are best visualized in 4D. However, plotting the real part x0

vertically and coloring the resulting surface by the imaginary part y0 produces
a faithful 3D visualization, as in the Fig. 1.4 plot of the square root function.

Figure 1.4: Visualize the complex square root function z0 =
p
z by plotting its

real part x0 vertically and coloring the resulting surface by its imaginary part
y0. The two branches of the Riemann surface correspond to the positive and
negative real square roots.

More generally, since each complex number has infinitely many polar repre-
sentations

z = rei✓ = rei(✓+2⇡) = rei(✓+b2⇡), (1.19)

for any integers b, then its nth root

z1/n = r1/nei(✓+b2⇡)/n = r1/nei✓/neib2⇡/n (1.20)

has n distinct values or branches for b = 0, 1, 2, . . . , n� 1.
Complex functions map a complex number to a set of complex numbers in

a multivalued relation described by 2D Riemann surfaces in 4D space, as
in the 3D projections of Fig. 1.4 and Fig. 1.5. Di↵ering colors at the 3D self-
intersections imply no self-intersections in 4D. Define a principle value of a
complex value by focussing on a single branch, say b = 0, and thereby recover
a single-valued relation or function.



Chapter 1. Complex Numbers 18

Figure 1.5: Riemann surfaces for some complex powers z1/3, z2/3, z16/17, real
parts colored according to imaginary parts (left) and imaginary parts colored
according to real parts (right).



Chapter 1. Complex Numbers 19

1.6 Hyperbolic Functions

Hyperbolic functions are intimately related to trigonometric functions. From
Euler’s identity

ei✓ = cos ✓ + i sin ✓ (1.21)

and its complex conjugate

e�i✓ = cos ✓ � i sin ✓, (1.22)

add to get

cos ✓ =
ei✓ + e�i✓

2
(1.23)

and subtract to get

sin ✓ =
ei✓ � e�i✓

2i
. (1.24)

Figure 1.6: Graphs of hyperbolic functions, with tanh ✓ = sinh ✓/ cosh ✓.

The substitution ✓ ! i✓ replaces a real angle with an imaginary angle and
generates hyperbolic functions from trigonometric functions. For example,

cos[i✓] =
e�✓ + e✓

2
= cosh ✓ (1.25)

and

sin[i✓] =
e�✓

� e✓

2i
= i

e✓ � e�✓

2
= i sinh ✓. (1.26)

Cosine “swallows” the i in becoming hyperbolic cosine, while sine “passes”
the i in becoming hyperbolic sine. (Similarly, cosine swallows a minus sign,
cos[�✓] = cos ✓, while sine passes a minus sign, sin[�✓] = � sin ✓.) These
functions are sometime pronounced “cosh” and “sinch”.
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Inversely,

cosh[i✓] =
e�i✓ + ei✓

2
= cos ✓ (1.27)

and

sinh[i✓] =
e�i✓

� ei✓

2i
= i

ei✓ � e�i✓

2
= i sin ✓. (1.28)

For every trigonometric identity there is a corresponding hyperbolic identity.
For example, substitute ✓ ! i✓ into

cos2 ✓ + sin2 ✓ = 1 (1.29)

to get
cosh2 ✓ � sinh2 ✓ = 1. (1.30)

The hyperbolic functions are real, exponential, and nonrepeating, as in Fig. 1.6.

1.7 4 Division Algebras

Normed division algebras exist in dimensions 1, 2, 4, and 8 only. The algebras
consist of real numbers, complex numbers or binarions, quaternions, and oc-

tonions. Something is lost at each dimensional doubling: While real numbers
are ordered and their multiplication is both associative and commutative, com-
plex numbers are not ordered, quaternion multiplication is not commutative,
and octonion multiplication is neither associative nor commutative.
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Mathematica Complex Numbers
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Worked Problem

1. Rotate the vector ~v = {
p
3, 1} through an angle of 30�.

~v = {
p
3, 1}

z =
p
3 + i

=
p
3 + 1 ei arctan[1/

p
3]

= 2 ei⇡/6

z0 = z ei⇡/6

= 2 ei⇡/6ei⇡/6

= 2 ei⇡/3

= 2
⇣
cos

⇡

3
+ i sin

⇡

3

⌘

= 2

 
1

2
+ i

p
3

2

!

= 1 + i
p
3

~v 0 = {1,
p
3}
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Problems

1. For each complex number z, compute z̄ = z⇤, |z|2, 1/z in rectangular
x+ iy form.

(a) z = 1 + i

(b) z = 2� 3i

(c) z = 2ei⇡/3

2. For each pair of complex number z and z0, compute z + z0, z/z0 in rect-
angular form.

(a) z = 1 + i, z0 = 1� i

(b) z = 2� 3i, z0 = 3 + 2i

(c) z = 2ei⇡/3, z0 = 3ei⇡/2

3. Find the principal values of the following complex numbers in rectangular
form.

(a)

✓
1 + i

1� i

◆2718

(Readily done by hand!)

(b)
p

i

(c) ii (Eye to Eye)

(d) ii
i
. .

.

(Tower of Eyes)

4. For each complex number z, plot z, z⇤, 1/z, iz.

(a) z = 3 + 2i

(b) z = 3ei⇡/4

5. Use complex numbers to rotate the vector ~v through angle ✓ and interpret
the result graphically.

(a) ~v = {1, 0}, ✓ = 90�.

(b) ~v = {1, 1}, ✓ = �45�.

6. Use complex numbers to simultaneously derive the following triple angle
identities.

(a) sin[3✓] = � sin3 ✓ + 3 cos2 ✓ sin ✓

(b) cos[3✓] = + cos3 ✓ � 3 sin2 ✓ cos ✓

7. Use complex numbers to derive the following hyperbolic identities from
the corresponding trigonometric identities.

(a) coth2 ✓ � csch2✓ = 1

(b) tanh2 ✓ + sech2✓ = 1
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8. Use Mathematica to visualize the complex fourth root function z1/4 as in
Fig. 1.5. (Hint: Color Plot3D functions of each branch and combine them
with the Show function; compare with the ComplexPlot3D function.)



Chapter 2

Quaternions

The first abstract algebra can represent classical rotations and spin-1/2 quantum
mechanics.

Figure 2.1: Plaque commemorating Hamilton’s discovery of the quaternion al-
gebra of 3D rotations. (Part of a video frame by Wayne Fitzgerald.)

2.1 Multiplication Table

In the 1840s, William Rowan Hamilton struggled to generalize complex numbers
to three dimensions, but he couldn’t define a generalized multiplication that was
closed. On the Monday evening of 1843 October 16, while walking with his wife
Helen along the Royal Canal in Dublin Ireland, he realized a fourth dimen-

25
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sion would close the algebra, and Hamilton stopped and carved the quaternion
algebra into the stone of the Brougham (Broom) Bridge, an event now com-
memorated by the Fig. 2.1 plaque. The noncommutativity of the quaternion
product enables it to model 3D rotations. Today quaternions are used exten-
sively in computer graphics and inertial navigation software for airplanes and
spacecraft.

Hamilton’s succinct summary [1] in three quaternion (basis) units was

ı̂2 = |̂2 = k̂2 = ı̂|̂k̂ = �1, (2.1)

which implies

�
ı̂|̂k̂ = �1

�
k̂,

�ı̂|̂ = �k̂, (2.2)

and

|̂̂ı
�
ı̂|̂k̂ = �1

�
,

|̂
�
�|̂k̂ = �ı̂

�
,

k̂ = �|̂̂ı, (2.3)

so the quaternion units anticommute like

ı̂|̂ = k̂ = �|̂̂ı (2.4)

and cycle like

ı̂|̂ = k̂, (2.5a)

|̂k̂ = ı̂, (2.5b)

k̂ı̂ = |̂. (2.5c)

Figure 2.2 summarizes the noncommutative algebra and compares it with the
familiar (but historically later) vector cross and dot products.

Figure 2.2: Quaternion (star) product, vector (cross) product, and scalar (dot)
product multiplication tables. For example, ı̂ ? ı̂ = ı̂̂ı = �1, ı̂ ⇥ ı̂ = ~0, and
ı̂ · ı̂ = 1.
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2.2 4D Division Algebra

A general quaternion is the linear combination

q̊ = q0 + ı̂ q1 + |̂ q2 + k̂ q3 = q0 + q1 ı̂+ q2|̂+ q3k̂ = q0 + ~q

= {q0, q1, q2, q3} = {q0, ~q}, (2.6)

read “q-ring equals q-sub-zero plus i-hat times q-sub-one . . . ”, where the com-
ponents qn are real numbers. The addition of a scalar and a vector is just a
convenient notation for a list of a scalar and a vector, q0 + ~q = {q0, ~q}. A
quaternion is a complex number of complex numbers,

q̊ = q0 + ı̂ q1 + |̂ q2 + k̂ q3 = (q0 + ı̂q1) + |̂(q2 � ı̂q3) = z + |̂z0. (2.7)

A real quaternion has vanishing vector part and a (pure) imaginary quater-

nion has vanishing scalar part, so abbreviate them as

{q0,~0} = q0, (2.8a)

{0, ~q} = ~q. (2.8b)

The product of two quaternions

q̊ ? p̊ = q̊p̊ = (q0 + q1 ı̂+ q2|̂+ q3k̂)(p0 + p1 ı̂+ p2|̂+ p3k̂). (2.9)

Distribute the multiplication

q̊p̊ = q0p0 + q0p1 ı̂+ q0p2|̂+ q0p3k̂

+ q1p0 ı̂+ q1p1 ı̂̂ı+ q1p2 ı̂|̂+ q1p3 ı̂k̂

+ q2p0|̂+ q2p1 |̂̂ı+ q2p2|̂|̂+ q2p3|̂k̂

+ q3p0k̂ + q3p1k̂ı̂+ q3p2k̂|̂+ q3p3k̂k̂ (2.10)

and simplify with the Eq. 2.1 quaternion algebra

q̊p̊ = q0p0 + q0p1 ı̂+ q0p2|̂+ q0p3k̂

+ q1p0 ı̂� q1p1 + q1p2k̂ � q1p3|̂

+ q2p0|̂� q2p1k̂ � q2p2 + q2p3 ı̂

+ q3p0k̂ + q3p1|̂� q3p2 ı̂� q3p3 (2.11)

to get

q̊p̊ =(q0p0 � q1p1 � q2p2 � q3p3)

+ (q0p1 + p0q1 + q2p3 � q3p2)̂ı

+ (q0p2 + p0q2 + q3p1 � q1p3)|̂

+ (q0p3 + p0q3 + q1p2 � q2p1)k̂ (2.12)



Chapter 2. Quaternions 28

or

q̊p̊ = q0p0 � q1p1 � q2p2 � q3p3

+ q0(p1 ı̂+ p2|̂+ p3k̂) + p0(q1 ı̂+ q2|̂+ q3k̂)

+ (q2p3 � q3p2)̂ı+ (q3p1 � q1p3)|̂+ (q1p2 � q2p1)k̂

= q0p0 � ~q · ~p+ q0~p+ p0~q + ~q ⇥ ~p. (2.13)

Highlight scalar and vector parts by color coding

r̊ = q̊p̊ = (q0 + ~q)(p0 + ~p) = q0p0 � ~q · ~p+ q0~p+ p0~q + ~q ⇥ ~p = r0 + ~r (2.14)

or with braces

r̊ = q̊p̊ = {q0, ~q}{p0, ~p} = {q0p0 � ~q · ~p, q0~p+ p0~q + ~q ⇥ ~p} = {r0,~r}. (2.15)

So the product of two quaternions involves both a scalar (dot) product and a
vector (cross) product. Indeed, the product of two imaginary quaternions

q̊p̊ = {0, ~q}{0, ~p} = {0� ~q · ~p, ~0 +~0 + ~q ⇥ ~p} = �~q · ~p+ ~q ⇥ ~p = ~q ? ~p (2.16)

is the di↵erence between the cross and dot products. In contrast, the scalar
(dot) product of two quaternions

q̊ · p̊ = (q0 + q1 ı̂+ q2|̂+ q3k̂) · (p0 + p1 ı̂+ p2|̂+ p3k̂)

= q0p0 + q1p1 + q2p2 + q3p3 = q0p0 + ~q · ~p, (2.17)

where 1ı̂ 6= 1 · ı̂ = 0, as real and imaginary directions are perpendicular. Thus,
ı̂̂ı = �1 and ı̂|̂ = k̂ but ı̂ · ı̂ = 1 and ı̂ · |̂ = 0.

In analogy with complex numbers, a quaternion’s conjugate

q̊⇤ = {q0,�~q} = {q0,�q1,�q2,�q3} = q0 � q1 ı̂� q2|̂� q3k̂ = q0 � ~q (2.18)

negates the imaginary part. The conjugate of a product

(q̊p̊)⇤ = (q0p0 � ~q · ~p+ q0~p+ p0~q + ~q ⇥ ~p)⇤

= q0p0 � ~q · ~p� q0~p� p0~q � ~q ⇥ ~p

= p0q0 � ~p · ~q � p0~q � q0~p+ ~p⇥ ~q

= (p0 � ~p)(q0 � ~q)

= p̊⇤q̊⇤ (2.19)

is the reverse of the product of the conjugates. The norm

|̊q| =
p
q̊q̊⇤ =

q
q20 + ~q · ~q =

q
q20 + q21 + q22 + q23 =

p
q̊ · p̊ (2.20)

is the square root of the product with the conjugate, and the inverse

q̊�1 =
q̊⇤

|̊q|2
(2.21)
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is the conjugate divided by the norm squared.
Imaginary quaternions are “thick” imaginary numbers: If ů = {0, ~u} = ~u is

an imaginary unit quaternion, then ~u · ~u = 1 and

ů2 = (u1 ı̂+ u2|̂+ u3k̂)(u1 ı̂+ u2|̂+ u3k̂)

= �u2
1 + u1u2k̂ � u1u3|̂

� u2u1k̂ � u2
2 + u2u3 ı̂

+ u3u1|̂� u3u2 ı̂� u2
3

= �u2
1 � u2

2 � u2
3

= �1, (2.22)

or, more succintly with Eq. 2.16, ů2 = ůů = �~u · ~u+ ~u⇥ ~u = �1 +~0 = �1.
Like complex numbers, the absolutely convergent Taylor expansions of com-

mon functions dramatically reorganize when evaluated at imaginary quater-
nions. Since ůů = ~u~u = �1 even though ~u · ~u = +1, as in Eq. 1.2, the Euler
identity

e~u✓ = cos ✓ + ~u sin ✓ (2.23)

follows. Along with the anticommutativity of the quaternion basis units, this
implies

|̂e+ı̂✓ = |̂(cos ✓ + ı̂ sin ✓)

= |̂ cos ✓ + |̂̂ı sin ✓

= |̂ cos ✓ � ı̂|̂ sin ✓

= (cos ✓ � ı̂ sin ✓)|̂

= e�ı̂✓ |̂, (2.24)

and so on.

2.3 3D Rotations

Just as complex numbers can model 2D rotations, quaternions can model 3D
rotations. For example, consider a rotation through an angle ✓ about a unit
vector ~u. Form the rotation quaternion or rotor

q̊ = e~u✓/2 = cos
✓

2
+ ~u sin

✓

2
, (2.25)

and consider the similarity transformation

~v 0 = q̊ ~v q̊⇤ = e~u✓/2~ve�~u✓/2. (2.26)

First consider the special case of the rotation of a vector ~v = {a, b, 0} about a
perpendicular axis ~u = {0, 0, 1} through an angle ✓. Form the corresponding
imaginary quaternions v̊ = aı̂+ b|̂ = ~v and ů = k̂ = ~u and compute

~v 0 = e~u✓/2~ve�~u✓/2
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= ek̂✓/2(aı̂+ b|̂)e�k̂✓/2

= ek̂✓/2ek̂✓/2(aı̂+ b|̂)

= ek̂✓~v, (2.27)

as in Eq. 2.24, which is consistent with 2D rotations of vectors using complex
numbers. Next consider the generic case of the rotation of a vector ~v = {0, 0, 1}
about a nonperpendicular axis ~u = {1/

p
2, 0, 1/

p
2} through an angle ✓ = ⇡/4.

Form the corresponding imaginary quaternions v̊ = k̂ = ~v and ů = (̂ı+ k̂)/
p
2 =

~u and compute

~v 0 = e~u✓/2~ve�~u✓/2

= exp

"
ı̂+ k̂
p
2

⇡/4

2

#
k̂ exp

"
�
ı̂+ k̂
p
2

⇡/4

2

#

=

 
cos

⇡

8
+

ı̂+ k̂
p
2

sin
⇡

8

!
k̂

 
cos

⇡

8
�

ı̂+ k̂
p
2

sin
⇡

8

!

= k̂ cos2
⇡

8
� k̂

ı̂+ k̂
p
2

cos
⇡

8
sin

⇡

8
+

ı̂+ k̂
p
2

k̂ sin
⇡

8
cos

⇡

8
�

ı̂+ k̂
p
2

k̂
ı̂+ k̂
p
2

sin2
⇡

8

= k̂ cos2
⇡

8
+

�|̂+ 1� |̂� 1
p
2

1

2
sin

⇡

4
�

k̂ � ı̂� ı̂� k̂

2
sin2

⇡

8

= ı̂ sin2
⇡

8
� |̂

1

2
+ k̂ cos2

⇡

8

= ı̂
2�

p
2

4
� |̂

1

2
+ k̂

2 +
p
2

4
. (2.28)

In general if ~r = r1 ı̂+ r2|̂+ r3k̂ and ~u = u1 ı̂+ u2|̂+ u3k̂, then

~r 0 = q̊ ~r q̊⇤

= e~u✓/2 ~r e�~u✓/2

=

✓
cos

✓

2
+ ~u sin

✓

2

◆
~r

✓
cos

✓

2
� ~u sin

✓

2

◆

=

✓
~r cos

✓

2
+ ~u~r sin

✓

2

◆✓
cos

✓

2
� ~u sin

✓

2

◆

= ~r cos2
✓

2
+ (~u~r � ~r~u) sin

✓

2
cos

✓

2
� ~u~r~u sin2

✓

2
. (2.29)

But
~u~r � ~r~u = (�~u · ~r + ~u⇥ ~r)� (�~r · ~u+ ~r ⇥ ~u) = 2~u⇥ ~r (2.30)

and

~u~r~u = (�~u · ~r + ~u⇥ ~r)~u

= �(~u · ~r)~u� (~u⇥ ~r) · ~u+ (~u⇥ ~r)⇥ ~u
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= �(~u · ~r)~u� 0 + (~u · ~u)~r � (~u · ~r)~u

= ~r � 2(~u · ~r)~u, (2.31)

so

~r 0 = ~r cos2
✓

2
+ ~u⇥ ~r 2 sin

✓

2
cos

✓

2
� ~r sin2

✓

2
+ (~u · ~r)~u 2 sin2

✓

2
= ~r cos ✓ + ~u⇥ ~r sin ✓ + (~u · ~r)~u(1� cos ✓)

= (~u · ~r) ~u+
�
~r � (~u · ~r) ~u

�
cos ✓ + ~u⇥ ~r sin ✓

= ~rk + ~r? cos ✓ + ~u⇥ ~r sin ✓, (2.32)

which is Rodriques’ formula [2] for the rotation of a vector through an angle ✓
about a unit vector ~u, as in Fig. 2.3.

Figure 2.3: Decompose the vector ~r parallel and perpendicular to the rotation
axis ~u and rotate the perpendicular component through the angle ✓ to form ~r 0.

2.4 Rotation Composition

Consider a positive (right-handed) rotation of 90� = ⇡/2 about k̂ followed by
a positive (right-handed) rotation of 90� = ⇡/2 about |̂, as in Fig. 2.4. The
composite quaternion rotors (with the rotors concatenated right-to-left)

q̊c = q̊bq̊a = exp


|̂

✓
⇡/2

2

◆�
exp


k̂

✓
⇡/2

2

◆�

=
⇣
cos

⇡

4
+ |̂ sin

⇡

4

⌘⇣
cos

⇡

4
+ k̂ sin

⇡

4

⌘

=
1

2
(1 + |̂)(1 + k̂)

=
1

2
(1 + ı̂+ |̂+ k̂)

=
1

2
+

ı̂+ |̂+ k̂
p
3

p
3

2
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= cos
h⇡
3

i
+

ı̂+ |̂+ k̂
p
3

sin
h⇡
3

i

= exp

"
ı̂+ |̂+ k̂

p
3

✓
2⇡/3

2

◆#
, (2.33)

which is a single positive (right-handed) rotation of 120� = 2⇡/3 about the
coordinate diagonal (̂ı+ |̂+ k̂)/

p
3. When multiplying exponentials, the expo-

nents add if they commute, which is not the case here. The order of the rotors
is critical. For example,

q̊0
c
= q̊aq̊b = exp


k̂

✓
⇡/2

2

◆�
exp


|̂

✓
⇡/2

2

◆�

=
⇣
cos

⇡

4
+ k̂ sin

⇡

4

⌘⇣
cos

⇡

4
+ |̂ sin

⇡

4

⌘

=
1

2
(1 + k̂)(1 + |̂)

=
1

2
(1� ı̂+ |̂+ k̂)

=
1

2
�

ı̂+ |̂+ k̂
p
3

p
3

2

= cos
h⇡
3

i
+

�ı̂+ |̂+ k̂
p
3

sin
h⇡
3

i

= exp

"
�ı̂+ |̂+ k̂

p
3

✓
2⇡/3

2

◆#

6= q̊c (2.34)

which reflects the noncommutativity of rotations.

Figure 2.4: Two 90� rotations about orthogonal axis equals a 120� rotation
about a diagonal axis.
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2.5 Orientation-Entanglement

Unit quaternions q̊ lie on the surface of the hypersphere S3
⇢ R4 for which

q̊ · q̊ = 1. The quaternion

q̊[~u, ✓] = e~u✓/2 = cos
✓

2
+ ~u sin

✓

2
(2.35)

represents each 3D rotation twice, a double cover. Suppressing the q1 ı̂ direc-
tion implies

q̊[u2|̂+ u3k̂, ✓] = cos
✓

2
+ |̂u2 sin

✓

2
+ k̂ u3 sin

✓

2
, (2.36)

as in Fig. 2.5 where the north and south poles represent the same orientation
corresponding to angles of 0 and 2⇡.

Figure 2.5: 3D projection of 4D quaternion unit sphere representing all 3D
rotations twice, including the rotor q̊[u2|̂ + u3k̂, ✓]. The rotation axis is the
rotor’s projection onto the equatorial hyperplane, and the rotation angle is
twice the rotor’s co-latitude.

But the Feynman plate and Dirac belt tricks demonstrate that the orient-

ation-entanglement of the north and south poles are di↵erent. Following
Feynman, hold a dish on one hand and rotate the hand once under the elbow.
The dish returns to the same orientation but the arm is awkwardly twisted.
Now rotate once more in the same direction over the elbow. The dish returns
again to same orientation and the arm is untwisted. The double 4⇡ rotation is
the true identity.

Following Dirac, twist a belt one full turn about its length. The single
twist cannot be undone without changing the orientations of the belt buckles,
although the twist can be changed from clockwise to counterclockwise. Now
twist the belt two full turns about its length. The double twist can be undone
without changing the orientations of the belt buckles by passing one buckle
around the other. Again the double 4⇡ twist is the true identity.
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For a concrete model, represent twisted belts as connected paths of points
in S3. First assume the belt is extended and twisted 2⇡ in the k̂ direction with
no twisting in the ı̂ direction. Then the rotors for each belt slice

q̊[✓, t] = cos
✓

2
+ |̂ sin[⇡t] sin

✓

2
+ k̂ cos[⇡t] sin

✓

2
, (2.37)

where 0  ✓ < 2⇡ parameterizes the rotation and 0  t < 1 parameterizes a
transformation from clockwise to counterclockwise twist. For a 2⇡ twist, the
ends of the belt are fixed at

q̊[0, 0] = +1, (2.38a)

q̊[2⇡, 1] = �1, (2.38b)

and the quaternion curves joining the north and south poles of the sphere in
Fig. 2.6 represent the belt.

Next assume the belt extends and twists 2⇡ in the k̂ direction with no
twisting in the ı̂ direction. Then the rotors for each belt slice

q̊[✓, t] = cos
✓

2
cos2

⇡t

2
+ sin2

⇡t

2
+ |̂

✓
1� cos

✓

2

◆
sin

⇡t

2
cos

⇡t

2
+ k̂ sin

✓

2
cos

⇡t

2
,

(2.39)

where 0  ✓ < 4⇡ parameterizes the rotation and 0  t < 1 parameterizes a
transformation from twisted to untwisted. For a 4⇡ twist, the ends of the belt
are fixed at

q̊[0, 0] = +1, (2.40a)

q̊[4⇡, 1] = +1, (2.40b)

and the quaternion curves joining the north pole of the sphere to itself in Fig. 2.7
represent the belt.

The 4⇡ rotation is smoothly contractible to the north pole identity rotation
but the 2⇡ rotation is not. Identifying the north and south poles as the same
orientation means that closed loops on the quaternion sphere represent both
the 2⇡ and 4⇡ rotations, but only the latter is contractible to the identity. This
multiple connectivity is reminiscent of a torus (or donut with hole), where
toroidal loops (around-the-hole) are contractible but poloidal (through-the-hole)
loops are not, rather than the simple connectivity of a sphere, where all loops
are contractible.
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Figure 2.6: Elastic belt with a 2⇡ twist (left column). Blue dots on quaternion
sphere projection represent belt cross section rotations. Blue curve connecting
dots can not be smoothly contracted to the untwisted state represented by the
north pole, but without changing the orientation of the belt’s ends, the twist
can be changed from clockwise to counterclockwise as indicated (right column).
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Figure 2.7: Elastic belt with a 4⇡ twist (left column). Blue dots on quaternion
sphere projection represent belt cross section rotations. Blue curve connecting
dots can be smoothly contracted to the untwisted state represented by the north
pole, so without changing the orientation of the belt’s ends, the twist can be be
undone as indicated (right column).
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2.6 Fermions

1D real numbers x locate Newtonian masses. 2D complex numbers  =  R +
i I = { R, I} are the wave functions of nonrelativistic particles. 4D quar-
ternions called spinors  = { 0, 1, 2, 3} represent fermions like electrons.
Consequently, electrons return to themselves only after 2⇡ = 720� rotations!
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Mathematica Quaternions
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Worked Problem

1. Combine a 90� rotation about the x-axis followed by a 60� rotation about
the y-axis.

R1 = e~u1✓1/2 = eı̂90
�
/2 = eı̂45

�

R2 = e~u2✓2/2 = e|̂60
�
/2 = e|̂30

�

R3 = R2R1

e~u3✓3/2 = eı̂30
�
eı̂45

�

cos
✓3
2

+ ~u3 sin
✓3
2

= (cos 30� + |̂ sin 30�)(cos 45� + ı̂ sin 45�)

=

 p
3

2
+ |̂

1

2

!✓
1
p
2
+ ı̂

1
p
2

◆

=

r
3

8
+ ı̂

r
3

8
+ |̂

r
1

8
� k̂

r
1

8

cos
✓3
2

=

r
3

8

sin
✓3
2

=

r
1� cos2

✓3
2

=

r
1�

3

8
=

r
5

8

✓3 = 2arccos

r
3

8
= 2 arcsin

r
5

8
⇡ 104�

~u3 =
R2R1 � cos[✓3/2]

sin[✓3/2]

=
ı̂
p
3/8 + |̂

p
1/8� k̂

p
1/8p

5/8

= ı̂

r
3

5
+ |̂

r
1

5
� k̂

r
1
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Problems

1. Use the Fig. 2.2 multiplication tables to compute the dot and cross prod-
ucts of the following vectors represented as imaginary quaternions. (Do
not compute a cross product as the determinant of a matrix.)

(a) ~v = ı̂� k̂, ~w = 2|̂� 3k̂

(b) ~v = 3ı̂� |̂, ~w = ı̂� |̂+ k̂

2. For each quaternion q̊, compute q̊⇤, |̊q|2, 1/q̊.

(a) q̊ = q0 + ~q, where q0 = 2, ~q = {1, 2, 3} = ı̂+ 2|̂+ 3k̂

(b) q̊ = 1 + 2|̂+ k̂

(c) q̊ = 1 + ı̂� |̂+ k̂

3. For each pair of quaternions q̊, p̊, compute q̊ + p̊, q̊p̊, q̊ · p̊.

(a) q̊ = 1� |̂+ k̂, p̊ = 1� ı̂� |̂

(b) q̊ = 1 + ı̂� 2|̂+ k̂, p̊ = 1� 2ı̂� |̂+ k̂

4. Use quaternions to rotate the vector ~v through angle ✓ about direction ~u
and interpret the result graphically.

(a) ~v = |̂+ k̂, ✓ = 30�, ~u = ı̂

(b) ~v = {0, 0, 1}, ✓ = 45�, ~u = {1, 1, 0}/
p
2

5. Combine the following double rotations into single rotations and inter-
pret the result graphically. (Hint: Normalize the rotation axis vectors if
necessary.)

(a) 90� about ı̂ and then 60� about |̂

(b) 30� about {1, 1, 0} and then 45� about {1, 1, 1}/
p
3

6. Consider the quaternions q̊ = ı̂� |̂ and p̊ = ı̂+ |̂. Show the following.

(a) q̊p̊ 6= p̊q̊

(b) eq̊ep̊ 6= eq̊+p̊
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Matrix Product

Matrices, arrays, or tableaus of numbers have been used to solve math problems
for thousands of years. They combine linearly like vectors but multiply to model
rotations.

Figure 3.1: Matrices can represent the active rotation of a point through a
counterclockwise angle ✓ in a plane.

3.1 2D Simple Rotations

Consider the active 2D rotation of a point ~r = {x, y} to a point ~r 0 = {x0, y0}
through an angle ✓, as in Fig. 3.1. From the geometry,

x0 = r cos['+ ✓]

= r cos' cos ✓ � r sin' sin ✓

= x cos ✓ � y sin ✓, (3.1)

and

y0 = r sin['+ ✓]

= r sin' cos ✓ + r cos' sin ✓

= y cos ✓ + x sin ✓. (3.2)

41



Chapter 3. Matrix Product 42

Collect the variables in the transformation

x0 = x cos ✓ � y sin ✓, (3.3a)

y0 = x sin ✓ + y cos ✓, (3.3b)

into the column matrices

x

y
(3.4)

and

x0

y0
(3.5)

and collect the coe�cients into the square matrix

cos ✓ � sin ✓

sin ✓ cos ✓
(3.6)

and form the matrix equation

x0

y0
=

cos ✓ � sin ✓

sin ✓ cos ✓

x

y
, (3.7)

where the color guides the eye in checking the matrix multiplication, where rows
are dot-producted with columns [3]. In bracket notation, write

2

4 x0

y0

3

5 =

2

4 cos ✓ � sin ✓

sin ✓ cos ✓

3

5

2

4 x

y

3

5 , (3.8)

and represent matrix equations symbolically as

~r 0 = R~r (3.9)

or
r0 = Rr (3.10)

or in components as

xm =
2X

n=1

Rmnxn = Rmnxn, (3.11)

where {x1, x2} = {x, y}. By the Einstein summation convention, the sum
over repeated indices n is implied in the last step.
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Alternately, collect the variables in the Eq. 3.3 transformation into the row

matrices

x y (3.12)

and

x0 y0 (3.13)

and form the matrix equation

x0 y0 = x y
cos ✓ sin ✓

� sin ✓ cos ✓
, (3.14)

and represent it symbolically as

~r 0T = ~r TRT , (3.15)

where the transpose operation T interchanges rows and columns.
If the rotation matrix

R[✓] =
cos ✓ � sin ✓

sin ✓ cos ✓
, (3.16)

then the inverse matrix

R�1[✓] =
cos ✓ sin ✓

� sin ✓ cos ✓
= RT [✓] = R[�✓], (3.17)

and the identity matrix

R[0] =
1 0

0 1
= I 6=

1 1

1 1
. (3.18)

The Eq. 3.16 square matrix R[✓] implements an active rotation (of a vec-
tor) counterclockwise or a passive rotation (of the coordinates) clockwise by
pre-multiplying a column matrix of vector components, as in Eq. 3.7; the in-
verse Eq. 3.17 square matrix RT [✓] implements an active rotation (of a vector)
clockwise or a passive rotation (of the coordinates) counterclockwise by post-
multiplying a row matrix of vector components, as in Eq. 3.14.
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3.2 2D Compound Rotations

For a compound rotation first through angle a and second through angle b, write

x0 = x cos[b+ a]� y sin[b+ a], (3.19a)

y0 = x sin[b+ a] + y cos[b+ a], (3.19b)

or in matrix notation

x0

y0
=

cos[b+ a] � sin[b+ a]

sin[b+ a] cos[b+ a]

x

y

=
cos b cos a� sin b sin a � cos b sin a� sin b cos a

sin b cos a+ cos b sin a � sin b sin a+ cos b cos a

x

y

=
cos b � sin b

sin b cos b

cos a � sin a

sin a cos a

x

y
, (3.20)

so

cos[b+ a] � sin[b+ a]

sin[b+ a] cos[b+ a]
=

cos b � sin b

sin b cos b

cos a � sin a

sin a cos a
(3.21)

or symbolically
R[b+ a] = R[b]R[a] (3.22)

or in components

Rrc[b+ a] =
2X

s=1

Rrs[b]Rsc[a] = Rrs[b]Rsc[a], (3.23)

where the indices r and c stand for row and column, so element Rrc of the
product square matrix is the dot product of row r of the first square matrix
with column c of the second square matrix.

3.3 3D Rotations

As direct 3D generalizations of 2D rotations, active counterclockwise rotations
about each axis {x, y, z} can be performed by

Rx[✓] = Ryz[✓] =

1 0 0

0 cos ✓ � sin ✓

0 sin ✓ cos ✓

, (3.24)
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and

Ry[✓] = Rxz[✓] =

cos ✓ 0 sin ✓

0 1 0

� sin ✓ 0 cos ✓

, (3.25)

and

Rz[✓] = Rxy[✓] =

cos ✓ � sin ✓ 0

sin ✓ cos ✓ 0

0 0 1

, (3.26)

which can be interconverted by cyclically permuting the rows and columns. The
product

R = Rz[↵]Ry[�]Rx[�] (3.27)

represents a rotation with yaw ↵, pitch �, and roll �. Like quaternions and
the rotations they can represent, 3D rotation matrices need not commute. For
example, the product

Rz

h⇡
2

i
Ry

h⇡
2

i
=

0 �1 0

1 0 0

0 0 1

0 0 1

0 1 0

�1 0 0

=

0 �1 0

0 0 1

�1 0 0

, (3.28)

but reversing the factors gives

Rz

h⇡
2

i
Ry

h⇡
2

i
=

0 0 1

0 1 0

�1 0 0

0 �1 0

1 0 0

0 0 1

=

0 0 1

1 0 0

0 1 0

. (3.29)

Any linear transformation can be written as a composition of a rotation, a
rescaling, and a rotation. For example,

1 2

0 1
=

cos ⇡

8 � sin ⇡

8

sin ⇡

8 cos ⇡

8

p
2 + 1 0

0
p
2� 1

cos 3⇡
8 sin 3⇡

8

� sin 3⇡
8 cos 3⇡

8

(3.30)
or symbolically

M = R̃SR, (3.31)

which is an example of singular value decomposition.
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3.4 Spacetime Rotations

By the Lorentz-Einstein transformation, if one observer records an event at
spacetime coordinates {t, x}, then a second observer in relative motion at ve-
locity ~v = {vx, 0, 0} records the event at spacetime coordinates {t0, x0

}, where

t0 = �(t� vxx/c
2), (3.32a)

x0 = �(x� vxt), (3.32b)

y0 = y, (3.32c)

z0 = z, (3.32d)

where

� =
1p

1� v2/c2
� 1, (3.33)

is the relativistic stretch and c is the constant light speed. Rewrite the
transformation as

ict0 = � ict� i�
vx
c
x, (3.34a)

x0 = i�
vx
c
ict + � x, (3.34b)

y0 = y, (3.34c)

z0 = z, (3.34d)

and as the single matrix equation

ict0

x0

y0

z0

=

� �i�vx/c 0 0

i�vx/c � 0 0

0 0 1 0

0 0 0 1

ict

x

y

z

. (3.35)

Parameterize the relative velocity by the rapidity ', where

� 1  tanh' =
vx
c

 1 (3.36)

and

� =
1p

1� tanh2 '
= cosh', (3.37)

so that

ict0

x0

y0

z0

=

cosh' �i sinh' 0 0

i sinh' cosh' 0 0

0 0 1 0

0 0 0 1

ict

x

y

z

. (3.38)
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Finally, substitute ✓ = i' 2 C to get

ict0

x0

y0

z0

=

cos ✓ � sin ✓ 0 0

sin ✓ cos ✓ 0 0

0 0 1 0

0 0 0 1

ict

x

y

z

. (3.39)

The Lorentz-Einstein transformation is a rotation through a complex angle
in a complex space. A change in velocity or boost is a 3 + 1-dimensional
spacetime rotation that produces the projection e↵ects of length contraction,
time dilation, and clock desynchronization in 3-dimensional space.

3.5 Pauli Matrices & Quaternions

The Pauli spin matrices of quantum physics are isomorphic (or equivalent)
to the quaternions. Specifically,

iı̂ = �x =
0 1

1 0
, (3.40a)

i|̂ = �y =
0 �i

i 0
, (3.40b)

ik̂ = �z =
1 0

0 �1
, (3.40c)

where “�i rides high on �y”. Their algebra

�2
x
= �2

y
= �2

z
= �i�x�y�z = I (3.41)

mimics the Eq. 2.1 quaternion algebra. For example,

�2
x
=

0 1

1 0

0 1

1 0
=

1 0

0 1
= I. (3.42)

The Pauli matrices are self-adjoint or hermitian and equal the complex conju-
gates of their transposes, where the transpose interchanges rows and columns.
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That’s why �y contains i,

�†
y
= �T

⇤

y
=

0 �i

+i 0

T
⇤

=
0 +i

�i 0

⇤

=
0 �i

+i 0
= �y, (3.43)

but �x and �z don’t. Any complex 2D matrix is a linear combination of the
Pauli matrices and the 2D identity matrix. For example, generalizing scalar
multiplication of vectors to matrices,

a b

c d
=

b+ c

2

0 1

1 0
+ i

b� c

2

0 �i

i 0
+

a� d

2

1 0

0 �1
+

a+ d

2

1 0

0 1

=
b+ c

2
�x + i

b� c

2
�y +

a� d

2
�z +

a+ d

2
I, (3.44)

where the coe�cients are the main diagonal sums or traces of the products of
the original matrix with the Pauli matrices, such as

1

2
tr

"
0 1

1 0

a b

c d

#
=

1

2
tr

c d

a b
=

1

2
(c+ b) =

b+ c

2
. (3.45)

3.6 Other Matrix Products

In addition to the common matrix product

M1M2 =
a1 b1

c1 d1

a2 b2

c2 d2
=

a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2
, (3.46)

the simple Hadamard or entry-wise product

M1 �M2 =
a1 b1

c1 d1
�

a2 b2

c2 d2
=

a1a2 b1b2

c1c2 d1d2
(3.47)

and Kronecker or tensor product

M1 ⌦M2 =
a1 b1

c1 d1
⌦

a2 b2

c2 d2
=

a1M2 b1M2

c1M2 d1M2
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=

a1a2 a1b2 b1a2 b1b2

a1c2 a1c2 b1c2 b1d2

c1a2 c1b2 d1a2 d1b2

c1c2 c1d2 d1c2 d1d2

(3.48)

are sometimes useful.
Nonsquare matrices can be multiplied, including the inner product

~r · ~r 0 = ~r T~r 0 = x y
x0

y0
= xx0 + yy0 = xx0 + yy0 (3.49)

and the outer product

~r ⌦ ~r 0 = ~r ~r 0T =
x

y
x0 y0 =

xx0 xy0

yx0 yy0
. (3.50)

Generally, multiplication of non-square matrices is defined if the number of
columns of the first matrix is the same as the number of rows of the second,

AB = a⇥ b b⇥ c = a⇥ c . (3.51)

Antisymmetric matrix multiplication can mimic the cross product ~u⇥~v = ~w by

0 �uz uy

uz 0 �ux

�uy ux 0

vx

vy

vz

=

uyvz � uzvy

uzvx � uxvz

uxvy � uyvx

=

wx

wy

wz

. (3.52)

3.7 Multidimensional Matrices

Multidimensional matrices can describe multilinear relationships of any order.
For example, in General Relativity the Lorentz transformation

x0
i
=
X

j

⇤ij xj (3.53)

linearly relates the spacetime coordinates between two di↵erent references frames
(by the Eq. 3.52 spacetime rotation). The metric connection

dvi =
X

j,k

�ijk vj dxk (3.54)
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linearly relates the infinitesimal changes dvi in the components of vector vj
that is parallel transported an infinitesimal distance dxk (due to the curved
spacetime). The Riemann curvature tensor

dvi =
X

j,k,l

Rijkl vj dxk dxl (3.55)

linearly relates the infinitesimal changes dvi in the components of vector vj
parallel transported around an infinitesimal parallelogram of sides dxk and dxl.

Represent these many-indexed objects by multidimensional matrices where
the indices indicate rows and columns. In 1 + 1 dimensional spacetime in geo-
metrical units, the constant light speed

c = 1 (3.56)

is a rank-0 scalar; an event

x =
x1

x2

(3.57)

is a rank-1 nontensor; a Lorentz transformation

⇤ =
⇤11 ⇤12

⇤21 ⇤22

(3.58)

is a rank-2 tensor; the metric connection

� =

�111 �112

�121 �122

�211 �212

�221 �222

(3.59)

is a rank-3 nontensor; the Riemann curvature

R =

R1111 R1112

R1121 R1122

R1211 R1212

R1221 R1222

R2111 R2112

R2121 R2122

R2211 R2212

R2221 R2222

(3.60)
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is a rank-4 tensor. (To be a tensor, a multidimensional matrix must also
transform appropriately under a basis change.)
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Mathematica Matrices 1
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Worked Problem

1. Multiply two 3⇥ 3 matrices.

1 �2 4

3 1 1

�2 4 1

1 �2 1

2 1 �3

4 �2 1

=

1 �2 4

3 1 1

�2 4 1

1 �2 1

2 1 �3

4 �2 1

1 �2 4

3 1 1

�2 4 1

1 �2 1

2 1 �3

4 �2 1

1 �2 4

3 1 1

�2 4 1

1 �2 1

2 1 �3

4 �2 1

1 �2 4

3 1 1

�2 4 1

1 �2 1

2 1 �3

4 �2 1

1 �2 4

3 1 1

�2 4 1

1 �2 1

2 1 �3

4 �2 1

1 �2 4

3 1 1

�2 4 1

1 �2 1

2 1 �3

4 �2 1

1 �2 4

3 1 1

�2 4 1

1 �2 1

2 1 �3

4 �2 1

1 �2 4

3 1 1

�2 4 1

1 �2 1

2 1 �3

4 �2 1

1 �2 4

3 1 1

�2 4 1

1 �2 1

2 1 �3

4 �2 1

=

( 1)( 1) + (�2)( 2) + ( 4)( 4) ( 1)(�2) + (�2)( 1) + ( 4)(�2) ( 1)( 1) + (�2)(�3) + ( 4)( 1)

( 3)( 1) + ( 1)( 2) + ( 1)( 4) ( 3)(�2) + ( 1)( 1) + ( 1)(�2) ( 3)( 1) + ( 1)(�3) + ( 1)( 1)

(�2)( 1) + ( 4)( 2) + ( 1)( 4) (�2)(�2) + ( 4)( 1) + ( 1)(�2) (�2)( 1) + ( 4)(�3) + ( 1)( 1)

=

13 �12 11

9 �7 1

10 6 �13
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Problems

1. For each pair of real square matrices A, B, compute A+B, AB, BA.

(a) A =
1 2

3 4
, B =

0 1

2 3

(b) A =
�1 �1

1 1
, B =

1 2

4 7

2. For each pair of real matrices A, B, compute AB and BA.

(a) A = 1 2 , B =
3

4

(b) A = 1 2 �1 , B =

3

4

5

3. For each pair of complex square matrices U , V , compute 2U + 3V , UV ,
V U .

(a) U =
1 i

i 2
, V =

0 i

2i 3

(b) U =
�i �1

1 1
, V =

1 2i

4 7

4. Verify the Eq. 3.30 singular value decomposition using matrix multiplica-
tion and trig identities.

5. Use quaternions to show that the rotation matrix through an angle ✓ about
a unit vector ~u = {ux, uy, uz} is

R[✓, ~u] =

cos ✓ + u2
x
(1� cos ✓) uxuy(1� cos ✓)� uz sin ✓ uxuz(1� cos ✓) + uy sin ✓

uyux(1� cos ✓) + uz sin ✓ cos ✓ + u2
y
(1� cos ✓) uyuz(1� cos ✓)� ux sin ✓

uzux(1� cos ✓)� uy sin ✓ uzuy(1� cos ✓) + ux sin ✓ cos ✓ + u2
z
(1� cos ✓)

.

(3.61)
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6. Derive the following Pauli matrix commutator and anticommutator iden-
tities.

(a) [�x,�y]� = �x�y � �y�x = 2i�z

(b) [�x,�x]+ = �x�x + �x�x = 2I
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Chapter 4

Matrix Structure

Even before matrices had a name, determinants did. Along with traces, eigen-
values, and eigenvectors, they critically characterize matrices, as in Fig. 4.1.

Figure 4.1: The eigenvalues and eigenvectors of a quadratic form determine the
principal axes of the corresponding ellipsoid.

4.1 Determinants

Consider a generic real 2D matrix

M =
a b

c d
=

M11 M12

M21 M22

(4.1)

acting on the corners of a unit square, as in Fig. 4.2. The linear transformation
distorts the square into a parallelogram of vector area

~A = {a, c, 0}⇥ {b, d, 0} = (ax̂+ cŷ)⇥ (bx̂+ dŷ) = (ac� bd)ẑ (4.2)

57
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and signed area
Az = ac� bd = +M11M22 �M12M21. (4.3)

This area can vanish if the initial square maps to a degenerate parallelogram
consisting of just a line or a point.

Figure 4.2: General linear transformation of a unit square is a parallelogram
with vertex {a+ b, c+ d} = {a, c}+ {b, d}.

Consider a generic real 3D matrix

M =

a b c

d e f

g h i

=

M11 M12 M13

M21 M22 M23

M31 M32 M33

(4.4)

acting on the corners of a unit cube, as in Fig. 4.3 (where here i 6= i =
p
�1).

The linear transformation distorts the cube into a parallelepiped of signed vol-
ume

V = {a, d, g}⇥ {b, e, h} · {c, f, i}

= (ax̂+ dŷ + gẑ)⇥ (bx̂+ eŷ + hẑ) · (cx̂+ fŷ + iẑ)

=
�
(dh� eg)x̂+ (bg � ah)ŷ + (ae� bd)ẑ

�
· (cx̂+ fŷ + iẑ)

= (dh� eg)c+ (bg � ah)f + (ae� bd)i

= aei+ cdh+ bfg � ceg � afh� bdi

= M11M22M33 +M13M21M32 +M12M23M31

�M13M22M31 �M11M23M32 �M12M21M33. (4.5)

Generalize the Eq. 4.3 and Eq. 4.5 results to a square matrix of any dimen-
sion by defining the determinant to be the sum of all its signed elementary
products. For example,

detM =

���������

M11 M12 M13

M21 M22 M23

M31 M32 M33

���������

=
X

±M1iM2jM3k, (4.6)
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Figure 4.3: General linear transformation of a unit cube is a parallelepiped.

where each terms consists of a product of one element from each row and column
and the sign is positive if the second indices ijk are an even permutation of
the first indices 123 (like the cylic 123, 312, 231) and negative if the second
indices are an odd permutation of the first indices (like the anti-cyclic 321,
132, 213). Alternately,

detM =
X

i,j,k

✏ijkM1iM2jM3k = ✏ijkM1iM2jM3k, (4.7)

where the Levi-Civita symbol ✏ijk = (�1)p, where the parity p of the permu-
tation is the number of interchanges needed to unscramble ijk to 123.

The Eq. 4.3 and Eq. 4.5 results also suggests defining the determinant as a
cofactor expansion. Given the alternating signs and white submatrices

+ � +

� + �

+ � +

,

a b c

d e f

g h i

,

a b c

d e f

g h i

,

a b c

d e f

g h i

, (4.8)

expand
���������

a b c

d e f

g h i

���������

= +c

������

d e

g h

������
� f

������

a b

g h

������
+ i

������

a b

d e

������

= c(dh� eg)� f(ah� bg) + i(ae� bd)

= aei+ cdh+ bfg � ceg � afh� bdi (4.9)
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as before, with identical results expanding about any row or column.
Because the determinant geometrically is the volume ratio induced by a

transformation, the determinant of a product of matrices is simply the product
of the determinants of each matrix

det[MN ] = det[M ] det[N ] = detM detN, (4.10)

a refreshingly simple result given the complexities of matrix multiplication and
determinants. Furthermore,

1 = det I = det[MM�1] = detM det[M�1], (4.11)

so the determinate of the inverse of a matrix is the inverse of its determinant

det[M�1] =
1

detM
= (detM)�1, (4.12)

where M�1 is a matrix and (detM)�1 is a number.

4.2 Inverses

The inverse M�1 of the Eq. 4.1 2D matrix M satisfies

MM�1 = I (4.13)

or more explicitly

a b

c d

a0 b0

c0 d0
=

1 0

0 1
, (4.14)

which is equivalent to the four scalar equations

aa0 + bc0 = 1, (E1)

ca0 + dc0 = 0, (E2)

ab0 + bd0 = 0, (E3)

cb0 + dd0 = 1, (E4)

in the four unknowns a0, b0, c0, d0. Form the linear combinations

dE1 � bE2 ! (da� bc)a0 + (db� bd)c0 = d, (4.16a)

cE1 � aE2 ! (ca� ac)a0 + (cb� ad)c0 = c, (4.16b)

dE3 � bE4 ! (da� bc)b0 + (db� bd)d0 = �b, (4.16c)

cE3 � aE4 ! (ca� ac)b0 + (cb� ad)d0 = �a, (4.16d)

and solve for

a0 =
+d

ad� bc
, (4.17a)
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c0 =
�c

ad� bc
, (4.17b)

b0 =
�b

ad� bc
, (4.17c)

d0 =
+a

ad� bc
, (4.17d)

or in matrix form

M�1 =
1

ad� bc

+d �b

�c +a
=

������

a b

c d

������

�1

+d �c

�b +a

T

. (4.18)

To invert a 2D matrix, interchange the elements of the main diagonal, negate
the elements of the counter diagonal, and divide by the determinant.

Similarly, the inverse M�1 of the Eq. 4.1 3D matrix M is

M�1 =

ei� fh ch� bi bf � ce

fg � di ai� cg cd� af

dh� eg bg � ah ae� bd

cdh� ceg � fah+ fbg + iae� ibd

=

���������

a b c

d e f

g h i

���������

�1

+

������

e f

h i

������
�

������

d f

g i

������
+

������

d e

g h

������

�

������

b c

h i

������
+

������

a c

g i

������
�

������

a b

g h

������

+

������

b c

e f

������
�

������

a c

d f

������
+

������

a b

d e

������

T
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=

+

������

e f

h i

������
�

������

b c

h i

������
+

������

b c

e f

������

�

������

d f

g i

������
+

������

a c

g i

������
�

������

a c

d f

������

+

������

d e

g h

������
�

������

a b

g h

������
+

������

a b

d e

������

c

������

d e

g h

������
� f

������

a b

g h

������
+ i

������

a b

d e

������

, (4.19)

where in the second step the transpose MT of a matrix M interchanges its rows
and columns. Large square matrices can be inverted by similar formulas, which
are implemented by computers. As Eq. 4.18 and Eq. 4.18 suggest, matrices are
invertible only if their determinants are non-vanishing.

The inverse of a sparsematrix (of mainly zeros) can be dense. For example,
the inverse of the 13D discrete first di↵erence matrix

D1 =

1 0 0 0 0 0 0 0 0 0 0 0 0

�1 1 0 0 0 0 0 0 0 0 0 0 0

0 �1 1 0 0 0 0 0 0 0 0 0 0

0 0 �1 1 0 0 0 0 0 0 0 0 0

0 0 0 �1 1 0 0 0 0 0 0 0 0

0 0 0 0 �1 1 0 0 0 0 0 0 0

0 0 0 0 0 �1 1 0 0 0 0 0 0

0 0 0 0 0 0 �1 1 0 0 0 0 0

0 0 0 0 0 0 0 �1 1 0 0 0 0

0 0 0 0 0 0 0 0 �1 1 0 0 0

0 0 0 0 0 0 0 0 0 �1 1 0 0

0 0 0 0 0 0 0 0 0 0 �1 1 0

0 0 0 0 0 0 0 0 0 0 0 �1 1

(4.20)
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is the triangular matrix

D�1
1 =

1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1

. (4.21)

The inverse of the 13D discrete second di↵erence or discrete Laplacian

matrix

D2 =

�2 1 0 0 0 0 0 0 0 0 0 0 0

1 �2 1 0 0 0 0 0 0 0 0 0 0

0 1 �2 1 0 0 0 0 0 0 0 0 0

0 0 1 �2 1 0 0 0 0 0 0 0 0

0 0 0 1 �2 1 0 0 0 0 0 0 0

0 0 0 0 1 �2 1 0 0 0 0 0 0

0 0 0 0 0 1 �2 1 0 0 0 0 0

0 0 0 0 0 0 1 �2 1 0 0 0 0

0 0 0 0 0 0 0 1 �2 1 0 0 0

0 0 0 0 0 0 0 0 1 �2 1 0 0

0 0 0 0 0 0 0 0 0 1 �2 1 0

0 0 0 0 0 0 0 0 0 0 1 �2 1

0 0 0 0 0 0 0 0 0 0 0 1 �2

(4.22)
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is the “bulging” matrix

D�1
2 = �

1

14

13 12 11 10 9 8 7 6 5 4 3 2 1

12 24 22 20 18 16 14 12 10 8 6 4 2

11 22 33 30 27 24 21 18 15 12 9 6 3

10 20 30 40 36 32 28 24 20 16 12 8 4

9 18 27 36 45 40 35 30 25 20 15 10 5

8 16 24 32 40 48 42 36 30 24 18 12 6

7 14 21 28 35 42 49 42 35 28 21 14 7

6 12 18 24 30 36 42 48 40 32 24 16 8

5 10 15 20 25 30 35 40 45 36 27 18 9

4 8 12 16 20 24 28 32 36 40 30 20 10

3 6 9 12 15 18 21 24 27 30 33 22 11

2 4 6 8 10 12 14 16 18 20 22 24 12

1 2 3 4 5 6 7 8 9 10 11 12 13

.

(4.23)

4.3 Eigenvalues & Eigenvectors

Typically a matrix times a vector produces another vector,

M ~w = ~w 0
6= ~w. (4.24)

But sometimes a matrix times a vector is proportional to the original vector,

M~v = �~v / ~v, (4.25)

where � and ~v are an eigenvalue and eigenvector of the matrix (where “eigen”
is German for “own” or “self”). To solve the Eq. 4.25 eigenvalue-eigenvector
equation, rewrite it as

~0 = (M~v � �~v) = (M � �I)~v. (4.26)

If det[M � �I] 6= 0, then the matrix M � �I is invertible, and so

~0 = (M � �I)�1(M � �I)~v = ~v (4.27)

is the trivial solution. To obtain a nontrivial solution, demand

0 = det[M � �I]. (4.28)
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If M is 2D, then

0 = det

"
a b

c d
� �

1 0

0 1

#

= det
a� � b

c d� �

= (a� �)(d� �)� bc

= �2 � �(a+ d) + ad� bc

= �2 � � trM + detM, (4.29)

so the two eigenvalues are

�± =
⌧ ±

p
⌧2 � 4�

2
=
⌧ ±D

2
, (4.30)

where the trace, determinant, and quadratic discriminant are

⌧ = trM, (4.31a)

� = detM, (4.31b)

D =
p
⌧2 � 4�. (4.31c)

The sum of the eigenvalues

�+ + �� =
⌧ +D

2
+
⌧ �D

2
= ⌧ = trM (4.32)

is the trace of the matrix, and the product of the eigenvalues

�+�� =
⌧ +D

2

⌧ �D

2
=
⌧2 � ⌧2 + 4�

4�
= � = detM (4.33)

is the determinant of the matrix.
To find the corresponding eigenvectors ~v = {vx, vy}, Eq. 4.26 now implies

the one matrix equation

a� �± b

c d� �±

vx

vy
=

0

0
, (4.34)

which is equivalent to the two scalar equations

(a� �±)vx + bvy = 0, (4.35a)

cvx + (d� �±)vy = 0, (4.35b)
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so that the ratio of the eigenvector components

vx
vy

=
b

�± � a
=
�± � d

c
. (4.36)

Figure 4.4: Representations of eigenvalues and eigenvectors of 2D matrices M .
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The unnormalized eigenvectors

~v± /
�± � d

c
/

b

�± � a
(4.37)

and the normalized eigenvectors

v̂± =
~v±
v±

=
1p

|�± � d|2 + |c|2
�± � d

c
=

1p
|b|2 + |�± � a|2

b

�± � a
.

(4.38)
Figure 4.4 summarizes the 2D matrix eigenvalue-eigenvector phenomenology.

Negatives determinants � < 0 correspond to saddles with one repelling and one
attracting direction. Imaginary discriminants D

2 < 0 correspond to spirals,
with positive traces ⌧ > 0 rotating one way and negative traces rotating the
other way.

4.4 Diagonalization

The dot product of the eigenvectors of 2D matrices

v̂+ · v̂� = v̂T+v̂� / �+ � d c
�� � d

c

= (�+ � d)(�� � d) + c2

= �+�� � (�+ + ��)d+ d2 + c2

= ZZad � bc� (ZZa +��d )d+��d2 + c2

= (c� b)c / c� b (4.39)

vanishes when counter diagonal elements b = c and the matrix M = MT is
symmetric. In that case, the matrix of normalized eigenvectors

O = v̂+ v̂� (4.40)

is orthogonal

O
T
O =

v̂T+

v̂T�
v̂+ v̂�

=
v̂T+v̂+ v̂T+v̂�

v̂T�v̂+ v̂T�v̂�
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=
1 0

0 1

= I. (4.41)

and diagonalizes M via the similarity transformation

O
TMO =

v̂T+

v̂T�
M v̂+ v̂�

=
v̂T+

v̂T�
Mv̂+ Mv̂�

=
v̂T+

v̂T�
�+v̂+ ��v̂�

=
�+v̂T+v̂+ ��v̂T+v̂�

�+v̂T�v̂+ ��v̂T�v̂�

=
�+ 0

0 �+

= D. (4.42)

Thus, for a symmetric matrix S = ST , a generic transformation in one
reference frame implies a diagonal transformation in another reference frame,

S ~w = ~w 0, (4.43a)

O
TSOO

T ~w = O
T ~w 0, (4.43b)

D ~wo = ~w 0
o
, (4.43c)

where D = O
TSO and ~wo = O

T ~w and ~w 0
o
= O

T ~w 0.
Just as a symmetric matrix S = ST is diagonalizable by an orthogonal

matrix O
T = O

�1, a hermitian (or complex symmetric) matrix H = H† is
diagonalizable by a unitary matrix U† = U�1, as in Fig. 4.5.
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Figure 4.5: Similarity transformations for generic matrices M , symmetric ma-
trices S, and hermitian (or complex symmetric) matrices H.

4.5 Matrix Invariants (det & tr)

Even when matrices do not commute, so AB 6= BA, the determinant and trace
of a product of matrices is insensitive to the order of the factors, so

det[AB] = det[BA] (4.44)

and
tr[AB] = tr[BA]. (4.45)

With respect to the latter,

tr

"
a b

c d

a0 b0

c0 d0

#
= tr

aa0 + bc0 ab0 + bd0

ca0 + dc0 cb0 + dd0
= aa0 + bc0 + cb0 + dd0

(4.46)
and

tr

"
a0 b0

c0 d0

a b

c d

#
= tr

a0a+ b0c a0b+ b0d

c0a+ d0c c0b+ d0d
= a0a+ b0c+ c0b+ d0d

(4.47)
are identical. Hence, under a general coordinate transformation T~v = ~v 0, the
determinant and trace are invariant,

detM 0 = det[T�1MT ] = det[MTT�1] = detM (4.48)

and
trM 0 = tr[T�1MT ] = tr[MTT�1] = trM. (4.49)
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4.6 Matrix Functions

Define a function of a matrix by its power series expansion. For example,

eM = I +M +
1

2!
M2 +

1

3!
M3 + · · · (4.50)

(with eM1eM2 = eM1+M2 if M1M2 = M2M1). Since the square of a diagonal
matrix

D2 =
a 0

0 d

a 0

0 d
=

a2 0

0 d2
(4.51)

is the diagonal matrix of squares, and similarly for higher powers, the exponen-
tial of a diagonal matrix

eD = exp
a 0

0 d
=

1 0

0 1
+

a 0

0 d
+

1

2!

a2 0

0 d2
+

1

3!

a3 0

0 d3
+ · · ·

=
1 + a+ 1

2!a
2 + 1

3!a
3 + · · · 0

0 1 + d+ 1
2!d

2 + 1
3!d

3 + · · ·

=
ea 0

0 ed
(4.52)

is the diagonal matrix of exponentials, and the determinant of the exponential
of a diagonal matrix

det eD = eaed = ea+d = etrD (4.53)

is the exponential of its trace. If the transformation T diagonalizes M , then

M = TDT�1 (4.54)
implies

eM = eTDT
�1

= I + TDT�1 +
1

2!

�
TDT�1

�2
+

1

3!

�
TDT�1

�3
+ · · ·

= TT�1 + TDT�1 +
1

2!
TDT�1TDT�1 +

1

3!
TDT�1TDT�1TDT�1 + · · ·

= T

✓
I +D +

1

2!
D2 +

1

3!
D3 + · · ·

◆
T�1

= TeDT�1. (4.55)

Hence the determinant of the exponential

det eM = det[TeDT�1] = det[eDT�1T ]

= det eD = etrD = etr[T
�1

MT ] = etr[MTT
�1] = etrM (4.56)
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is the exponential of the trace.
If �t is scalar parameter and M = �tN , then

det e�tN = e�t trN (4.57)

and so the power series expansions

det[I + �tN + · · · ] = 1 + �t trN + · · · (4.58)

imply
det[I + �tN ] = det I + �t trN +O[�t2]. (4.59)

Hence the directional derivative of the determinant at the identity

rN det I = lim
�t!0

det[I + �tN ]� det I

�t
= trN (4.60)

is the trace. More generally, if Mt is a matrix that depends on t, then

d

dt
detMt = lim

�t!0

detMt+�t � detMt

�t

= detMt lim
�t!0

det[M�1
t

Mt+�t]� 1

�t

= detMt lim
�t!0

det[M�1
t

(Mt + �t dMt/dt+ · · · )]� 1

�t

= detMt lim
�t!0

det[I + �tM�1
t

dMt/dt]� det I

�t

= detMt tr


M�1

t

dMt

dt

�
, (4.61)

so the relative rate of change or logarithmic derivative of the determinant

(detMt)
�1 d

dt
detMt = tr


M�1

t

dMt

dt

�
. (4.62)

Alternately, the derivative of the logarithm of the determinant

d

dt
log detMt = tr

d

dt
logMt (4.63)

is the trace of the derivative of the logarithm of the matrix.
Finally, using the Eq. 4.46 square 2D matrix trace,

detM = ad� bc =
1

2

�
(a+ d)2 � (a2 + bc+ cb+ d2)

�

=
1

2

�
(trM)2 � trM2

�
=

1

2
det

trM 1

trM2 trM
. (4.64)
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For a 5D matrix, the pretty pattern becomes

detM =
1

5!
det

trM 1 0 0 0

trM2 trM 2 0 0

trM3 trM2 trM 3 0

trM4 trM3 trM2 trM 4

trM5 trM4 trM3 trM2 trM

. (4.65)
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Mathematica Matrices 2
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Worked Problem

1. Invert a 3⇥ 3 matrix (and check).

2 3 4

2 1 2

1 2 1

�1

=

+

������

1 2

2 1

������
�

������

2 2

1 1

������
+

������

2 1

1 2

������

�

������

3 4

2 1

������
+

������

2 4

1 1

������
�

������

2 3

1 2

������

+

������

3 4

1 2

������
�

������

2 4

2 2

������
+

������

2 3

2 1

������

T

+2

������

1 2

2 1

������
� 3

������

2 2

1 1

������
+ 4

������

2 1

1 2

������

=

�3 0 3

5 �2 1

2 4 �4

T

2(�3)� 3(0) + 4(3)

=
1

6

�3 5 2

0 �2 4

3 �1 �4

=

�1/2 5/6 1/3

0 �1/3 2/3

1/2 �1/6 �2/3

2 3 4

2 1 2

1 2 1

�1/2 5/6 1/3

0 �1/3 2/3

1/2 �1/6 �2/3

=

1 0 0

0 1 0

0 0 1
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Problems

1. For each real matrix A, compute AT , detA, trA, A�1.

(a) A =
1 2

3 4

(b) A =
1 2

4 9

(c) A =

1 2 3

3 2 2

1 1 2

2. For each complex matrix U , compute U†, detU , trU , U�1. (Hint: Recall

that the adjoint is the transpose of the complex conjugate, U † = (U⇤)T .)

(a) U =
2i 0

i 2

(b) U =
i 1

4 �i

3. Find the eigenvalues and normalized eigenvectors of the following matrices.
(Hint: For complex vectors, normalization requires an adjoint rather than
a transpose, for example, v̂†+v̂+ = 1 instead of v̂T+v̂+ = 1.)

(a) A =
1 2

3 2

(b) U =
2i 1

3 �2i

4. Define a matrix function by its power series expansion, as in Eq. 4.50.

(a) Show that if AT = �A is antisymmetric, then O = eA is orthogonal
(so that OT = O

�1).

(b) Show that if H† = H is complex symmetric, then U = eiH is unitary
(so that U† = U�1).
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5. Use Mathematica to evaluate powers Sn and Tn of the following matrices
and induce the general patterns. (Hint: Try using MatrixPower, Simplify
with assumptions, and MatrixForm.)

(a) S =

1 1 1

1 1 1

1 1 1

(b) T =

1 1 1

0 1 1

0 0 1

6. Use Mathematica to apply the Eq. 4.20 and Eq. 4.22 first and second
di↵erence matrices and their inverses to a sampled sine curve to visually
demonstrate “di↵erentiation” and “integration” (Hint: Try using Table,
SparseArray, ListPlot, and Rest.)
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Normal Modes &
Eigenstates

As a prelude to Fourier analysis, consider the classical normal modes of masses
connected by springs and the quantum eigenstates of an ammonia molecule.

5.1 Classical Two Degrees of Freedom

When a mechanism oscillates in a normal mode all of its parts oscillate in
phase at the same frequency. The modes are independent or orthogonal as
exciting one does not excite others. The mechanism’s most general motion is a
superposition of its normal mode motions. Normal mode analysis is important
in physics and engineering.

Figure 5.1: Identical masses connected by springs slide frictionlessly between
two fixed walls in symmetric or antisymmetric motions at slow and fast angular
frequencies !� and !+.

Consider two masses m connected by springs of sti↵ness s to walls and
coupled by a spring of sti↵ness sc to each other as they slide frictionlessly at

77
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positions x1 and x2, as in Fig. 5.1. Newton’s second law at each mass implies

mẍ1 = F1x = �sx1 + sc(x2 � x1), (5.1a)

mẍ2 = F2x = �sx2 � sc(x2 � x1), (5.1b)

where the over-dots indicate di↵erentiation with respect to time. Write this as
the matrix equation

M ~̈x = S~x, (5.2)

where the state vector

~x =
x1

x2

, (5.3)

the mass matrix

M =
m 0

0 m
, (5.4)

and the sti↵ness matrix

S =
�s� sc sc

sc �s� sc
, (5.5)

where Src is the force per displacement on mass r when mass c is displaced.
Seek normal mode solutions where each mass moves at the same angular

frequency ! and with the same phase (shift) ' by subsituting

~x = ~A cos[!t+ '] (5.6)

into Eq. 5.2 to find
� !2M ~A = S ~A (5.7)

or the eigenequation
!2 ~A = W ~A, (5.8)

where

W = �M�1S =
1

m

s+ sc �sc

�sc s+ sc
=

!2
0 + !2

c
�!2

c

�!2
c

!2
0 + !2

c

, (5.9)

and the natural frequencies !0 =
p
s/m and !c =

p
sc/m. For a nontrivial

~A 6= ~0 solution of
(!2I �W ) ~A = ~0, (5.10)

the matrix !2I �W must not be invertible, so demand

0 = det[!2I �W ]
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=

������

!2
� !2

0 � !2
c

!2
c

!2
c

!2
� !2

0 � !2
c

������

= (!2
� !2

0 � !2
c
)2 � (!2

c
)2

=
�
!2

� !2
0

� �
!2

� !2
0 � 2!2

c

�
. (5.11)

Hence the square eigenfrequencies of the symmetric and antisymmetric normal
mode motion are

!2
s
= !2

� = !2
0 , (5.12a)

!2
a
= !2

+ = !2
0 + 2!2

c
. (5.12b)

Given the eigenfrequencies, the Eq. 5.10 eigenequation

!2
� !2

0 � !2
c

!2
c

!2
c

!2
� !2

0 � !2
c

a1

a2
=

0

0
(5.13)

for ! = !s implies

�!2
c

!2
c

!2
c

�!2
c

a1

a2
=

0

0
, (5.14)

so a1 = a2, and for ! = !a implies

!2
c

!2
c

!2
c

!2
c

a1

a2
=

0

0
, (5.15)

so a1 = �a2. Because the matrix W = WT is symmetric, the corresponding
normalized eigenvectors

Âs =
1
p
2

1

1
, (5.16a)

Âa =
1
p
2

1

�1
, (5.16b)

are orthonormal

Âs · Âa = ÂT

s
Âa =

1

2
1 1

1

�1
= 0, (5.17a)
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Âs · Âs = ÂT

s
Âs =

1

2
1 1

1

1
= 1, (5.17b)

Âa · Âa = ÂT

a
Âa =

1

2
1 �1

1

�1
= 1, (5.17c)

and give the “shape” of the normal modes. The two masses move in the same
direction in the slow symmetric mode and in the opposite directions in the fast
antisymmetric mode, as in Fig 5.1. In the symmetric slow mode, the center
spring does not stretch or contract, e↵ectively decoupling the masses so they
oscillate at the natural frequency of just a mass connected to a single spring,
!s =

p
s/m = !0. In the antisymmetric fast mode, the center of the spring does

not move, making it e↵ectively twice as sti↵, which when combined with the
normal sti↵ness of the wall spring causes the masses to oscillate at the frequency
!a =

p
(s+ 2sc)/m =

p
!2
0 + 2!2

c
> !0.

The general motion is a linear combination or superposition of the normal
mode motions

~x[t] = csÂs cos [!st+ 's] + caÂa cos [!at+ 'a] , (5.18)

where the amplitude multipliers cs, ca and phase shifts 's, 'a depend on the
initial t = 0 positions and velocities of both masses,

Âs · ~x[0] = cs cos's, (5.19a)

Âa · ~x[0] = ca cos'a, (5.19b)

Âs · ~̇x[0] = �!scs sin's, (5.19c)

Âa · ~̇x[0] = �!aca sin'a. (5.19d)

To check, apply the sti↵ness matrix S = �MW to both side of Eq. 5.18 to get

S~x[t] = csSÂs cos [!st+ 's] + caSÂa cos [!at+ 'a]

= M
⇣
�csWÂs cos [!st+ 's]� caWÂa cos [!at+ 'a]

⌘

= M
⇣
�cs!

2
s
Âs cos [!st+ 's]� ca!

2
a
Âa cos [!at+ 'a]

⌘

= M ~̈x[t], (5.20)

which is Newton’s Eq. 5.2.
The orthogonal matrix of normalized eigenvectors

O = Âs Âa
=

1
p
2

1 1

1 �1
(5.21)
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Figure 5.2: Masses motion x1, x2 exhibits mode mixing as energy E1, E2 beats
between them (with little energy Ec of total energy E stored in the weak spring).

that diagonalizes M transforms the masses’ coordinates to normal coordi-

nates

~⇠ = O
T~x (5.22)

or

⇠1

⇠2
=

1
p
2

1 1

1 �1

x1

x2

=
1
p
2

x1 + x2

x1 � x2

, (5.23)

where ⇠1 / x1+x2 is proportional to the midpoint of the masses and ⇠2 / x1�x2

is proportional to the distance between the masses.

As an example, start both masses at rest with the first at equilibrium and
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the second displaced a distance d so that

~x[0] =
0

d
, (5.24a)

~̇x[0] =
0

0
. (5.24b)

Evaluate Eq. 5.19 to get

d/
p
2 = cs cos's, (5.25a)

�d/
p
2 = ca cos'a, (5.25b)

0 = �!scs sin's, (5.25c)

0 = �!aca sin'a, (5.25d)

which has the nontrivial solution 's = 0, 'a = ⇡, cs = d/
p
2, ca = d/

p
2, so

that

~x[t] =
d

2
Âs cos!st�

d

2
Âa cos!at, (5.26)

where cos!t is a common but slightly ambiguous shorthand for cos[!t]. In
components,

x1[t]

x2[t]
=

d

2

1

1
cos!st�

d

2

1

�1
cos!at (5.27)

or

x1[t] =
d

2
(cos!st+ cos!at) , (5.28a)

x2[t] =
d

2
(cos!st� cos!at) . (5.28b)

A couple of trig sum-to-product identities imply

x1[t] = +d cos
!st� !at

2
cos

!st+ !at

2
, (5.29a)

x2[t] = �d sin
!st� !at

2
sin

!st+ !at

2
. (5.29b)

Introduce the frequency mean and splitting !± = (!a ± !s)/2 and a couple of
trig sum-to-product identities imply

x1[t] = (d cos!�t) cos!+t, (5.30a)

x2[t] = (d sin!�t) sin!+t, (5.30b)

which emphasizes the “beats” or mode mixing of Fig. 5.2, where a slowly varying
amplitude modulates a fast frequency.
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5.2 Quantum Two-State System

Figure 5.3: Plane of hydrogens can quantum tunnel through the nitrogen atom
in ammonia. Modeled as a point particle in a bistable potential, the symmetric
and antisymmetric energy states create an e↵ective two-state system.

The ammonia molecule NH3 is a fascinating example of quantum tunnel-
ing [4]. Ammonia is shaped like a pyramid, with a large N molecule at the apex
and a triangle of small H atoms at the base, as in Fig. 5.3. In addition to elec-
tronic, translational, vibrational, and rotational degrees of freedom, ammonia
has an additional degree of freedom: the base of H atoms can be on one side of
the N atom or the other. Classically, a potential energy barrier prevents such an
“inverting umbrella” transition, which we can simply model with a finite square
barrier inside an infinite square well. The potential barrier reflects the repulsion
between the N and the H atoms; the potential side walls reflect the chemical
bonding, which insures the molecule’s cohesion; the two minima represent the
two stable configurations. Quantumly, the molecule can tunnel between these
two configurations, and it does so spontaneously, in the absence of any forcing.

Table 5.1: Matrix representations for bra and kets, where | i† = h |.

vector ket | i
a

b

functional bra h | a⇤ b⇤

operator ket bra | ih |
aa⇤ ab⇤

ba⇤ bb⇤

scalar bra ket h | i a⇤a+ b⇤b
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Model ammonia as a two-state system with “Left” and “Right” base states

L̂ = |Li =
1

0
, (5.31a)

R̂ = |Ri =
0

1
(5.31b)

in the Table 5.1 bra-ket notation. The general state is the linear superposition

~ = | i =  L|Li+  R|Ri =
 L

 R

. (5.32)

If the Hamiltonian

H =
E0 �A

�A E0

, (5.33)

then the Schrödinger equation

i~@t| i = H| i (5.34)

becomes

i~ @t
 L

 R

=
E0 �A

�A E0

 L

 R

(5.35)

or in components

i~  ̇L = +E0 L �A R, (5.36a)

i~  ̇R = �A L + E0 R. (5.36b)

Seek stationary solutions of definite energy E by substituting

| i = | ie�iEt/~ (5.37)

or in an alternate notation

| ti = | 0ie
�iEt/~ (5.38)

into Eq. 5.34 to find the eigenvalue-eigenvector equation

E| i = H| i (5.39)

or
(EI �H)| i = 0. (5.40)



Chapter 5. Normal Modes & Eigenstates 85

For a nontrivial | i 6= 0 solution, EI �H must not be invertible, so demand

0 = det[EI �H]

=

������

E � E0 A

A E � E0

������

= E2
� 2E0E + E2

0 �A2

= (E � E0 �A) (E � E0 +A) , (5.41)

so the eigenenergies of the symmetric and antisymmetric states

Es = E� = E0 �A, (5.42a)

Ea = E+ = E0 +A. (5.42b)

Given the eigenenergies, the Eq. 5.40 eigenequation

E � E0 A

A E � E0

 1

 2

=
0

0
(5.43)

for E = Es implies

�A A

A �A

 1

 2

=
0

0
, (5.44)

so  2 =  2, and for E = Ea implies

A A

A A

 1

 2

=
0

0
, (5.45)

so  1 = � 2. Because the matrix H = H† is hermitian, the corresponding
normalized eigenstates

|si =
1
p
2

1

1
, (5.46a)

|ai =
1
p
2

1

�1
, (5.46b)

are orthonormal

ŝ · â = hs|ai =
1

2
1 1

1

�1
= 0, (5.47a)
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ŝ · ŝ = hs|si =
1

2
1 1

1

1
= 1, (5.47b)

â · â = ha|ai =
1

2
1 �1

1

�1
= 1. (5.47c)

A general state is a linear combination or superposition of the stationary
states

| i = cs|si+ ca|ai, (5.48)

where the amplitude multipliers cs, ca are

hs| i = cs, (5.49a)

ha| i = ca. (5.49b)

At a later time, the initial state evolves to

| i = cs|sie
�iEst/~ + ca|aie

�iEat/~. (5.50)

To check, apply the Hamiltonian H to both sides of Eq. 5.50 to get

H| i = csH|sie�iEst/~ + caH|aie�iEat/~

= csEs|sie
�iEst/~ + caEa|aie

�iEat/~

= i~ @t
⇣
cs|sie

�iEst/~ + ca|aie
�iEat/~

⌘

= i~ @t| i, (5.51)

which is Schrödinger’s Eq. 5.34.
As an example, suppose the ammonia molecule begins with the plane of

hydrogens right of the nitrogen atom,

| i = |Ri =
1

0
. (5.52)

Evaluate the Eq. 5.49 projections to get

1/
p
2 = cs, (5.53a)

�1/
p
2 = ca (5.53b)

so that

| i =
1
p
2
|si �

1
p
2
|ai (5.54)



Chapter 5. Normal Modes & Eigenstates 87

or in matrix form

| i =
1

2

1

1
�

1

2

1

�1
=

1

0
= |Ri. (5.55)

Thereafter, the complex phase of each energy eigenstate rotates at frequency
proportional to the corresponding energy

| i =
1
p
2
|sie�iEst/~ �

1
p
2
|aie�iEat/~

=
1
p
2
e�iĒt/~

⇣
|sie+i!t/2

� |aie�i!t/2
⌘
, (5.56)

where the average energy Ē = (Es + Ea)/2 and the energy splitting ~! =
�E = Ea � Es. The probability amplitude to find the plane of the hydrogens
left of the nitrogen atom is the projection

hL| i =
1
p
2
e�iĒt/~

⇣
hL|sie+i!t/2

� hL|aie�i!t/2
⌘

= e�iĒt/~
✓
e+i!t/2

� e�i!t/2

2

◆

= ie�iĒt/~ sin
!t

2
, (5.57)

and the corresponding probability for the ammonia molecule to tunnel from
right to left is

P = |hL| i|2 = sin2
!t

2
, (5.58)

where sin2 x is a common abbreviation for sin[x]2, as in Fig. 5.4. This is the
basis for the ammonia maser.

Figure 5.4: Probability P to find the ammonia’s hydrogen plane left of the
nitrogen atom versus time t oscillates with period T = 2⇡~/�E = h/�E.
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Mathematica DSolve
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Worked Problem

1. Find the energy eigenstates of the Hamiltonian H = E0

1 0 �i

0 1 0

i 0 1

.

H|Ei = E|Ei ) (H � EI)|Ei = 0 & |Ei 6= 0 )

0 = det[H � EI] =

���������

E0 � E 0 �iE0

0 E0 � E 0

iE0 0 E0 � E

���������

= +(E0 � E)

������

E0 � E �iE0

iE0 E0 � E

������

= (E0 � E)
�
(E0 � E)2 � E2

0)
�
= (E0 � E)(�2E0 + E)E

) E = 0, E0, 2E0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(H � EI)|Ei =

E0 � E 0 �iE0

0 E0 � E 0

iE0 0 E0 � E

x

y

z

=

0

0

0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(H � 0I)|0i =

E0 0 �iE0

0 E0 0

iE0 0 E0

x

y

z

=

0

0

0

+ x � iz = 0

+ y = 0

+ix + z = 0

) |0i =

x

y

z

= N0

i

0

1

) h0| = |0i† = �i 0 1 N⇤
0

1 = h0|0i = N0(�i2 + 1)N⇤
0 = 2 |N0|

2
( N0 =

1
p
2
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(H � E0I)|1i =

0 0 �iE0

0 0 0

iE0 0 0

x

y

z

=

0

0

0

� z = 0

0 = 0

+x = 0

) |1i =

x

y

z

=

0

1

0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(H � 2E0I)|2i =

�E0 0 �iE0

0 �E0 0

iE0 0 �E0

x

y

z

=

0

0

0

� x � iz = 0

� y = 0

+ix � z = 0

) |2i =

x

y

z

= N2

�i

0

1

) h2| = |2i† = i 0 1 N⇤
2

1 = h2|2i = N2(�i2 + 1)N⇤
2 = 2 |N2|

2
( N2 =

1
p
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

|0i =
1
p
2

i

0

1

, |1i =

0

1

0

, |2i =
1
p
2

�i

0

1

h0|2i =
1
p
2

�i 0 1

�i

0

1

1
p
2
=

i2 + 1

2
= 0
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Problems

1. Model a linear system of three points of mass m connected to each other
and two walls by four springs of sti↵ness s.

(a) Find the normal mode frequencies.

(b) Find the normal mode shapes, and interpret them graphically.

2. Model a linear system of three points of mass m connected to each other
by springs of sti↵ness s.

(a) Find the normal mode frequencies.

(b) Find the normal mode shapes, and interpret them graphically.

3. Model a 3-state quantum system by the Hamiltonian

H = E0

3 2 0

2 0 0

0 0 1

. (5.59)

(a) Find the allowed energies.

(b) Find the stationary states.

(c) If the system is initially in the state

| i = | 0i =
1
p
2

1

1

0

, (5.60)

what is its state | i = | ti at a later time?
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Chapter 6

Fourier Analysis

Inspired by normal modes or eigenstates, introduce Fourier analysis and syn-
thesis of functions, as in Fig. 6.1, in analogy with decomposing a vector into
components or constructing a vector from components.

Figure 6.1: The Wooster W traced out by epicycles of 100 circles-moving-on-
circles in the complex plane. Algebraically, the trace is a complex discrete
Fourier series

P
cnein' =

P
rnei(n'+✓n), where rn are the circle radii.

93
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6.1 Finite Basis

Consider a finite set of basis vectors

{x̂1, x̂2, . . . , x̂N}. (6.1)

Assume a scalar product

~u · ~v =
NX

n=1

unvn (6.2)

under which the basis vectors are orthonormal so that

x̂m · x̂n = �mn, (6.3)

where the Kronecker delta

�mn =

8
<

:
1, m = n

0, m 6= n

9
=

; . (6.4)

Any vector ~v is a linear combination of the basis vectors

~v =
NX

n=0

x̂nvn (6.5)

because the coe�cients can be liberated by the projection

x̂m · ~v = x̂m ·

 
NX

n=0

x̂nvn

!

=
NX

n=0

x̂m · x̂nvn

=
NX

n=0

�mnvn

= 0 + 0 + · · ·+ 0 + 1 vm + 0 + · · ·+ 0

= vm. (6.6)

Hence,

vn = x̂n · ~v (6.7)

with

~v =
NX

n=0

x̂nvn. (6.8)
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6.2 Countable Basis

The countable normal mode shapes of a string fixed at two ends a distance L
apart are the sinusoids

Nn = N sin knx, (6.9)

where the normalization N =
p
2/L and the spatial frequency kn = 2⇡/�n =

n⇡/L, or

Nn[x] =

r
2

L
sin
h
n⇡

x

L

i
, (6.10)

and the index n is a natural number. Treating a continuous function with values
f [x] as a generalization of a discrete vector with components vn, assume a scalar
product

hf |gi =

Z
L

0
dx f [x]g[x] =

Z
L

0
f [x]g[x] dx (6.11)

under which the normal modes are orthonormal as

hNm|Nni = hm|ni =

Z
L

0
dx (N sin kmx) (N sin knx)

= N2

Z
L

0
dx sin

h
m⇡

x

L

i
sin
h
n⇡

x

L

i

= N2L

⇡

Z
⇡

0
d✓ sinm✓ sinn✓

=
2

L

L

⇡

Z
⇡

0
d✓

1

2

�
cos(m� n)✓ � cos(m+ n)✓

�

=
1

⇡

✓
sin(m� n)✓

m� n
�

sin(m+ n)✓

m+ n

◆ ����
⇡

0

= �mn, (6.12)

because sin p✓ ⇠ p✓ as p ! 0 for the m = n case, and graphically as in Fig. 6.2.
Any string shape f [x] is a discrete linear combination of the normal mode

shapes

f [x] =
1X

n=1

Nn[x]fn (6.13)

or

|fi =
1X

n=1

|nifn (6.14)

because the coe�cients can be liberated by the projection

hm|fi = hm|

1X

n=1

|nifn

=
1X

n=1

hm|nifn
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Figure 6.2: Sine modes for a string with fixed ends are orthonormal as plots of
the first two modes suggest.

=
1X

n=1

�mnfn

= 0 + · · ·+ 0 + 1 fm + 0 + · · ·

= fm (6.15)

or equivalently

fn = hn|fi

=

Z
L

0
dxNn[x]f [x]

=

r
2

L

Z
L

0
dx sin

h
n⇡

x

L

i
f [x] (6.16)

so that

|fi =
1X

n=1

|nihn|fi (6.17)

or

hx|fi =
1X

n=1

hx|nihn|fi, (6.18)

which means

f [x] =
1X

n=1

Nn[x]fn. (6.19)

The classic [5] Fourier sine series

f [x] =
1X

n=1

r
2

L
sin
h
n⇡

x

L

i
fn (6.20)
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with Fourier coe�cients

fn =

Z
L

0
dx

r
2

L
sin
h
n⇡

x

L

i
f [x]. (6.21)

6.3 Uncountable Basis

Because their frequencies are multiples of a fundamental frequency, the Eq. 6.9
sinusoidal finite space normal modes can synthesize any periodic function (or
a finite portion of any nonperiodic function). As a generalization to overcome
these limitations, take the infinite space normal modes to be the complex

sinusoids

E[k, x] =
1

p
2⇡

e�ikx =
1

p
2⇡

cos kx�
1

p
2⇡

i sin kx, (6.22)

where the index k is a real number. Assume a complex scalar product

hf |gi =

Z
L

0
dx f [x]⇤g[x] (6.23)

for which the normal modes are orthonormal, as

hE[k, x]|E[k0, x]i = hk|k0i =

Z 1

�1
dxE[k, x]⇤E[k0, x]

=

Z 1

�1
dx

1
p
2⇡

e+ikx 1
p
2⇡

e�ik0
x

=

Z 1

�1
dx

1

2⇡
ei(k�k

0)x

=
1

2⇡
lim

⇤!1

Z 1

�1
dx e�x

2
/4⇤ei(k�k

0)x

=
1

2⇡
lim

⇤!1

Z 1

�1
dx e�(x�i2(k�k

0)⇤)2/4⇤ e�4(k�k
0)2⇤2

/4⇤

=
1

2⇡
lim

⇤!1
e�(k�k

0)2⇤

Z 1

�1
dy e�y

2
/4⇤

=
1

2⇡
lim

⇤!1
e�(k�k

0)2⇤
p

4⇤

Z 1

�1
dz e�z

2

=
1

2⇡
lim

⇤!1
e�(k�k

0)2⇤
p

4⇤
p
⇡

= lim
⇤!1

r
⇤

⇡
e�⇤(k�k

0)2

= lim
⇤!1

�⇤[k � k0]

= �[k � k0], (6.24)
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where the insertion of the integrating convergence factor e�x
2
/4⇤ produces the

famous Gaussian integral

✓Z 1

�1
dz e�z

2

◆2

=

✓Z 1

�1
dz e�z

2

◆✓Z 1

�1
dz e�z

2

◆

=

✓Z 1

�1
dx e�x

2

◆✓Z 1

�1
dy e�y

2

◆

=

Z 1

�1

Z 1

�1
dx dy e�(x2+y

2)

=

Z 2⇡

0

Z 1

0
rdr d✓ e�r

2

= 2⇡

✓
�
1

2
e�r

2

◆ ����
1

0

= ⇡, (6.25)

and also creates a representation of the Dirac delta, as in Fig. 6.3. The Dirac
delta generalizes the Eq. 6.4 Kronecker delta from discrete indices to continuous
indices. It can be understood heuristically as the limit of an infinitely high but
infinitely narrow bump or spike

�[k � k0] =

8
<

:
1, k = k0

0, k 6= k0

9
=

; (6.26)

bounding a finite area

1 =

Z 1

�1
dk �[k � k0] (6.27)

with the sifting property

Z
dx f [x]�[x� a] =

Z
dx f [a]�[x� a] = f [a]

Z
dx �[x� a] = f [a]. (6.28)

Any shape f [x] is a continuous linear combination of the normal modes

f [x] =

Z 1

�1
dk E[k, x]f̃ [k] (6.29)

or

|fi =

Z 1

�1
dk |kif̃ [k] (6.30)

because the coe�cients can be liberated by the projection

hk0|fi = hk0|

Z 1

�1
dk |kif̃ [k]

=

Z 1

�1
dk hk0|kif̃ [k]
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Figure 6.3: The Dirac delta can be represented as the limit of an infinitely high
but infinitely narrow Gaussian of unit area, �[x] = lim⇤!1 �⇤[x].

=

Z 1

�1
dk �[k � k0]f̃ [k]

= f̃ [k0] (6.31)

or equivalently

f̃ [k] = hk|fi

=

Z 1

�1
dxE[k, x]⇤f [x]

=
1

p
2⇡

Z 1

�1
dx e+ikxf [x] (6.32)

so that

|fi =

Z 1

�1
dk |kihk|fi (6.33)

or

hx|fi =

Z 1

�1
dk hx|kihk|fi, (6.34)

which means

f [x] =

Z 1

�1
dk E[k, x]f̃ [k]. (6.35)

Thus, the classic Fourier transform

f̃ [k] =

Z 1

�1
dx

1
p
2⇡

e+ikxf [x] (6.36)

with the inverse transform

f [x] =

Z 1

�1
dk

1
p
2⇡

e�ikxf̃ [k]. (6.37)
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6.4 Examples & Properties

The “Big 4” Fourier examples illustrate generic properties.

6.4.1 Square-Wave Fourier Series

Using Eq. 6.20 and Eq. 6.21, the Fourier series of the Fig. 6.4 on-o↵ or square
wave function

sa,L[x] = a sgn
h
sin
h
2⇡

x

L

ii
, (6.38)

of amplitude a and wavelength L, where the signum function sgn[x] = x/|x|
gives the sign of a number, is

sa,L[x] =
4

⇡
a

1X

n=1

�
2

n
cos
h
n
⇡

2

i
sin2

h
n
⇡

4

i
sin
h
n⇡

x

L

i

=
4

⇡
a

1X

m=1

2

4m� 2
sin
h
(4m� 2)⇡

x

L

i

=
4

⇡
a
X

` odd

1

`
sin
h
` 2⇡

x

L

i
(6.39)

or

sa,L[x] =

4

⇡
a

✓
sin
h
2⇡

x

L

i
+

1

3
sin
h
6⇡

x

L

i
+

1

5
sin
h
10⇡

x

L

i
+

1

7
sin
h
14⇡

x

L

i
+ · · ·

◆
,

(6.40)

where the coe�cients are inversely proportional to the odd natural numbers. In
particular, the Fourier series of the square wave

s1,2⇡[x] = sgn [sinx] (6.41)

of unit amplitude and 2⇡ wavelength is

s1,2⇡[x] =
4

⇡

✓
sinx+

1

3
sin 3x+

1

5
sin 5x+

1

7
sin 7x+ · · ·

◆
, (6.42)

where 4/⇡ ⇡ 1.27, so the fundamental term slightly overlaps the square wave.
Jump discontinuities cause slight ⇠ 9% overshoots in the final Fourier syn-

thesis. In practice, one might be interested only in a single wavelength, like
the string of length L, but because the frequencies of all the harmonics, the
fundamental and all the overtones, are multiples of the first harmonic, the
pattern repeats infinitely in both directions. If the initial function has a nonzero
mean, subtract it before Fourier analyzing, as all the sines have zero mean. If
the function is antisymmetric or odd (rather than symmetric and even)
with respect to the origin, use a cosine series instead. If the function has no
symmetry, use a combined sine and cosine series.



Chapter 6. Fourier Analysis 101

Figure 6.4: First few terms or harmonics (smooth curves) in the Fourier sine
series of a square wave (piecewise linear curve) and their sum (dashed curve).
Jump discontinuities cause slight ⇠ 9% overshoots in the final Fourier synthesis.

6.4.2 Sawtooth Fourier Series

Using Eq. 6.20 and Eq. 6.21, the Fourier series of the Fig. 6.5 ramp or sawtooth

function

wa,L[x] = 2a

✓
x

L
�

j x
L

k
�

1

2

◆
, (6.43)

of amplitude a and wavelength L, where the floor function bxc maps a real
number to the greatest preceding integer, is

wa,L[x] =
2

⇡
a

1X

n=1

�
2

n
cos
h
n
⇡

2

i
sin
h
n⇡

x

L

i

=
2

⇡
a

1X

m=1

�2(�1)m

2m
sin
h
2m⇡

x

L

i

=
2

⇡
a
X

` even

(�1)`/2+1

`/2
sin
h
` ⇡

x

L

i
(6.44)

or

wa,L[x] =
2

⇡
a

✓
sin
h
2⇡

x

L

i
�

1

2
sin
h
4⇡

x

L

i

+
1

3
sin
h
6⇡

x

L

i
�

1

4
sin
h
8⇡

x

L

i

+
1

5
sin
h
10⇡

x

L

i
�

1

6
sin
h
12⇡

x

L

i

+
1

7
sin
h
14⇡

x

L

i
�

1

8
sin
h
16⇡

x

L

i
+ · · ·

◆
, (6.45)
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where the signs alternate. In particular, the Fourier series of the sawtooth

w1,2⇡[x] = 2

✓
x

2⇡
�

j x

2⇡

k
�

1

2

◆
, (6.46)

of unit amplitude and 2⇡ wavelength is

w1,2⇡[x] =
2

⇡

✓
sinx�

1

2
sin 2x

+
1

3
sin 3x�

1

4
sin 4x

+
1

5
sin 5x�

1

6
sin 6x

+
1

7
sin 7x�

1

8
sin 8x+ · · ·

◆
, (6.47)

where 2/⇡ ⇡ 0.637, so the fundamental term fits snuggly inside the sawtooth.

Figure 6.5: First few terms or harmonics (smooth curves) in the Fourier sine
series of a sawtooth (piecewise linear curve) and their sum (dashed curve).

6.4.3 Gaussian Transform

Using Eq. 6.36, the Fourier transform of a normal or Gaussian function

gµ,�[x] =
1

p
2⇡�2

e�(x�µ)2/(2�2) (6.48)

of center or mean µ and width or standard deviation � is the Gaussian

g̃µ,�[k] =
1

p
2⇡

e�k
2
�
2
/2e�ikµ
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= �̃
1

p
2⇡�̃2

e�(k�µ̃)2/(2�̃2)e�ikµ (6.49)

of width �̃ = 1/� and mean µ̃ = 0 multiplied by a complex phase factor, as in
Fig. 6.6. In particular, the Fourier transform of a Gaussian

g0,1[x] =
1

p
2⇡

e�x
2
/2 (6.50)

of unit width and zero mean is the Gaussian

g̃0,1[k] =
1

p
2⇡

e�k
2
/2 (6.51)

of unit width and zero mean. The latter is the frequency spectrum of the
former.

5, 0.50, 0.5-5, 0.5

-5, 1 0, 1 5, 1

5, 20, 2-5, 2

Same!

Figure 6.6: Fourier transform of a normalized (real) Gaussian with mean µ and
width � is another (complex) Gaussian. Widths are inversely related and the
absolute squares of the areas are the same.

The inverse relation between the widths of the Gaussians in position and
frequency space

��̃ = 1 (6.52)

is the bandwidth theorem or the uncertainty principle and is a generic
feature of the Fourier transform. The inverse relation between the heights of
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the Gaussians in position and frequency space implies
Z 1

�1
dx g[x]⇤g[x] =

Z 1

�1
dk g̃[k]⇤g̃[k], (6.53)

which is the Plancherel or Parseval theorem and expresses the unitarity of
the Fourier transform. More abstractly,

Z
dx hg|xihx|gi =

Z
dk hg̃|kihk|g̃i (6.54)

as
hg|gi = hg̃|g̃i (6.55)

because of the completeness relations

Z
dx |xihx| =

Z
dk |kihk| = I, (6.56)

where Px = |xihx| is the projector onto x, with Px|xi = |xi and P 2
x
= Px, and

I is the identity.

-3, 1 0, 1 3, 1

3, 2

3, 1/2-3, 1/2 0, 1/2

0, 2-3, 2

Figure 6.7: Fourier transform of a normalized boxcar with mean c and width w
is a sinc. Widths are inversely related and the absolute squares of the areas are
the same.
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6.4.4 Boxcar Transform

Using Eq. 6.36, the Fourier transform of a top-hat or boxcar function

bc,w[x] =

8
<

:
1/w, c� w/2 < x < c+ w/2

0, else

9
=

; (6.57)

of center or mean c and width w is the sinc function

b̃c,w[k] =
1

p
2⇡

eikc
sin[kw/2]

kw/2

=
1

p
2⇡

eikc sinc


kw

2

�
(6.58)

multiplied by a complex phase factor, as in Fig. 6.7. In particular, the Fourier
transform of a boxcar

b0,1[x] =

8
<

:
1, �1/2 < x < 1/2

0, else

9
=

; (6.59)

of zero center and unit width is the sinc function

b̃0,1[k] =
1

p
2⇡

sinc


k

2

�
. (6.60)

The latter is the frequency spectrum of the former, the square of which is
the familiar as the far-field irradiance pattern of light incident on a narrow slit.

6.5 DFT & FFT

The Discrete Fourier Transform (DFT) of the sequence {x0, x1, . . . , xN�1}

is the linear transformation

x̃m =
1

p
N

N�1X

n=0

xne
i2⇡mn/N =

1
p
N

N�1X

n=0

⇣
ei2⇡/N

⌘mn

xn =
1

p
N

N�1X

n=0

!mn

N
xn,

(6.61)
where m 2 {0, 1, . . . , N � 1}. The Nth roots of unity or twiddle factors

!N = ei2⇡/N (6.62)

satisfy

!2
N

= !N/2, (6.63a)

!N/2
N

= �1, (6.63b)

!N

N
= 1. (6.63c)
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For N = 1, the DFT transformation is the identity

x̃0 = x1. (6.64)

For N = 2, the DFT is the additive mixing
p
2 x̃0 = x0 + x1 = x0 + x1, (6.65a)

p
2 x̃1 = x0 + !2x1 = x0 � x1 (6.65b)

and involves no multiplications because !2 = ei⇡ = �1. As a matrix equation,

x̃0

x̃1

=
1
p
2

1 1

1 !2

x0

x1

= F2

x0

x1

, (6.66)

where the Fourier matrix

F2 =
1
p
2

1 1

1 !2

=
1
p
2

1 1

1 �1
. (6.67)

For N = 22 = 4, the DFT

2x̃0 = x0 + x1 + x2 + x3, (6.68a)

2x̃1 = x0 + !4x1 + !2
4x2 + !3

4x3, (6.68b)

2x̃2 = x0 + !2
4x1 + !4

4x2 + !6
4x3, (6.68c)

2x̃3 = x0 + !3
4x1 + !6

4x2 + !9
4x3, (6.68d)

and the twiddle factor !4 = ei⇡/2 = i. As a matrix equation,

x̃0

x̃1

x̃2

x̃3

=
1

2

1 1 1 1

1 !4 !2
4 !3

4

1 !2
4 !4

4 !6
4

1 !3
4 !6

4 !9
4

x0

x1

x2

x3

= F4

x0

x̃1

x2

x3

, (6.69)

where the Fourier matrix

F4 =
1

2

1 1 1 1

1 !4 !2
4 !3

4

1 !2
4 !4

4 !6
4

1 !3
4 !6

4 !9
4

=
1

2

1 1 1 1

1 !4 !2 !2!4

1 �1 1 �1

1 �!4 !2 �!2!4

=
1

2

1 1 1 1

1 i �1 �i

1 �1 1 �1

1 �i �1 i

.

(6.70)
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Factor the Fourier matrix by writing

F4 =
1

2

1 1 1 1

1 !2
4 !4 !3

4

1 !4
4 !2

4 !6
4

1 !6
4 !3

4 !9
4

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

=
1

2

1 1 1 1

1 !2 !4 !2!4

1 1 �1 �1

1 !2 �!4 �!2!4

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

=
1

2

1 0 1 0

0 1 0 !4

1 0 �1 0

0 1 0 �!4

1 1 0 0

1 !2 0 0

0 0 1 1

0 0 1 !2

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

=
1
p
2

I2 D4

I2 �D4

F2 0

0 F2

PT

4 , (6.71)

and check by multiplying. The permutation matrix

P4 =

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

(6.72)

puts all the Fourier matrix even index columns before the odd index columns.
The permutation matrix is orthogonal. For example,

P4 PT

4 =

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

= I4, (6.73)

and generically P�1 = PT .
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The Fourier matrix is unitary. For example,

F4F
†
4 =

1

4

1 1 1 1

1 i �1 �i

1 �1 1 �1

1 �i �1 i

1 1 1 1

1 �i �1 i

1 �1 1 �1

1 i �1 �i

=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

= I4

(6.74)
and generically F�1 = F †, which greatly facilitates inverting the transform.
Since

F�1
4 = F †

4 =
1

2

1 1 1 1

1 !4 !2
4 !3

4

1 !2
4 !4

4 !6
4

1 !3
4 !6

4 !9
4

†

=
1

2

1 1 1 1

1 !⇤
4 !⇤2

4 !⇤3
4

1 !⇤2
4 !⇤4

4 !⇤6
4

1 !⇤3
4 !⇤6

4 !⇤9
4

, (6.75)

the Eq. 6.61 DFT transform inverts to the nearly identical

xm =
1

p
N

N�1X

n=0

!⇤mn

N
x̃n =

1
p
N

N�1X

n=0

x̃ne
�i2⇡mn/N . (6.76)

The square of the Fourier matrix is another permutation matrix

F4F4 =
1

4

1 1 1 1

1 i �1 �i

1 �1 1 �1

1 �i �1 i

1 1 1 1

1 i �1 �i

1 �1 1 �1

1 �i �1 i

=

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

,

(6.77)
and the square of the square of the permutation matrix is the identity matrix

F 4
4 = F 2

4F
2
4 =

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

= I4. (6.78)

Since F 4 = I, detF 4 = (detF )4 = 1, which implies that the Fourier matrix
eigenvalues and determinant are fourth roots of unit {±1,±i}.
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The Eq. 6.71 factorization of the Fourier matrix expresses F4 in terms of
F2, and the latter involves no multiplications (other than normalization). The
general block matrix result

FN =
1
p
2

IN/2 DN

IN/2 �DN

FN/2 0

0 FN/2

PT

N
(6.79)

is the core of the Fast Fourier Transform algorithm, one of the most famous
and important algorithms in computer science. Applied recursively, it can re-
duce the number of required complex multiplications from order N2 to order
1
2N log2 N , which is a huge reduction for large transforms.
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6.6 Fourier Transform Variations

Simple change of variables shu✏es the Eq. 6.36 Fourier Transform normalization
constant 1/

p
2⇡. For example

f [x] =
1

p
2⇡

Z 1

�1
dk e�ikxf̃ [k], (6.80a)

f̃ [k] =
1

p
2⇡

Z 1

�1
dx e+ikxf [x], (6.80b)

or

f [x] =
1

2⇡

Z 1

�1
dk e�ikxf̃ [k], (6.81a)

f̃ [k] =

Z 1

�1
dx e+ikxf [x], (6.81b)

or

f [x] =

Z 1

�1
dk e�ikxf̃ [k], (6.82a)

f̃ [k] =
1

2⇡

Z 1

�1
dx e+ikxf [x], (6.82b)

or

f [x] =

Z 1

�1
dk e�i2⇡kxf̃ [k], (6.83a)

f̃ [k] =

Z 1

�1
dx e+i2⇡kxf [x], (6.83b)

and can also interchange the exponent sign. Higher-dimensional Fourier trans-
forms like those in Fig. 6.8 are widely used in imaging processing.
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Figure 6.8: English alphabet and 2D Fourier transform absolute squares.
Straight lines transform to perpendicular lines, like the far-field di↵raction pat-
terns of long slits.



Chapter 6. Fourier Analysis 112

Mathematica Fourier
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Worked Problem

1. Find a Fourier sine series for a square wave of unit amplitude and period
(and check the fundamental term).

fn =

Z
L

0
dx

r
2

L
sin
h
n⇡

x

L

i
f [x] =

p
2

Z 1

0
dx sin [n⇡x] f [x]

=
p
2

 Z 1/2

0
dx sin [n⇡x] (+1) +

Z 1

1/2
dx sin [n⇡x] (�1)

!

=
p
2

 
�
cos [n⇡x]

n⇡

����
1/2

0

+
cos [n⇡x]

n⇡

����
1

1/2

!

=
p
2

✓
1� cos [n⇡/2] + cos [n⇡]� cos [n⇡/2]

n⇡

◆

=

p
2

⇡

✓
1� 2 cos [n⇡/2] + cos [n⇡]

n

◆

f2m =

p
2

⇡

✓
1� 2 cos [m⇡] + cos [2m⇡]

2m

◆
=

p
2

⇡

✓
1� (�1)m

m

◆

f2m�1 =

p
2

⇡

✓
1� 2 cos [(2m� 1)⇡/2] + cos [(2m� 1)⇡]

2m� 1

◆
= 0

f4` = 0

f4`�1 = 0

f4`�2 =

p
2

⇡

✓
2

2`� 1

◆

f4`�3 = 0

f [x] =
1X

n=1

r
2

L
sin
h
n⇡

x

L

i
fn =

p
2

1X

n=1

sin [n⇡x] fn

=
4

⇡

1X

n=1

1� 2 cos [n⇡/2] + cos [n⇡]

2

sin [n⇡x]

n

=
4

⇡

1X

m=1

1� (�1)m

2

sin [m 2⇡x]

m

=
4

⇡

1X

`=1

sin [(2`� 1)2⇡x]

2`� 1
=

4

⇡

1X

k odd

sin [k 2⇡x]

k

=
4

⇡

✓
sin [2⇡x] +

sin [6⇡x]

3
+

sin [10⇡x]

5
+ · · ·

◆
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Problems

1. Simplify the following by removing the deltas.

(a)
P1

n=1 n
2�mn

(b)
R1
�1 dx x2�[x� y]

(c)
R1
�1 dx eikx�[x]

(d)
P

N

n=1 �mn (Hint: 2 cases.)

(e)
R
z

�1 dx �[x� y] (Hint: 2 cases.)

2. For base states |1i =
1

0
and |2i =

0

1
, find the following.

(a) Matrix representations for the projectors P1 = |1ih1|, P2 = |2ih2|.

(b) Projections P1

x

y
and P2

x

y
.

(c) Projections squared P 2
1 and P 2

2 . Compare to P1 and P2.

(d) Projections summed P1 + P2 =
P

n
|nihn|.

3. Verify the “Big 4” Fourier examples.

(a) Using Eq. 6.20 and Eq. 6.21, find the Fourier series of the Eq. 6.38
square wave function.

(b) Using Eq. 6.20 and Eq. 6.21, find the Fourier series of the Eq. 6.43
sawtooth function.

(c) Using Eq. 6.36, find the Fourier transform of the Eq. 6.48 Gaussian
function.

(d) Using Eq. 6.36, find the Fourier transform of the Eq. 6.57 boxcar
function.
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The Wave Equation

Compare the D’Alembert and Fourier solutions for the motion of a plucked
string.

Figure 7.1: Small amplitude wave on a string moving right.

7.1 Derivation

Let y[x, t] be the height of an ideal string at position x and time t. Assume the
string has tension T [x] and linear density ⇢. For small oscillations, string points
move approximately vertically and the slopes of the string are small. Consider
an infinitesimal string element of length dx, as in Fig. 7.1. Since the string only
moves vertically, Newton’s second law

dm~a = d~F (7.1)

115



Chapter 7. The Wave Equation 116

implies

0 = dFx = T [x+ dx] cos ✓[x+ dx]� T [x] cos ✓[x], (7.2a)

(⇢ dx)ÿ = dFy = T [x+ dx] sin ✓[x+ dx]� T [x] sin ✓[x], (7.2b)

where tan ✓ = @y/@x is the small angle the string makes with the horizontal.
The first equation implies

T [x+ dx] cos ✓[x+ dx] = T [x] cos ✓[x] = ⌧, (7.3)

where ⌧ is a constant tension, and hence the second equation implies

⇢ dx
@2y

@t2
= ⌧ (tan ✓[x+ dx]� tan ✓[x])

= ⌧
@y/@x

��
x+dx

� @y/@x
��
x

dx
dx

= ⌧
@2y

@x2
dx (7.4)

or
1

c2
@2y

@t2
=
@2y

@x2
, (7.5)

where the constant wave speed c =
p
⌧/⇢. The second time derivative of

the string displacement is proportional to the second space derivative. As a
mnemonic, the denominator contains c2t2 = x2 or ct = x.

7.2 D’Alembert Solution

If the string has height h at space s and time t, then y[x, t] = h[s, t], and the
wave equation becomes

c2@2
s
h = @2

t
h. (7.6)

The general solution of this partial di↵erential equation, which is second-
order in both space and time, is a superposition of waves moving in both direc-
tions,

h[s, t] = h+[s+ ct] + h�[s� ct], (7.7)

where h±[x] are arbitrary functions. To check, the chain rule implies

@th±[s± ct] = h0[s± ct] @t(s± ct) = ±c h0[s± ct], (7.8)

and so
@2
t
h±[s± ct] = c2 h00[s± ct] = c2 @2

s
h±[s± ct]. (7.9)

The Eq. 7.7 general solution means the string’s initial shape

h0[s] = h[s, 0] = h+[s] + h�[s], (7.10)
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and its initial motion

v0[s] = @th[s, t]

����
t=0

= +ch0
+[s]� ch0

�[s]. (7.11)

Combine the initial shape with the integral of the initial motion

Z
s

sr

ds̄
v0[s̄]

c
= h+[s]� h�[s] (7.12)

to find

h±[s] =
1

2

✓
h0[s]±

Z
s

r

ds̄
v0[s̄]

c

◆
, (7.13)

where r is an arbitrary reference point. The Eq. 7.7 general solution becomes
the d’Alembert solution

h[s, t] = h+[s+ ct] + h�[s� ct]

=
1

2
(h0[s+ ct] + h0[s� ct]) +

1

2

Z
s+ct

s�ct

ds̄
v0[s̄]

c
, (7.14)

where the integral is over the past light cone [6]. For a string started at rest,
v0[s] = 0, so the string’s shape

h[s, t] =
h0[s+ ct] + h0[s� ct]

2
(7.15)

is simply the average of the right and left copies of the initial shape.
Figure 7.2 illustrates the motion of an infinite string that is plucked or stuck.

Multiple phantom pulses can superpose with real pulses to create fixed or free
boundaries to model finite strings, as in Fig. 7.3. Figure 7.4 illustrates the
motion of a finite string fixed at two ends that is asymmetrically plucked. The
string consists always of straight line segments.
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Figure 7.2: Position (solid blue) and vertical velocity (dashed gold) of an ideal
string plucked (left) and struck (right) by the d’Alembert solution.
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Figure 7.3: Phantom pulses (in gray area) can superpose real pulses to synthesize
fixed (left) and free (right) boundary conditions.
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Figure 7.4: Plucked string fixed at two ends vibrates in three straight line seg-
ments (in white area) by the d’Alembert solution with phantom pulses enforcing
the boundary conditions (in the gray area).
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7.3 Fourier Solution

Check the d’Alembert solution with a Fourier solution. Assume the string has
length L and is plucked to a height h at the point ↵L, as in Fig. 7.5. Virtually
extend the shape antisymmetrically across the origin to facilitate a Fourier sine
series. Integrating by parts, the Eq. 6.21 Fourier coe�cients are

hn =

Z
L

0
ds

r
2

L
sin
h
n⇡

s

L

i
f [s]

=

r
2

L

Z
↵L

0
ds sin

h
n⇡

s

L

i ⇣
h

s

↵L

⌘
+

r
2

L

Z
L

↵L

ds sin
h
n⇡

s

L

i✓
h

L� s

L� ↵L

◆

=
h
p
2L

⇡2↵(↵� 1)

sin[n⇡↵]

n2
, (7.16)

so the Eq. 6.20 Fourier sine series is

h[s] =
1X

n=1

r
2

L
sin
h
n⇡

s

L

i
hn

=
2h

⇡2↵(1� ↵)

1X

n=1

sin
h
n⇡

s

L

i sin[n⇡↵]
n2

=
2h

⇡2↵(1� ↵)

✓
sin[⇡↵] sin

h
⇡
s

L

i

+
sin[2⇡↵]

4
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h
2⇡

s

L

i

+
sin[3⇡↵]

9
sin
h
3⇡

s

L

i

+
sin[4⇡↵]

16
sin
h
4⇡

s

L

i
+ · · ·

◆
. (7.17)

Substitute the normal mode oscillation

n[s, t] = a sin ks cos!t (7.18)

into the Eq. 7.6 wave equation to find the dispersion(less) relation

! = kc. (7.19)

Since the spatial frequencies are 2⇡/�n = kn = n⇡/L, the temporal frequen-
cies 2⇡/Tn = !n = knc = n⇡c/L, where �n and Tn are the corresponding
wavelengths and periods. Given the initial shape

h[s, 0] =

r
2

L

1X

n=1

hn sin kns = h[s], (7.20)

the time evolution is

h[s, t] =

r
2

L

1X

n=1

hn sin kns cos!nt
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=
2h

⇡2↵(1� ↵)

1X

n=1

sin[n⇡↵]

n2
sin
h
n⇡

s

L

i
cos


n⇡

ct

L

�
, (7.21)

with each mode oscillating at its own frequency, as in Fig. 7.5, where the su-
perposition of even the first two modes does a decent job of representing the
dynamics. Since the nth harmonic oscillates n times per period, Tn = nT1, the
motion displays the expected symmetries

h[L� s, t+ T1/2] = �h[s, t], (7.22a)

h[s, t+ T1] = h[s, t]. (7.22b)

Figure 7.5: Fourier analysis of the plucked string oscillating. Dashed lines
represent first two (left) and three (right) modes; solid lines represent the sum
of the modes. The antisymmetric extension (gray area) enables sinusoids to
synthesize the motion.
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Problems

1. Verify the Eq. 7.17 Fourier series representation of the asymmetrically
plucked string.

2. Use the Eq. 7.21 Fourier analysis to verify the Eq. 7.22 plucked string
symmetries.



Chapter 8

State Space

The nature of di↵erential flows in states space depends critically on the number
of dimensions and the the fixed point structure of the velocity field.

Figure 8.1: Initial value problem existence and uniqueness mean that (red and
blue) state space trajectories never cross, as in these 2D and 3D examples.

8.1 Existence & Uniqueness

For the initial value problem

ẋ = v, (8.1a)

x[0] = x0, (8.1b)

125
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a solution x[t] exists if the velocity v[x, t] is continuous, and that solution is
unique if the velocity gradient @v/@x is continuous. In such cases, and in higher
dimensions, the initial value problem

~̇x = ~v, (8.2a)

~x[0] = ~x0, (8.2b)

generates state space trajectories ~x[t] that never cross, as in Fig. 8.1. This in-
cludes higher-order initial value problems in mechanics, where Newton’s second-
order di↵erential equation

ẍ = ax = Fx/m (8.3)

is equivalent to the two first-order di↵erential equations

ẋ = vx, (8.4a)

v̇x = ax = Fx/m, (8.4b)

which govern a flow in the 2D state space {x, vx}. The single nonautonomous

second-order di↵erential equation

ẍ = kx� k0x3
� �ẋ+A cos!t (8.5)

describes the damped, forced, nonlinear Du�ng oscillator and is equivalent to
the three autonomous first-order di↵erential equations

ẋ = vx, (8.6a)

v̇x = kx� k0x3
� �vx +A cos', (8.6b)

'̇ = !, (8.6c)

which govern a flow in the 3D state space {x, vx,'}.
Uniqueness means that di↵erent state space trajectories (or initial value

problem solutions) never cross. In 1D, the fixed points of zero velocity separate
the state space into noncommunicating regions. In 2D, fixed points and closed-
trajectory limit cycles organize the states space. In 3D and higher, su�cient
space exists for fractal or strange attractors.

8.2 Fixed Points

If ~r⇤ = {x⇤, y⇤} is a fixed or stationary point of a state space the 2D state space
flow

~̇r = ~v[~r ], (8.7)

then ~v[~r⇤] = ~0. By power series expansion, nearby

~v[~r ] = ~v[~r⇤] +
@~v

@~r
· (~r � ~r⇤) + · · · , (8.8a)

(~r � ~r⇤)˙= ~̇r ⇡ ~0 + J (~r � ~r⇤) , (8.8b)
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�~̇r ⇡ J�~r, (8.8c)

where the Jacobian matrix of partial derivatives

J =
@vx/@x @vx/@y

@vy/@x @vy/@y
, (8.9)

evaluated at the fixed point, represents the linearizaton of the state space flow
there. Near the fixed point, assume exponential motion

�~r = �~r0e
�t (8.10)

so the Eq. 8.8c linearized flow implies the eigen equation

��~r0 = J�~r0 (8.11)

and the general solution

�~r = c1e
�1t~v1 + c2e

�2t~v2, (8.12)

where �n and ~vn are the eigenvalues and eigenvectors of the Jacobian matrix
and the constants cn depend on the initial conditions.

8.3 Predator & Prey

As an example, consider the Lotka-Volterra predator-prey model

ẋ = +xx� cxxy = +(x � cxy)x, (8.13a)

ẏ = �yy + cyxy = �(y � cyx)y, (8.13b)

where x is the normalized number of rabbits and y is the normalized number
of foxes, for positive decay and coupling constants x,y, cx, cy. Without the
xy nonlinear coupling terms, the rabbit population will increase exponentially
at the rate x (due to no predation) and the fox population will decrease expo-
nentially at the rate y (due to no food).

Qualitatively construct the state space solution to this system of nonlinear
di↵erential equations by identifying the fixed points and the linearized flow
about them. The velocity field

~v =
+(x � cxy)x

�(y � cyx)y
(8.14)

vanishes at the fixed points

~r1 =
0

0
(8.15)
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Figure 8.2: Saddle fixed point (1) and center fixed point (2) organize the state
space flow for the Lotka-Volterra predator-prey model. The fox population
grows as foxes eat rabbits until the rabbit population collapses causing foxes to
starve, which allows the rabbit population to recover, and so on cyclically.

and

~r2 =
y/cy

x/cx
. (8.16)

The Jacobian matrix

J =
@ẋ/@x @ẋ/@y

@ẏ/@x @ẏ/@y
=

x � cxy �cxx

cyy �y + cyx
(8.17)

evaluated at the fixed points is

J1 =
x 0

0 �y
(8.18)

and

J2 =
0 �ycx/cy

xcy/cx 0
. (8.19)

At the first fixed point, the Jacobi eigenvalues are simply
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�1+ = +x, (8.20a)

�1� = �y, (8.20b)

and the corresponding eigenvectors

~v1+ =
1

0
, (8.21a)

~v1� =
0

1
. (8.21b)

The Eq. 8.12 superposition implies the linearized motion

~�rt = c1+e
�1+t~v1+ + c1�e

�1�t~v1�

= �x
1

0
e+xt + �y

0

1
e�yt

=
�x e+xt

�y e�yt
, (8.22)

which describes the saddle point in Fig. 8.2.
At the second fixed point, the Jacobi eigenvalues are

�2+ = +i!, (8.23a)

�2� = �i! (8.23b)

and the corresponding eigenvectors

~v2+ =
+i✏

1
, (8.24a)

~v2� =
�i✏

1
, (8.24b)

where the constant combinations

! =
p
xy, (8.25a)

✏ =
cx/cyp
x/y

=
cx
cy

r
y
x

. (8.25b)
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The Eq. 8.12 superposition implies the linearized motion

~�rt = c2+e
�2+t~v2+ + c2�e

�2�t~v2�

=
�i�x/✏+ �y

2

+i✏

1
e+i!t +

+i�x/✏+ �y

2

�i✏

1
e�i!t

=
cos!t �x� sin!t �y ✏

sin!t �x/✏+ cos!t �y

=
0

p
✏

1/
p
✏ 0

cos!t sin!t

� sin!t cos!t

0
p
✏

1/
p
✏ 0

�x

�y
, (8.26)

which describes the clockwise center point in Fig. 8.2. The imaginary eigen-
values conspire with the imaginary eigenvectors and complex superposition co-
e�cients to generate a real trajectory from real initial conditions.

The saddle and center points organize the Lotka-Volterra predator-prey state
space. The fox population grows as foxes eat rabbits. But when the rabbit pop-
ulation collapses, the foxes starve. With few foxes around, the rabbit population
rapidly recovers. The cycle continues, as it does in some ecosystems.
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Problems

1. Verify the eigenvalues and eigenvectors for the fixed points in the Eq. 8.13
Lotka-Volterra predator-prey model.

2. Geometrically interpret the Eq. 8.22 saddle trajectories and the Eq. 8.26
center trajectories.
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Practice Exams

Three practice exams follow.
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Practice Exam 1

1. Given the complex numbers z1 = 3 + 2i and z2 = 1 � i, compute the
following.

(a) z⇤1

(b) |z1|

(c) 2z1 + 3z2

(d) z1z2

2. Given the complex numbers z1 =
p
2ei⇡/4 and z2 = 2 � i, compute the

following.

(a) z⇤1

(b) |z1|

(c) 3z1 � 2z2

(d) z1z2

3. Use complex numbers to rotate the the 2D vector {1, 2} counterclockwise
45�. (Express the components of the rotated vector using numbers and
square roots.)

4. Given the imaginary quaternions v̊1 = ı̂ � |̂ = ~v1 and v̊2 = 3|̂ + 2k̂ = ~v2,
compute the following.

(a) ~v1 · ~v2 (Dot multiply the basis quaternions.)

(b) ~v1 ⇥ ~v2 (Cross multiply the basis quaternions.)

5. Given the 4D quaternions q̊1 = 1 + ı̂ + 3|̂ + 3k̂ and q̊2 = 1 � ı̂ + 2|̂ � k̂,
compute the following.

(a) 3q̊1 + 2q̊2

(b) q̊1q̊2

(c) q̊2q̊1

6. Given the 4D quaternions q̊1 = 1 � ı̂ � k̂ and q̊2 = ı̂ + 2|̂ � 3k̂, compute
the following.

(a) 2q̊1 � 3q̊2

(b) q̊1q̊2

(c) q̊2q̊1

7. Use quaternions to rotate the the 3D vector {0, 1,�1} counterclockwise
90� about the direction {1/

p
2, 1/

p
2, 0}. (Express the components of the

rotated vector using numbers and square roots.)
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8. Use quaternions to combine a 90� rotation about the direction {
p

1/3,
p
2/3, 0}

with a 90� rotation about the direction {
p
1/3, 0,

p
2/3}.

9. For A =

�1 2 3

2 2 1

0 2 �1

& B =

3 0 2

1 2 �1

1 2 0

, compute the following.

(a) 2A+ 3B

(b) AB

(c) BA

10. For A =

1 �1 3

�1 2 1

2 2 �1

& B =

1 2 3

3 2 �1

�3 2 2

, compute the following.

(a) 3A� 2B

(b) AB

(c) BA

11. For U =
�1 3i

3i 1
& V =

0 2i

�2i 3
, compute the following.

(a) 3U � 2V

(b) UV

(c) V U

12. For A = 1 2 3 & B =

�1

1

2

, compute the following.

(a) AB

(b) BA

13. Use matrices to rotate the the 3D vector {1, 2, 3} counterclockwise 30�

about the direction {0, 0, 1}.

14. Use matrices to rotate the the 3D vector {1, 2,�1} counterclockwise 45�

about the direction y-axis.
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Practice Exam 2

1. For each real matrix R, compute RT , detR, trR, R�1.

(a) R =
1 2

�1 4

(b) R =
�1 2

�1 1

(c) R =

1 2 �1

0 2 2

1 1 2

2. For each complex matrix C, compute C†, detC, trC, C�1.

(a) C =
2i 0

�i 1

(b) C =
2i 1

1 �i

3. For each matrix, find its eigenvalues and normalized eigenvectors.

(a) R =
2 1

�1 2

(b) C =
1 1

0 i

4. For each one-dimensional arrangement of 3 point masses connected by 4
springs to each other and to 2 fixed walls, find the normal mode frequencies
and shapes.

(a) The center mass is heavier: The points have masses m, 4m/3, m,
and all the springs have sti↵ness s.

(b) The wall springs are sti↵er: The points all have masses m, and the
springs have sti↵nesses 2s, s, s, 2s.
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5. Model a 3-state quantum system by the Hamiltonian

H = E0

1 2 0

2 1 0

0 0 2

. (A.1)

(a) Find the allowed energies.

(b) Find the stationary states.

(c) If the system is initially in the state

| i = | 0i =

1

0

1

, (A.2)

what is its state | i = | ti at a later time?
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Practice Exam 3

1. Use complex numbers to rotate the the 2D vector {2,�1} counterclockwise
30�. (Express the components of the rotated vector using numbers and
square roots.)

2. Given the 4D quaternions q̊1 = 1� |̂� k̂ and q̊2 = ı̂� |̂� 3k̂, compute the
following.

(a) 3q̊1 � 2q̊2

(b) q̊1q̊2

(c) q̊2q̊1

3. Use quaternions to rotate the the 3D vector {1, 1,�1} counterclockwise
90� about the direction {1/

p
2, 0, 1/

p
2}. (Express the components of the

rotated vector using numbers and square roots.)

4. For A =

�2 2 1

1 2 1

1 0 �1

& B =

2 0 1

1 0 �1

1 2 0

, compute the following.

(a) 2A+ 3B

(b) AB

(c) BA

5. For A = 3 1 2 & B =

�1

2

1

, compute the following.

(a) AB

(b) BA

6. Use matrices to rotate the the 3D vector {1, 2, 3} counterclockwise 60�

about the direction {1, 0, 0}.

7. For the complex matrix C =

2i 0 1

�i 1 2

0 1 1

, compute the following.

(a) C†

(b) trC

(c) detC

(d) C�1
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8. For the complex matrix C =
i 0

1 2
, compute the following.

(a) Eigenvalues.

(b) Normalized eigenvectors.

9. For the one-dimensional arrangement of 2 point of masses m, 2m con-
nected by 3 springs of sti↵nesses s, 2s s to each other and to 2 fixed walls,
compute the following.

(a) Normal modes frequencies.

(b) Normal mode shapes.

10. Given the Hamiltonian H = E0

1 �3i

3i 1
, compute the following.

(a) Allowed energies.

(b) Stationary states.

(c) Future evolution from the state | 0i =
1
p
2

1

1
.

11. Find a Fourier sine series for the following triangle wave.

12. Find the Fourier transform of the exponential function e�|x|.

13. For the Du�ng flow

ẋ = y,

ẏ = x� x3,

compute the following.

(a) Fixed points.

(b) Fixed point eigenvalues.

(c) Fixed point eigenvectors.

(d) Sketch a vector field illustrating the global state space flow consistent
with the linearized flow about the fixed points.
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Appendix B

Notation

Table B.1 summarizes the symbols of this text. Some symbols are more universal
than others.

Table B.1: Symbols used in this text.

Quantity Symbol Alternates

vector ~v, v, v *v ,v, |vi

unit vector ~u, u, u v̂,~ev,u

square matrix M,M,M,
2
M M,M

complex numbers z = x+ iy = {x, y} x+ iy

quaternion q̊ = q0 + ~q = {q0, ~q} q, Q

unit quaternions ı̂, |̂, k̂ i, j, k, i, j,k

Pauli (spin) matrices �x,�y,�z �1,�2,�3

Derivatives ẋ, dx/dt, @tx x0[t]

Fourier transform pairs x[t] $ x̃[f ] f [x] $ F [k]

Standard mathematics notation su↵ers from a serious ambiguity involving
parentheses. In particular, parentheses can be used to denote multiplication, as
in a(b + c) = ab + ac and f(g) = fg, or they can be used to denote functions
evaluated at arguments, as in f(t) and g(b+c). It can be a struggle to determine
the intended meaning from context.

To avoid ambiguity, this text always uses round parentheses (•) to group
for multiplication and square brackets [•] to list function arguments. Thus,
a(b) = ab denotes the product of two factors a and b, while f [x] denotes a
function f evaluated at an argument x. Mathematica [7] employs the same
convention.
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