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Chapter 1

Introduction

Two thought experiments whet our appetite for modern physics, while two
jewels summarize classical physics.

1.1 Two Teasers

This text is an introduction to relativistic (or spacetime) and quantum physics,
the twin pillars of modern physics, which profoundly changed the way we think
about the world. This section is a “teaser” for the text. Here, we will consider
two thought experiments involving light. “Chasing a Light Beam” introduces
relativity, and “Sorting Photons” introduces quantum physics.

1.1.1 First Teaser: Chasing a Light Beam

The 16-year-old Albert Einstein wondered what riding on a beam of light would
be like. Classically, light is a transverse electromagnetic wave, where a changing
electric field induces a changing magnetic field and vice versa, like the dipole
radiation of Figure 1.1. Can one chase a light beam and thereby cause the
oscillating and self-inducing electric and magnetic fields to slow and even stop?

No! If the fields of Figure 1.1 were static, they would violate Maxwell’s
equations (as, for example, static electric field lines don’t form closed loops).
Einstein realized that not being able to slow light by chasing it exposes a larger
problem: The mechanics of Newton is inconsistent with the electromagnetism
of Maxwell.

Newton’s laws embody Galileo’s principle of relativity, according to which
the laws of physics are the same for all observers in uniform (nonaccelerating)
motion. Since all such observers can consider themselves at rest, all uniform
motion is relative, even if the relativity is often implicit. For example, on a
road you drive 100 km/hr relative to the pavement, 200 km/hr relative to an
oncoming car, and 0 km/hr relative to a trailing car.

11
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+Q

−Q

λ

Figure 1.1: Dipole antenna of oscillating current radiates an electromagnetic
wave. (Because the net electric field vanishes at large distances, we only draw
the 1/r transverse dynamic fields and not the 1/r2 radial static fields.)

However, Maxwell’s equations imply that light propagates at the speed

c =
1

√
ε0µ0

≈ 109km/hr, (1.1)

where ε0 and µ0 are the SI electric and magnetic constants. (For example, ε0
appears in Gauss’s law while µ0 appears in Ampère’s law.) So, light speed c is
about a billion km/hr, but relative to what? It’s a billion km/hr, period. It is
our universe’s unique invariant speed.

Can the relativity of motion be reconciled with the invariancy of the speed
of light? Something must give! Einstein realized that Maxwell’s equations
had been successfully tested at both low and high speeds, in static and optical
experiments, but Newton’s laws had only been tested at low speeds (compared
to a billion km/hr). Hence, he generalized the latter to conform to the former.

To get an idea of what’s involved, consider a light-pulse clock, in which a light
pulse is reflected back to its source by a mirror, as in Figure 1.2, at relative rest
and in relative motion. Because light speed is the same for all observers, light
takes less time to travel the compact, folded path at relative rest than the
expanded, kinked path in relative motion, as the hypotenuse of a right triangle
is longer than either of its legs. Thus, a clock in relative motion ticks slowly
compared to a clock at relative rest.

As Einstein discovered, and as we shall derive, in order that all observers
in relative motion measure the same invariant speed of light, their measured
values of space and time intervals – and their definitions of “now” – must be
relative. They will agree on the speed of light, but disagree about lengths
and durations and simultaneity. However, this will have dramatic consequences
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Figure 1.2: One tick-tock of a light-pulse clock at relative rest (left) and in
relative motion (right). The vertical paths (left) are shorter than the diagonal
paths (right).

only for relative speeds approaching the billion km/hr speed of light. We will
elucidate these consequences later.

1.1.2 Second Teaser: Sorting Photons

Optically anisotropic materials can sort light according to its polarization (the
oscillation direction of its electric field). For example, because of its crystal
structure, calcite is birefringent with different indices of refraction for electric
fields perpendicular and parallel to its optic axis, as illustrated in Figure 1.3. We
can schematically represent the action of the calcite by a box with one input and
two outputs, as in Figure 1.4. We can convert a vertical and horizontal ⊕ sorter
into a ±45◦ diagonal ⊗ sorter by rotating the calcite. For bright classical light,
if diagonally polarized light is input to a ⊕ sorter, then half of the input light
intensity will appear in each output channel. Similarly, if vertically polarized
light is input to a ⊗ sorter, then half of the input light intensity will appear in
each output channel.

Figure 1.3: A calcite crystal sorts classical light into vertical (up-down arrows)
and horizontal (in-out dots) polarizations. Thus, a black disk seen through cal-
cite appears as two partially overlapping gray disks, which disappear alternately
when viewed through a rotating polarizer.
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bright light

Figure 1.4: Schematic diagrams of diagonally polarized bright light of intensity
I0 input to a ⊕ sorter (left) and vertically polarized bright light input to a ⊗
sorter (right).

What happens if we repeat this experiment with very faint light? Near
the beginning of the twentieth century, the Einstein photoelectric effect and
the Compton scattering experiment demonstrated the “granularity” of faint
light. In fact, they suggested that light consists of particles whose energy is
proportional to the light’s classical temporal frequency

E = ~ω, (1.2)

whose momentum is proportional to the light’s classical spatial frequency

~p = ~~k, (1.3)

and whose spin angular momentum corresponds to the light’s classical (circular)
polarization

~S = ±~k̂, (1.4)

where the common proportionality ~ = h/2π (pronounced “h bar”) is Planck’s
reduced constant. These particles are now called photons. Classical wave-like
light emerges from a large ensemble of particle-like photons. Electrons and
other subatomic particles (and even atoms and molecules . . . ) exhibit similar
wave-particle duality. Such “wavicles” or “matter-waves” have been called “the
dreams that stuff are made of”.

We can use neutral density filters or crossed polarizers to reduce the intensity
of the light so on average only one photon is in our sorter at any one time.
(Alternately, we could use the Section 3.1.1 single photon source to guarantee
only one photon in the sorter.) To count the photons in each of the output
channels, we can use photomultiplier tubes or avalanche photodiodes, which
exploit the photoelectric effect to convert a single photon into a macroscopic
cascade of electrons. (Alternately, we could use a frog’s eye, which is apparently
sensitive to single photons!) Each experimental trial will report “1” if it detects
a photon and “0” if it does not.

So, we input a diagonally polarized photon to a ⊕ sorter. What happens?
The input photon must emerge in one of the two output channels, if only because
it must go somewhere, but why would it emerge in one channel and not the
other? In fact, as illustrated in Figure 1.5, the experiment is not repeatable,
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which is itself a disaster for classical physics; rather, the photon emerges half the
time in each channel, randomly. We cannot predict into which output channel
any given input photon will emerge, but we can predict the probability that
it will emerge in either channel, and the equal probabilities of 1/2 correspond
well with the classical, bright-light result. The apparent indeterminism of the
individual trials of this experiment is in striking disagreement with classical
physics and is a hallmark of quantum mechanics.

10011010

11111111

01100101

00010111

11111111

11101000

faint light

Figure 1.5: Diagonally polarized photons input one-by-one to a ⊕ sorter emerge
randomly but equally in each output channel (left). Similarly, vertical polarized
photons input to a ⊗ sorter emerge randomly (right). The experiment is not
repeatable, except statistically!

Even more classically strange is what happens if we recombine the two output
channels with a reversed ⊕ sorter, as in Figure 1.6. Now the experiment is
repeatable and determined! If the⊕ sorter randomizes the diagonal polarization,
how does the recombination preserve it? Surely, the diagonally polarized photon
entering the first ⊕ sorter can not “know” it will be recombined by the second,
reversed ⊕ sorter?

11111111

00000000

11111111

recombine

Figure 1.6: One ⊕ sorter randomizes the diagonal polarization but adding a
second, recombining, reversed ⊕ sorter preserves the diagonal polarization.

Classically, the diagonal light can be thought of as a superposition of horizon-
tal and vertical light and constructive interference between the two channels can
preserve its polarization. We will return later to investigate such superposition
and interference experiments involving single photons.
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1.2 Two Jewels

Before beginning our study of modern physics, we first review or introduce two
jewels of classical physics: we will deduce Newton’s second law from the principle
of extremal action and infer electromagnetic waves from Maxwell’s equations.
Later, we will generalize the action principle to curved spacetime and quantum
mechanics, and we will compare and contrast the electromagnetic wave equation
with the Schrödinger matter-wave equation of quantum mechanics.

1.2.1 First Jewel: Extremal Action & Newton’s 2nd Law

Toss a ball, and it goes up and comes down in a certain time, while traveling
a certain path (probably some approximation to a parabola). Imagine, instead,
that it went via some other path, in the same time. If we calculate the kinetic
energy at every moment, subtract the potential energy, and sum over the path,
the result will always be larger for the imagined path and least for the real path.
Alternately, since the time is the same for all paths, the average kinetic energy
less the average potential energy is minimized by the real path.

More formally, in one spatial dimension, the path is some function x[t]. As
is traditional in this context, we label the kinetic energy T = 1

2mẋ
2 and the

potential energy V . Their sum is the total energy E = T+V and their difference
is the Lagrangian L = T −V . The time integral of the Lagrangian is the action,

S[x[t]] =

∫ t2

t1

L[x[t], ẋ[t]]dt. (1.5)

The action S is extremal or stationary for the real path x[t]. (It can be a
maximum, but in classical mechanics, it is usually a minimum and the principal
of extremal action is often called the principle of least action.) Finding the real
path is then analogous to the ordinary calculus problem of finding the extremum
of a function. However, note that the action S is a functional of the path x[t].
(A function maps numbers to numbers, while a functional maps functions to
numbers.) Hence, we will need to employ variational calculus to determine the
real path.

If x[t] is the real path, consider a path x[t] + ξ[t], where the variation ξ[t]
vanishes at the end points ξ[t1] = 0 = ξ[t2], as in Figure 1.7. If the action for
the real path is

S[x] =

∫ t2

t1

(
1

2
mẋ2 − V [x]

)
dt, (1.6)

then the action for the nearby path is

S[x+ ξ] =

∫ t2

t1

(
1

2
m
(
ẋ+ ξ̇

)2
− V [x+ ξ]

)
dt. (1.7)

Expanding the integrand to first order in the small quantities ξ and ξ̇ using the
Taylor series V [x+ ξ] = V [x] + ξV ′[x] +O[ξ2], we find that

S[x+ ξ] = S[x] + δS, (1.8)
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Figure 1.7: Real path and nearby imaginary path.

where

δS =

∫ t2

t1

(
mẋξ̇ − ξV ′[x]

)
dt. (1.9)

In order to factor the perturbation ξ out of the integrand, we integrate its first
term mẋξ̇ by parts. This involves moving the derivative from one factor to the
other, incurring a minus sign and a vanishing boundary term,∫ t2

t1

mẋξ̇ dt = −
∫ t2

t1

mẍξ dt. (1.10)

For the action S to be an extremum, it must be stationary, and hence its first
variation δS must vanish. Consequently, to ensure that S is a extremum, we
demand

0 = δS =

∫ t2

t1

(−mẍ− V ′[x]) ξ[t]dt. (1.11)

Since this is true for all variational functions ξ[t], the rest of the integrand must
vanish identically. (If the integrand were nonzero near some t∗, a variation ξ∗

that vanished everywhere except for a blip near t∗ would nonzero the integral.)
Hence

− V ′[x] = mẍ, (1.12)

which we recognize as Newton’s second law of motion, Fx = max. (For example,
for a mass m connected to a spring of stretch x and stiffness k, the potential
energy V [x] = 1

2kx
2 and the force Fx = −V ′[x] = −kx, which is Hooke’s law.)

Why does it work? Later, we will derive the principle of extremal action
from the fundamentals of quantum mechanics!

1.2.2 Second Jewel: Maxwell’s Equations & Light Waves

To write Maxwell’s equations in integral form, first recall the definitions of flux
and circulation. Given a vector field ~v[~r ], define the flux through a surface area
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a by

Φv =
x

a

~v · d~a (1.13)

and the circulation around a closed loop l by

Γv =

∮
l

~v · d~l. (1.14)

Flux tells us whether or not the field diverges (or converges), like the electric
field in the vicinity of an electric charge. Circulation tells us whether the field
circulates, like the magnetic field in the vicinity of an electric current. Physically
realistic fields are determined by specifying the flux and circulation everywhere.
Maxwell’s equations do this for the interrelated electric and magnetic fields.

For a closed surface containing an electric charge Q, Gauss’s law for elec-
tricity is

ε0ΦE = Q, (1.15)

and Gauss’s law for magnetism is

ΦB = 0. (1.16)

For an open surface bounded by a closed loop and pierced by an electric current
I = Q̇, Faraday’s law of induction is

ΓE = −Φ̇B, (1.17)

and Ampère’s law combined with Maxwell’s law of induction is

ΓB = µ0I + ε0µ0Φ̇E . (1.18)

In a vacuum, no sources exist, the charges and the currents vanish, and these
four Maxwell’s equations simplify. Both fluxes vanish everywhere, so that any
electric and magnetic fields must form closed loops, and the circulation of one
field is induced by the time-varying flux of the other.

Consider a transverse electromagnetic wave polarized in the ẑ-direction and
traveling in x̂-direction, as in Figure 1.8, with electric field

~E [x, t] = ẑEm sin[kx− ωt] (1.19)

and magnetic field
~B[x, t] = ŷBm sin[kx− ωt], (1.20)

where
ω

k
=

2π/T

2π/λ
=
λ

T
= c. (1.21)

We will show that this is a solution to Maxwell’s equation provided c = 1/
√
ε0µ0

(and Em = cBm).
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Figure 1.8: Transverse electromagnetic wave. Time-varying flux of one field
through an infinitesimal area induces the circulation of the other field around
the boundary of the area.

In order to apply Faraday’s law of induction to the xz-area element of Fig-
ure 1.8, we choose positive circulation to advance in the direction of the B-field
according to the right-hand rule. Then, the electric circulation is

ΓE = Edz − (E − dE) dz = dEdz, (1.22)

and the magnetic flux is
ΦB = +Bdxdz, (1.23)

and so
dEdz = −Ḃdxdz (1.24)

or

∂xE =
∂E
∂x

= −∂B
∂t

= −∂tB. (1.25)

Similarly, in order to apply Maxwell’s law of induction to the xy-area element
of Figure 1.8, we choose positive circulation to advance in the direction of the
E-field according to the right-hand rule. Then, the magnetic circulation is

ΓB = −Bdy + (B − dB) dy = −dBdy, (1.26)

and the electric flux is
ΦE = +Edxdy, (1.27)

and so
− dBdy = ε0µ0Ėdxdy (1.28)

or

− ∂xB = −∂B
∂x

= ε0µ0
∂E
∂t

= ε0µ0∂tE . (1.29)
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We differentiate Equation 1.25 with respect to x and Equation 1.29 with
respect to t. Because the partial derivatives of physical functions commute, we
get the wave equation

∂2xE = ε0µ0∂
2
t E , (1.30)

which for the electromagnetic wave of Equation 1.19 reduces to

− k2E = −ε0µ0ω
2E , (1.31)

and hence

c =
ω

k
=

1
√
ε0µ0

. (1.32)

In three spatial dimensions, for the electric field ~E , the wave equation gen-
eralizes to

∂2x~E + ∂2y ~E + ∂2z ~E =
1

c2
∂2t ~E , (1.33)

with a similar equation for the magnetic field ~B. This can be compactly written
as

�2~E = ~0, (1.34)

where the d’Alembertian operator

−�2 = ∇2 − 1

c2
∂2t = ∂2x + ∂2y + ∂2z −

1

c2
∂2t , (1.35)

generalizes the Laplacian operator ∇2 from space to spacetime. (Note that the
pseudo-letters ∂ and ∇, which are pronounced “del”, are introduced in analogy
with the Greek letters δ and ∆, which are pronounced “delta”.)
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Introduction Problems

1. Refraction Index. You may have learned that light “slows” to a speed
v = c/n when passing though glass of refraction index n. What could this
mean? Doesn’t light always travel at c? Explain classically what happens
inside the glass as light passes through.

2. Variational Calculus. Parallel our derivation of Newton’s second law
from the principle of “least” (or stationary) action to find the shortest
path y[x] connecting two points.

(a) Show that the length of the path is

`
[
y[x]

]
=

∫ x2

x1

dx
√

1 + y′[x]2. (1.36)

(b) Invoke the generalized binomial formula (1 + ε)ρ ∼ 1 + ρε for ε � 1
to show that `[y + η] = `[y] + δ`, where the variation

δ` =

∫ x2

x1

dx
y′[x]η′[x]√
1 + y′[x]2

. (1.37)

(c) Integrate the above variation by parts and use the blip argument to
conclude the stationary path is a straight line. Can you show that it
is a minimum and not a maximum?

3. Wave Equation.

(a) Explicitly verify that ~E [z, t] = x̂E0e−(ωt−kz)
2

satisfies the wave equa-

tion �2~E = ~0 provided ω = kc by explicitly evaluating all the partial
derivatives.

(b) Sketch the wave at two different times.
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Chapter 2

Relativistic Physics

Albert Einstein’s theories of relativity revolutionized our understanding of space
and time.

2.1 Flat Spacetime of Special Relativity

We begin by investigating ideas emerging from Einstein’s 1905 theory of special
relativity.

2.1.1 Time Dilation

The light-pulse clock, which was introduced in our first teaser, is an idealized
clock whose tick-tock involves a pulse of light bouncing back and forth between
parallel mirrors. This famous device illustrates the special relativistic phenom-
ena of time dilation and length contraction and thereby probes the structure of
space and time.

Figure 2.1: One tick-tock of a light-pulse clock in relative motion perpendicular
to its length. Successive images of the clock show the reflection and return of a
pulse. The light path is shown kinked in space.

23
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When at relative rest, as on the left in Figure 1.2, the clock’s proper length
is l0. Its proper time is ∆t0 = 2l0/c, the duration of its tick-tock. (In relativity,
the adjective “proper” refers to quantities measured at relative rest.)

Suppose the clock is in relative motion at speed v perpendicular to its length,
as in Figure 2.1. Assuming light travels at the invariant speed c for a time ∆t
along the kinked path, the Pythagorean theorem implies(

c
∆t

2

)2

=

(
v
∆t

2

)2

+ l20, (2.1)

where the duration of the tick-tock is now

∆t =
2l0√
c2 − v2

=
2l0/c√

1− (v/c)
2
, (2.2)

or
∆t = γ∆t0 ≥ ∆t0, (2.3)

where the relativistic stretch (or Lorentz factor) is

γ =
1√

1− (v/c)
2
≥ 1. (2.4)

Thus, clocks in relative motion are observed to tick slowly compared to clocks
at relative rest, a phenomenon called time dilation. This applies to all clocks,
including our heart beats (and physiological aging) because, if another kind of
clock went out-of-synch with the light-pulse clocks, we could use that fact to
absolutely distinguish motion from rest, in violation of the principle of relativity
embodied by Newton’s laws.

If the light were instead a massive object bouncing up and down at a speed
vm < c when the clock is at relative rest, then when the clock is in relative
motion, the vertical component of the ball’s velocity would be vm, its horizontal
component would be v, and its total speed would be

√
v2m + v2 . As we shall

see, this reasoning fails for speeds near c, because the rules for adding velocities
change.

In 1971, physicists Joe Hafele and Richard Keating flew highly accurate
atomic clocks around the world in commercial jets. They found that the airborne
clocks were 59 ns slow relative to the ground clocks, as predicted by the theory
of relativity. By the 1990s, the Global Positioning Satellite (GPS) system was in
wide commercial and military use employing extremely accurate atomic clocks
to triangulate positions. GPS doesn’t work unless it incorporates time dilation
(and other relativistic effects).

While the relativistic stretch γ diverges to infinity for speeds v near the
billion km/hr speed of light c, it is nearly unity for everyday speeds, which are
very small compared to a billion km/hr. In fact, using the generalized binomial
formula, we can write

γ =

(
1−

(v
c

)2)−1/2
∼ 1 +

1

2

(v
c

)2
, (2.5)



2.1. FLAT SPACETIME OF SPECIAL RELATIVITY 25

provided v � c. Thus, we don’t notice time dilation in everyday life. (Only if
light speed were much slower, say c ∼ 30 km/hr, would we have to be careful
about our motion relative to family and friends!)

2.1.2 Length Contraction

Figure 2.2: One tick-tock of a light-pulse clock in relative motion parallel to
its length. Successive images of the clock are expanded in time rightward to
prevent overlapping. The light path is shown kinked in spacetime.

Now suppose the light-pulse clock is in relative motion at speed v parallel
to its length l, which turns out to be different from its proper length l0, as in
Figure 2.2. Again, assume light travels at the invariant speed c for a time ∆t
along the kinked path. The “tick” time between emission and reflection ∆t1 is
longer than the “tock” time between reflection and return ∆t2. In fact, from
Figure 2.2, we find the distance relations

l + v∆t1 = c∆t1 (2.6)

and
l − v∆t2 = c∆t2 (2.7)

so that

∆t2 =
l

c+ v
<

l

c− v
= ∆t1. (2.8)

Hence, the total tick-tock time is

∆t = ∆t1 +∆t2 =
2lc

c2 − v2
=

2l/c

1− (v/c)
2 . (2.9)
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However, time dilation implies

∆t = γ∆t0 =
2l0/c√

1− (v/c)
2
. (2.10)

Therefore
2l/c

1− (v/c)
2 =

2l0/c√
1− (v/c)

2
(2.11)

and

l = l0

√
1− (v/c)

2
(2.12)

or

l =
l0
γ
≤ l0. (2.13)

Thus, parallel lengths in relative motion are contracted compared to parallel
lengths at relative rest, a phenomenon called length contraction. In contrast,
we implicitly assumed in Section 2.1.1 that perpendicular lengths in relative
motion do not contract. Suppose they did, as in Figure 2.3, where two similar
sticks are in relative motion perpendicular to their lengths. One stick has paint
brushes on its ends so that it marks, or does not mark, the other stick when
they pass. After the encounter, the presence or absence of the marks determines
absolutely which stick was actually in motion, in violation of the principle of
relativity. Thus, perpendicular lengths are invariant.

Figure 2.3: If perpendicular lengths contracted in relative motion, we could
determine whether the stick with paint brushes on its ends (left) was moving
or not by looking for the presence (center) or absence (right) of marks on the
other stick after they pass each other.

Suppose two identical rockets L and R are in relative motion. L is shorter
relative to R, and R is shorter relative to L. So, is R shorter than L or isn’t it?
There is no “is-ness” about it: it’s relative!

Can one photograph the length contraction of an object in relative motion?
Yes, but the finite speed of light causes significant other distortions to the pho-
tograph. For example, imagine photographing a green grid moving left-to-right
perpendicular to the line of site at various speeds, as in Figure 2.4. The left
edge has a component of velocity toward the camera, and so light from it will be
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blue-shifted. Similarly, the right edge has a component of velocity away from
the camera, and so light from it will be red-shifted. Light from the top left
corner must travel a longer distance to the camera than light from the center,
so it must leave earlier to be captured by the camera at the same time as light
from the center. Since earlier the grid was translated to the left, vertical lines
on the grid will be mapped into hyperbolas on the image. Length contraction
is only obvious at extremely high speeds.

Figure 2.4: Simulated photographs of a green grid moving left-to-right at in-
creasing speeds displays various aberrations, including Doppler shifting, in ad-
dition to length contraction. (Dark gray represents visible light shifted into the
infrared and ultraviolet.)

2.1.3 Muon Decay Example

By the 1940s, the decay of subatomic particles called muons had provided dra-
matic evidence of the interrelated special relativistic phenomena of time dilation
and length contraction. Muons, which seem to be heavier, “second generation”
electrons, are produced when cosmic rays, consisting mainly of energetic pro-
tons, strike Earth’s atmosphere. In the presence of the nuclei of atmospheric
atoms, such as nitrogen, the protons scatter inelastically, so that some of the
their kinetic energy converts to sprays of other unstable particles, such as pions,
which almost immediately decay to muons and neutrinos. For example,

p+−→
N

p+ + π0 + π+ + π−, (2.14)

where almost immediately
π− −→ µ− + νµ, (2.15)

followed more leisurely by

µ− −→ e− + νe + νµ. (2.16)

The latter transmutation is an example of radioactive decay. It has an e-folding
time τ0 ∼ 2 µs (with a comparable half-life), so that the number of muons
remaining after time t is

N [t] = N [0]e−t/τ0 . (2.17)
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Figure 2.5: Cosmic ray shower in the atmosphere produces relativistic muons,
as observed by Earth (left) and a muon (right).

Suppose the bulk of the muons are created at an altitude of about h0 ∼
9000 m moving at nearly the speed of light v ∼ 0.998c, as in Figure 2.5. They
travel 300 m in 1 µs, 600 m in 2 µs, and 9000 m in 30 µs. Hence, nonrelativis-
tically, we expect N [t]/N [0] = e−30µs/2µs = e−15 ∼ 10−7, or only about one
in ten-million muons to survive to Earth’s surface. However, the muons’ speed
corresponds to a relativistic stretch of γ ∼ 15, so that relative to Earth, time
dilation stretches their e-folding time to γτ0 ∼ 30 µs. Hence, relativistically, we
expect N [t]/N [0] = e−30µs/30µs = e−1 ∼ 1/3, or about one third of the muons
to survive to Earth’s surface! Experiment easily decides in favor of the generous
relativistic prediction.

What happens if we adopt the muons’ point of view? They are created at
relative rest, but due to length contraction, Earth is only h0/γ ∼ 600 m below
and rushes up in just 2 µs. Hence, we again expect N [t]/N [0] = e−2µs/2µs =
e−1 ∼ 1/3, or about one third of the muons to survive. Earth and muons both
compute the same survival fraction, but attribute it to different effects, time
dilation or length contraction.

2.1.4 Clock Desynchronization & Simultaneity Relativity

Time dilation and length contraction would not be consistent in every situation
without a third interrelated phenomenon, clock desynchronization. Suppose a
train is hit by two lightning strikes as it coasts by a train station platform at
constant speed. Afterword, scorch marks confirm that the lightning struck the
ends of the train when they were coincident with the corresponding ends of the
platform, as in Figure 2.6.

The strikes are simultaneous for a platform observer O but not simultaneous
for a train observer O′! Light from front and rear strikes reach O simultaneously,
so O concludes that the strikes were simultaneous. However, light from front
strike reaches O′ first, as O′ is moving toward the front, so O′ concludes that
the front strike was first. In fact, for O′, the two strikes were separated by a
time

∆t′ =
∆l′

v
=
l0 − l0/γ2

v
=
l0
v

(
1− 1

γ2

)
=
l0v

c2
. (2.18)
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Figure 2.6: For the railway platform observer O (left), the lightning strikes
are simultaneous, but for the train observer O′(right), they are not. Clocks
are labeled assuming they are synchronized in their own frames, and the right
clocks of both frames are synchronized at the right lightning strike.

Thus, two clocks synchronized at relative rest are desynchronized in relative
motion, and the chasing clock is ahead by the time l0v/c

2, where l0 is the proper
separation of the clocks. Many of the so-called “paradoxes” of special relativity
can be resolved by correctly incorporating the relativity of simultaneity.

2.1.5 Tethered Rockets Example

To illustrate the interconnectedness of the three key kinematical effects of spe-
cial relativity, time dilation, length contraction, and clock desynchronization,
consider the example of the tethered rockets. Earth observes two rockets L and
R accelerate identically from relative rest to rendezvous with a uniformly mov-
ing space station such that the distance between them always remains constant,
as in Figure 2.7. Why then does an inextensible string tethering the midpoints
of the rockets break?!

The key to unlocking the solution is the relativity of simultaneity. The
rockets are separated in space but accelerate simultaneously relative to Earth.
Consequently, they do not accelerate simultaneously relative to the space station.
The final proper separation between the rockets, as measured by the space
station, is greater than the initial proper separation, as measured by Earth,
because according to the space station, R accelerates before L! According to
Earth, the tether must contract in the direction of its motion, and so the rockets’
attempt to accelerate the tether rigidly breaks it.

This example thereby illustrates the relativity of rigidity. Relativistically,
infinitely rigid objects cannot exists. Tap a steel rod at one end, and the other
end moves only after a compression wave travels through the material at the
speed of sound, which is always less than the speed of light. If the rod were
infinitely rigid, tapping one end would move the other end immediately, thereby
enabling us to send messages faster-than-light. As we shall later see, this would
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Figure 2.7: Tethered rockets L-R accelerate identically relative to Earth, as
observed by Earth E (left) and the space station S (right). If the tether is
inextensible, it will break.

allows us to send messages into our past and create causal contradictions.

2.1.6 Lorentz-Einstein Transformation

The Lorentz-Einstein [6, 3] transformation provides a formal dictionary relating
spacetime observations between uniformly moving observers. It generalizes the
corresponding Galilean transformation of Newtonian mechanics, which we first
review here. Suppose two observers O and O′ in relative motion observe a
single event, such as a supernova, at coordinates {t, x, y, z} and {t′, x′, y′, z′},
respectively. Assuming they have aligned their coordinate systems so that their
relative motion is along the x-axis and adjusted their clocks so that they coincide
at t = t′ = 0, as in Figure 2.8, then their observations are related by

x = x′ + vt, (2.19)

where implicitly t = t′ for all times (and, of course, y = y′ and z = z′).

Figure 2.8: Two observers in relative motion assign different coordinates to the
same event.

Relativistically, we know that due to length contraction, if O′ measures x′,
then O measures x′/γ, so we generalize the Galilean transformation to x =
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x′/γ + vt or

x′ = γ(x− vt). (2.20)

A boost to the other coordinate system means replacing v by −v and inter-
changing primes and unprimes,

x = γ(x′ + vt′). (2.21)

Substituting Equation 2.21 into Equation 2.20 and solving for t, we find

t = γ(t′ + vx′/c2). (2.22)

These equations can be written more symmetrically as

ct = γ
(
ct′ +

v

c
x′
)
, (2.23a)

x = γ
(
x′ +

v

c
ct′
)
. (2.23b)

Note how the invariant speed c converts units of time to units of space. If we
measure time in years (for example) and space in light-years, than the speed of
light is numerically unity, c = 1 lyr/yr, and the Lorentz-Einstein transformation
simplify further to

t = γ(t′ + vx′), (2.24a)

x = γ(x′ + vt′), (2.24b)

where the relativistic stretch is γ = 1/
√

1− v2. These natural, relativistic units
not only emphasize the symmetry between space and time, they also simplify
calculations. In matrix notation, being careful to preserve the order of the
variables, and in the full 3+1 dimensions, we have

t
x
y
z

 =


γ γv 0 0
γv γ 0 0
0 0 1 0
0 0 0 1




t′

x′

y′

z′

 . (2.25)

The Lorentz-Einstein transformation formally reduces to the Galilean trans-
formation if c → ∞, a universe without an invariant speed. The Galilean
transformation is a good approximation to the Lorentz-Einstein transformation
when speeds are slow and distance small, v � c and x� ct.

2.1.7 Recovering the Fundamental Effects

All three of the key kinematical effects of special relativity, time dilation, length
contraction, and clock desynchronization, are implicit in the Lorentz-Einstein
transformation. Suppose two observers O and O′ in relative motion observe two
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events separated in space and time by (∆t,∆x) and (∆t′, ∆x′). Taking finite
differences of Equation 2.24, these separations are related by

∆t = γ(∆t′ + v∆x′), (2.26a)

∆x = γ(∆x′ + v∆t′) (2.26b)

or, after a boost,

∆t′ = γ(∆t− v∆x), (2.27a)

∆x′ = γ(∆x− v∆t). (2.27b)

Suppose the two events are successive ticks of a clock at rest in O′. Substitut-
ing ∆x′ = 0 into Equation 2.26a gives ∆t = γ∆t′ ≥ ∆t′, which is time dilation.
Substituting ∆x′ = 0 into Equation 2.27b gives ∆x = v∆t, and combining this
with the first gives ∆t′ = ∆t/γ ≤ ∆t, which is again time dilation.

Suppose the two events are simultaneous measurements by O of the front
and rear of O′. Substituting ∆t = 0 (a “slice of constant O-time”) into Equation
2.27b gives ∆x′ = γ∆x ≥ ∆x, which is length contraction. Substituting ∆t = 0
into Equation 2.27a gives ∆t′ = −v∆x′ = −v∆x′/c2, which is clock desynchro-
nization, and combining this with the second gives ∆x = ∆x′/γ ≤ ∆x′, which
is again length contraction.

2.1.8 Velocity Addition

Suppose we are in O′ walking in the direction of relative motion of O and O′

so that our successive steps are separated by small distances and times dx′ and
dt′. Taking differentials of Equation 2.24, these separations are related by

dt = γ(dt′ + v dx′), (2.28a)

dx = γ(dx′ + v dt′). (2.28b)

Dividing the second of these equations by the first gives

dx

dt
=
dx′ + v dt′

dt′ + v dx′
=

dx′/dt′ + v

1 + v dx′/dt′
(2.29)

or

u =
u′ + v

1 + u′v
=

u′ + v

1 + u′v/c2
, (2.30)

where u = dx/dt and u′ = dx′/dt. This reduces to the familiar Galilean velocity
addition formula if c → ∞, but generalizes it to any speeds, even those close
to the speed of light. It implies that the light from a forward laser on a near-
light speed rocket is never observed to be superluminal. In fact, if we use
Equation 2.30 to define a relativistic velocity combination operator ⊕ by u =
u′ ⊕ v, then we have 1⊕ 1 = 1!



2.1. FLAT SPACETIME OF SPECIAL RELATIVITY 33

2.1.9 Spacetime Rotations

We can parameterize relative velocities by the rapidity ϕ using an Appendix A.2
hyperbolic tangent function, so that

v = tanhϕ (2.31)

and

γ =
1√

1− v2
=

1√
1− tanh2 ϕ

= coshϕ. (2.32)

While the relativistic velocities combine in an unfamiliar way, rapidities simply
add. Using the parameterization of Equation 2.31 as a template, we substitute
rapidities into the relativistic velocity addition formula of Equation 2.30 and
employ a standard hyperbolic identity to show

tanhϕ3 =
tanhϕ1 + tanhϕ2

1 + tanhϕ2 tanhϕ2
= tanh[ϕ1 + ϕ2]. (2.33)

Hence
ϕ3 = ϕ1 + ϕ2. (2.34)

Furthermore, if we substitute rapidities into the Lorentz-Einstein transfor-
mation of Equation 2.24 and use coshϕ tanhϕ = sinhϕ, we get

t = t′ coshϕ+ x′ sinhϕ, (2.35a)

x = x′ coshϕ+ t′ sinhϕ. (2.35b)

If we introduce an imaginary angle ϕ = iα, where α is real and i =
√
−1, then

t = t′ cosα+ ix′ sinα, (2.36a)

x = x′ cosα+ it′ sinα. (2.36b)

Multiplying the first of these equations by i, introducing y = it = ict, and
rearranging the equations and terms into standard form, we get

x = x′ cosα+ y′ sinα, (2.37a)

y = −x′ sinα+ y′ cosα. (2.37b)

As a matrix equation, this is(
x

y

)
=

(
cosα sinα
− sinα cosα

)(
x′

y′

)
, (2.38)

which represents a rotation through an angle α. Thus, the Lorentz-Einstein
transformation can be understood as a rotation through an imaginary angle in
a complex space!

This suggests the following deep analogy. Consider the ordinary rotation of
an object in space, as in Figure 2.9. The relative slope s = ∆x/∆y, the ratio of
two space changes, can parameterize the rotation. The most the rotation can
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Figure 2.9: When an object rotates in space, its vertical cross section dilates, its
horizontal cross section contracts, and its top (and bottom) corners no longer
coincide vertically. These are analogues of time dilation, length contraction, and
clock desynchronization, for a four-dimensional object rotating in spacetime, as
it changes its velocity in space.

achieve is one revolution (beyond which it retraces itself). During the rotation,
the object’s two-dimensional cross sections change, one contracts and the other
dilates. The left and right corners, which are at the same height initially, are at
different heights finally.

“Can an instantaneous cube exist?” asked H. G. Well’s Time Traveler. Fa-
miliar objects, which naturally appear three-dimensional to us, are really ex-
tended in time, the fourth dimension. A velocity like vx = ∆x/∆t, the ra-
tio of a space change and a time change, corresponds to a spacetime rotation.
The most a speed can change from zero is light speed, v = c = 1 in natural
units. Length contraction, time dilation, and clock desynchronization are merely
the geometric projection effects of observing three-dimensional cross-sections of
four-dimensional objects rotated in four-dimensional spacetime.

Why time dilation? It’s the rotation.

2.1.10 Spacetime Interval

Spatial rotations preserve distances between points. Consider two observers
relatively rotated in 2-dimensional space. If the coordinates of a place, say a
flagpole, are {x, y} for one and {x′, y′} for the other, then these are related by
the rotation transformation

x′ = x cos θ + y sin θ, (2.39a)

y′ = −x sin θ + y cos θ, (2.39b)

where s = tan θ is the relative slope of their axes. The trigonometric identity
cos2θ + sin2θ = 1 implies that the sum of the squares of the space coordinates
are the same,

x′
2

+ y′
2

= x2 + y2 ≡ l2, (2.40)
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where l is the invariant distance of the place from the observers’ common origin.
More generally, in 3-dimensional space,

∆x′
2

+∆y′
2

+∆z′
2

= ∆x2 +∆y2 +∆z2 = ∆l2, (2.41)

where ∆x2 = (∆x)
2
, and so on.

Spacetime rotations, or boosts, preserve the spacetime interval between events.
Consider two observers in relative motion in 1+1-dimensional spacetime. If the
coordinates of an event, say a supernova, are {t, x} for one and {t′, x′} for the
other, then these are related by the Lorentz-Einstein transformation

t = t′ coshϕ+ x′ sinhϕ, (2.42a)

x = x′ coshϕ+ t′ sinhϕ, (2.42b)

where v = tanhϕ is their relative velocity. The hyperbolic identity cosh2ϕ −
sinh2ϕ = 1 implies that the difference in the squares of the space and time
coordinates are the same,

x′
2 − t′2 = x2 − t2 ≡ +σ2 ≡ −τ2, (2.43)

where τ2 = −σ2 is the square of the spacetime interval of the event from the
observers’ common origin. More generally, in 3+1-dimensional spacetime,

∆x′
2

+∆y′
2

+∆z′
2−∆t′2 = ∆x2 +∆y2 +∆z2−∆t2 = +∆σ2 = −∆τ2. (2.44)

The invariant interval generalizes the Pythagorean theorem to spacetime.
The corresponding generalized geometry is sometimes called “pseudo-Euclidean”
or “flat”, and Einstein has been called the “new Pythagoras” for this profound
discovery. In spacetime physics, space and time are on an equal footing, and if
it were not for the minus sign in the interval, time would be exactly like space,
and we could walk back to yesterday!

The Equation 2.41 Pythagorean theorem provides a notion of distance or
metric for Euclidean space. The Equation 2.44 spacetime interval provides a
notion of distance for flat spacetime. But due to the minus sign, it is technically
a semi-metric, meaning it can be positive or negative. In fact, this distinction
leads to an invariant partition of spacetime at every event, as summarized in
Figure 2.10. The origin of the coordinates is a fiducial event E0, which is
separated from other events by the interval s2 − t2 = +σ2 = −τ2, where s2 =
x2 +y2 +z2. Events E0 and E1 are separated by a timelike interval, where their
time separation dominates their space separation, so that τ2 = t2 − s2 > 0.
They can be causally related because, for example, they can both be events on
the worldine of the same massive object. Events E0 and E3 are separated by a
spacelike interval, where their time separation dominates their space separation,
so that σ2 = s2 − t2 > 0. They are causally unrelated. Finally, events E0 and
E2 are separated by a lightlike interval, where their time separation equals their
space separation, so that σ2 = τ2 = 0. They can be joined by a light ray.
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Figure 2.10: Invariant light cones partition spacetime at every event, in 1+1-
dimensional (left) and 2+1-dimensional (right) spacetimes.

In 2+1-dimensional spacetime, this partition is obviously a light cone at
every event. The worldline of a massive object “enters” every event via the past
light cone and “exits” via the future light cone. We draw the future light cones
opening to the right (instead of opening up) so that the slopes of the worldlines
of massive objects are their velocities (instead of their inverse velocities).

2.1.11 Twin Paradox

The interval between two events on the worldline of a massive object has an
important interpretation. Suppose two observers O and O′ are in relative motion
along a common x, x′ direction. Then, for successive ticks of a clock at rest
relative to O′, the square of the spacetime interval is

02 + 02 + 02 − dt′2 = dx2 + 02 + 02 − dt2 = −dτ2, (2.45)

so that

dτ = dt′ =
√
dt2 − dx2 =

√
1−

(
dx

dt

)2

dt =
dt

γ
. (2.46)

Thus, dτ is the proper time between the ticks. More generally, the spacetime
interval between two events on the worldline of a massive object is the proper
time or aging between them. Different observers in relative motion will disagree
about space and time intervals, but they will always agree on aging, ∆τ =

∫
dτ ,

which is the length of the corresponding worldline. Table 2.1 summarizes the
analogy between space and spacetime.

The twin “paradox” is one famous consequence of the equivalence of aging
and worldline length. Stella and Terra are identical twins. Stella leaves Earth
⊕ for a fast voyage to a nearby star ? and back, while Terra stays behind.
Upon Stella’s return, the twins are distinctly different ages! Why? Because
their worldlines have distinctly different lengths. Also, due to the minus sign in
the spacetime interval, Stella’s kinked worldline is actually shorter than Terra’s
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unkinked worldline, as summarized in Table 2.2, where the diagrams are nec-
essarily rendered in Euclidean space. In general, the unaccelerated, unkinked
worldline between any two events is the one of extremal (longest) proper time.

Table 2.1: Space vs. spacetime: Einstein is the new Pythagoras.

Pythagoras Einstein

2-dimensional Euclidean space 1+1-dimensional spacetime
Path between places Worldline between events

Invariant distance Invariant interval
dl2 = dy2 + dx2, l =

∫
dl dτ2 = dt2 − dx2, τ =

∫
dτ

Path length is distance traveled Worldline length is aging
Check your odometer! Check your wristwatch!

Table 2.2: Angle vs. twin “paradoxes”.

Angle “paradox” Twin “paradox”

Direct path shorter Direct worldline ages more
than kinked path than kinked worldline

dl =
√
dy2 + dx2 ≥ dy dτ =

√
dt2 − dx2 ≤ dt

Faithfully rendered Unfaithfully rendered
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2.1.12 Loedel Spacetime Diagrams

We can obtain a helpful and very insightful visualization of a 1+1-dimensional
Lorentz-Einstein transformation by beginning with a representation of an or-
thogonal rotation between two coordinate systems O and O′, as in Figure 2.11.
This can not simultaneously record the observations of two observers in relative
motion, as the two sets of orthogonal coordinates are related by the invari-
ance of distance, not interval. However, if we interchange the two time axes,
the resulting skew coordinate systems do preserve the interval. Define coor-
dinates by drawing parallels (Loedel convention) rather than perpendiculars
(Brehme convention) or mixing parallels and perpendiculars (Minkowski con-
vention). Specifically, the x-coordinate of an event is determined by drawing
a line parallel to the t-axis, and so on. Similarly, a line parallel to the t-axis
represents a point at rest relative to the O observer.

Figure 2.11: Swapping time coordinates converts a spatial rotation preserving
distance into a spacetime rotation preserving interval. The spatial coordinates
(left) are orthogonal, while the spacetime coordinates (right) are skew.

Therefore, from the geometry of the Loedel spacetime diagram, the velocity
of O relative to O′ is

v =
∆x′

∆t′
= sin θ, (2.47)

and the relativistic stretch is

γ =
1√

1− v2
= sec θ. (2.48)

Note that if v = 0, then θ = 0, and the two skew coordinate systems collapse
into a single orthogonal coordinate system.
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2.1.13 Recovering the Fundamental Effects (Again)

All three of the key kinematical effects of special relativity, time dilation, length
contraction, and clock desynchronization, are implicit in the Loedel spacetime
diagram. For example, consider Figure 2.12. The row of dots represents the
regular flashes of a clock at rest in O′. From the geometry of the diagram,
∆t′/∆t = cos θ = 1/γ, which is time dilation. The shaded slab without dots
represents the worldtube of a stick at rest in O′. From the geometry of the
diagram, ∆x′/∆x = 1/ cos θ = γ, which is length contraction. The stick’s
worldtube is the invariant reality, while different observers in relative motion
take different slices of constant time to measure different lengths! Note how the
diagrams faithfully represent the magnitudes of the time dilation and length
contractions (unlike the more popular Minkowski spacetime diagrams). Finally,
the shaded slab with dots represents two synchronized and regularly flashing
clocks at rest in O′. From the geometry of the diagram, −∆t′/∆x′ = sin θ = v
or ∆t′ = −v∆x′, which is clock desynchronization.

Figure 2.12: Spacetime diagrams illustrating time dilation, length contraction,
and clock desynchronization.

2.1.14 Pole-in-the-Barn Example

To illustrate the utility of the Loedel spacetime diagram, we will use it to analyze
the famous pole-in-the-barn “paradox”. Can one fit a 20-meter pole in a 10-
meter barn by running so fast that it contracts to half its length? (Safety first:
Assume both the front and rear barn doors are open!) For the barn observer,
the pole does contract to half its length, and it would seem to fit, but for the
pole observer, it is the barn that contracts to half its length, and a fit seems
impossible. A Loedel spacetime diagram with an angle θ = 60◦, corresponding
to relativistic stretch γ = 2 and a velocity v =

√
3/2, can represent both sets of
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observations at once, as in Figure 2.13.

Figure 2.13: In the spacetime diagram, intersecting worldtubes represent the
pole and the barn. Each observer sequences the events with different families
of parallel slices of constant time.

The pole is at rest for the pole observer, and hence is represented as a
worldtube parallel to the tP -axis. The barn is at rest for the barn observer, and
hence is represented as a worldtube parallel to the tB-axis, but half as wide.
The crossed worldtubes are the invariant reality, which each observer interprets
with a different family of parallel slices of constant time. The pole is in entirely
in the barn for one slice of constant barn time, but is not entirely in the barn
for any slice of constant pole time. Thus, the consistency of the descriptions
depends crucially on the relativity of simultaneity.

So, is the pole ever in the barn or not? There is no is-ness about it! It’s
relative. Interestingly, one can trap the pole in the barn by quickly and carefully
closing the doors, because the rear of the pole can’t know that the front of the
pole has stopped until a compression wave moving at the speed of sound vS � 1
travels the length of the pole.

The doubly sliced crossed worldtubes of Figure 2.13 remind us of Wheeler’s
dictum: Space is different for different observers, time is different for different
observers, spacetime is the same for all observers!

2.1.15 Faster-Than-Light Implies Backward-In-Time

As a second example of the utility of the Loedel spacetime diagram, consider a
spaceship installed with the following foolproof protection system. If an accident
occurs, such as a collision with interstellar debris, then the spaceship will send
a faster-than-light signal to Earth, which will relay the signal faster-than-light
back to the spaceship, so that it arrives before the accident to allow evasive
action, as illustrated in Figure 2.14 for the special case of an infinitely fast signal
(like the science-fiction ansible introduced by Ursula K. LeGuin and employed
by Orson Scott Card).

Obviously, this is logically problematic. If the spaceship takes evasive action
to avoid the accident, what sent the signal? Because faster-than-light signalling
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Figure 2.14: Rocket and Earth exchange an instanton traveling at v =∞, which
returns to the rocket before it left. (The times of reflection and return can be
readily calculated from the geometry of the diagram using Equation 2.48.)

can lead to causality violations, most physicists believe that information cannot
travel faster than light. (However, things that don’t carry information, such as
the intersection of the blades of a long scissors quickly closed, can go faster than
light.)

2.1.16 Magnetism is Relativistic Electricity

Magnetism is a strange, velocity-dependent, deflecting force. While a gravita-
tional field ~g results in a gravitational force m~g, and an electrical field ~E results
in an electrical force q~E , a magnetic field ~B results not in a magnetic force q ~B,
but in a magnetic force q~v × ~B. In fact, its strangeness betrays its origin as a
tiny, relativistic correction to electricity!

Under boosts, the Lorentz-Einstein transformation alters forces and elec-
trical fields in nontrivial ways. However, electric charge, like the spacetime
interval, is a Lorentz-invariant scalar, the same for all observers. (Charge along
with mass and spin characterize and classify elementary particles.) In the rest
frame of the electric charges, where the relativistic corrections vanish, the elec-
tric force ~E on a charge q remains q~E . By working in such a reference frame,
we can show that parallel currents must attract and antiparallel currents must
repel – the very definition of the magnetic force – without invoking magnetism
at all. We won’t need any “new magic” beyond electricity and relativity.

The drift speed of the electrons in copper wire at room temperature is typ-
ically very small, with a relativistic stretch of nearly unity. Consequently, the
“magnetic” corrections to electricity will be of order γ − 1 ∼ v2/2 � 1. They
are only significant because the enormous electric force is effectively screened in
bulk matter.

We will first show that parallel current-carrying wires attract. We model the
wires as superpositions of one-dimensional positive (ionic) and negative (elec-
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Figure 2.15: Parallel current-carrying wires as superpositions of positive and
negative charges, displaced vertically for clarity, for observers at rest relative to
the bottom wire’s positive (left) and negative (right) charges. The relativistic
stretch γ is greatly exaggerated.

tron) charge densities, displaced slightly vertically for clarity in Figure 2.15.
We assume the wires are electrically neutral in their (ionic) rest frame. In the
rest frame of the bottom wire’s positive charges, the top wire is uncharged, and
hence the bottom wire’s positive charges are neither attracted nor repelled by
the top wire. However, in the rest frame of the bottom wire’s negative charges,
the top wire is positively charged, due to length contraction, and hence the
bottom wire’s negative charges are attracted upward. The net result is that the
bottom wire is attracted to the top wire (and vice versa).

Figure 2.16: Antiparallel current-carrying wires as superpositions of positive and
negative charges, displaced vertically for clarity, for observers at rest relative to
the bottom wire’s positive (left) and negative (right) charges. The compound
velocity v′ = 2v/(1 + v2) and the corresponding relativistic stretch γ′ = γ2(1 +
v2).

We will next show that antiparallel current-carrying wires repel. Again,
we model the wires as superpositions of one-dimensional positive and negative
charge densities, displaced slightly vertically for clarity in Figure 2.16. In the
rest frame of the bottom wire’s positive charges, the top wire is uncharged, and
hence the bottom wire’s positive charges are neither attracted nor repelled by
the top wire. However, in the rest frame of the bottom wire’s negative charges,
the top wire is negatively charged, due to length contraction, and hence the
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bottom wire’s negative charges are repelled downward. The net result is that
the bottom wire is repelled by the top wire (and vice versa).

2.2 Relativistic Dynamics

Changes to our understanding of space and time imply changes to our under-
standing of energy and momentum.

2.2.1 Spacetime 4-Vectors

Motion shrinks rulers, slows and desynchronizes clocks, and consequently alters
momentum and energy. The transition from relativistic kinematics to relativistic
dynamics is facilitated by the introduction of spacetime vectors or 4-vectors,
which are like space or 3-vectors with the addition of a time component and a
generalized scalar product. For example, if a place in space is ~r, than an event
in spacetime is

⇒
r =


t
x
y
z

 =

(
t

~r

)
, (2.49)

where the latter expression is an obvious shorthand. If the space scalar product
is ~r · ~r ′ = xx′ + yy′ + zz′, so the magnitude mag[~r ] =

√
~r · ~r =

√
x2 + y2 + z2,

then the spacetime scalar product is

⇒
r ·⇒r

′
= tt′ − ~r · ~r ′ = tt′ − xx′ − yy′ − zz′, (2.50)

so the magnitude

mag
[
⇒
r
]

=
√
⇒
r ·⇒r =

√
t2 − ~r 2 =

√
t2 − x2 − y2 − z2, (2.51)

where once again the negative signs reflect the distinction between space and
time.

Consider the worldine of an object of mass m, as in Figure 2.17. In a short
time dt, the mass m undergoes a 3-displacement d~r and a 4-displacement

d
⇒
r =


dt
dx
dy
dz

 =

(
dt

d~r

)
. (2.52)

The magnitude of the 4-displacement is the elapsed proper time,

mag
[
d
⇒
r
]

=
√
dt2 − d~r 2 = dt

√
1−

(
d~r

dt

)2

=
dt

γ
= dτ. (2.53)
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Figure 2.17: 4-velocity and 4-momentum tangent to the worldline of a massive
particle.

Since the 4-displacement d
⇒
r is a 4-vector and the proper time dτ is a Lorentz-

invariant scalar, and because multiplication (and division) of a vector by a scalar
is well-defined, we may define the 4-velocity as

⇒
v =

d
⇒
r

dτ
=


dt/dτ
dx/dτ
dy/dτ
dz/dτ

 =

(
dt/dτ

d~r/dτ

)
=

(
γ

γ~v

)
. (2.54)

Its time component is the relativistic stretch, vt = γ, and its magnitude is light
speed,

mag
[
⇒
v
]

=

√
γ2 − (γv)

2
= γ

√
1− v2 = 1 = c. (2.55)

In space masses have different relative speeds v, but in spacetime they have the
same invariant speed c (even as they move in space and exist in spacetime).

Finally, since mass m is also a Lorentz-invariant scalar, we may define the
4-momentum as

⇒
p = m

⇒
v =

(
γm

γm~v

)
. (2.56)

To identify its time component, consider the slow motion limit v � 1, where

pt = γm = m
(
1− v2

)−1/2 ∼ m(1 +
1

2
v2
)

= m+
1

2
mv2, (2.57)

which is the nonrelativistic kinetic energy shifted by a constant. Hence, we
identify the time component of the 4-momentum as the total energy

E = γm, (2.58)

and the relativistic kinetic energy becomes

T = E −m = (γ − 1)m. (2.59)
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In a rest frame, v = 0, γ = 1, and E = m, which in nonrelativistic units
is E = mc2, the most famous equation in modern physics [2]. Meanwhile, the
space components of the 4-momentum generalize Newton’s 3-momentum to high
speeds

~p = γm~v. (2.60)

The magnitude of the 4-momentum is the mass,

mag
[
⇒
p
]

=
√
E2 − ~p 2 =

√
(γm)

2 − (γmv)
2

= γm
√

1− v2 = m. (2.61)

Figure 2.18: Loedel spacetime (left) and momentum-energy (right) diagrams
for a mass m at rest relative to observer O′ and in uniform motion relative to
observer O. Note that the 4-momentum (right) is parallel to the worldine (left).

Since the 4-momentum is a 4-vector, it transforms under boosts like events
in spacetime. For example, suppose two observers O and O′ are in relative
motion along a common x and x′ axis. Then, as in Equation 2.24,

E = γ (E′ + vp′x) , (2.62a)

px = γ (p′x + vE′) . (2.62b)

Consider a mass m at rest in O′, as in Figure 2.18. In O′, its 4-momentum
components are (

E′

~p ′

)
=

(
m
~0

)
, (2.63)

while in O, using the Lorentz transformation of Equation 2.62, its 4-momentum
components are (

E

~p

)
=

(
γm

γm~v

)
. (2.64)

2.2.2 Invariant Mass

Mass is neither additive nor conserved, but it is an invariant under boosts,
as it is the magnitude of a 4-vector. Conversely, energy and momentum are
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additive and conserved, but they are not invariant under boosts, as they are
components of 4-vectors. For example, if

⇒
p i + ∆

⇒
p =

⇒
p f , then Ei + ∆E = Ef

and ~pi +∆~p = ~pf but mi +∆m 6= mf by the (spacetime) triangle inequality.
A good example of the nonadditivity of mass is a box of many molecules

of heated air. In the rest frame of the box, if the momentum of a typical air
molecule is ~pi, then the total 3-momentum of the air vanishes, ~pa =

∑
~pi = ~0,

and so its 4-momentum is
⇒
p a =

(
Ea
~0

)
. (2.65)

The mass of the box of air is therefore ma = mag[
⇒
p a] = Ea, but the energy of

the air Ea =
∑
Ei, where Ei = mi + Ti, and so

ma =
∑
i

mi + Ta ≥
∑
i

mi, (2.66)

were Ta =
∑
Ti is the total kinetic energy of the air in the box. (In practice,

typically ma = mac
2 � Ta, so the mass is nearly additive.)

Particles, like photons, that move at light speed are necessarily massless.
Combining E = γm and p = γmv, we get

p = Ev. (2.67)

Consequently, if v = 1, then p = E, and the mass m =
√
E2 − p2 = 0.

The concepts of “relativistic” and “rest” mass are misleading. Defining mv =
γm allows us to write ~p = mv~v, which resembles the corresponding Newtonian
expression. However, m and not mv is a relativistic invariant. Invariants are
jewels, and we don’t throw away jewels. The mass of a particle doesn’t increase
with speed; rather, its energy and momentum diverge as its speed approaches
light speed.

2.2.3 Einstein’s Box Derivation of E = mc2

Einstein’s famous E = mc2 almost effortlessly fell out of our 4-vector formalism,
but a simple and more physical derivation of this important result would be nice.
Einstein provided such a derivation in 1906 [4] involving a closed box that shifts
its position due to a burst of radiant energy traveling inside it from one end to
the other, as in Figure 2.19.

Switching momentarily to nonrelativistic units, we can choose the mass M
of the box sufficiently large so that the recoil speed is arbitrarily slow, v � c,
the relativistic stretch is nearly unity, γ ∼ 1, and the Newtonian momentum is
practically conserved. If the energy of the radiation is E, then its 3-momentum
is p = E/c, and

0 = Mv − E

c
, (2.68)

so that the box’s recoil speed is v = E/Mc. Since the mass is large, the recoil
distance will be small, ∆x � L, and the recoil time ∆t = (L −∆x)/c ∼ L/c.
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Figure 2.19: A burst of radiation of energy E and 3-momentum p = E/c shifts
a box of mass M a distance ∆x in a time ∆t.

Figure 2.20: Spacetime (left) and momentum-energy (right) diagrams of the
shifting box. The sum of the 4-momenta of the recoiling box and the radiation
equals the 4-momentum of the stationary box, but the sum of the mass of the
recoiling box and the zero mass of the radiation does not equal the mass of
the stationary box. (Masses are distorted in the diagram because spacetime is
rendered in the Euclidean space of the page.)

Hence, the recoil distance is

∆x = v∆t =

(
E

Mc

)(
L

c

)
=

E

Mc2
L, (2.69)

which is indeed much less than L if E �Mc2.

Since no external force acts on the system, its center of mass cannot move.
Hence, the radiation must transfer an effective mass m � M , and the shifts
in m and M must offset each other, so that the center of mass does not move.
Computing the location of the center of mass before and after the shift gives

M(L/2) +mL

M +m
= x =

M(L/2 +∆x) +m∆x

M +m
, (2.70)
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which implies

∆x =
m

M +m
L ∼ m

M
L. (2.71)

Combining our two expressions for ∆x gives

E = mc2. (2.72)

Note how radiation can transfer mass even though the mass of the radiation
itself is zero! This is possible because masses, being the length of 4-momenta,
are not additive, as demonstrated in Figure 2.20. Note also that Einstein’s
box cannot move as a rigid body, because sound speed (and hence vibrations)
vs � c. However, including this complication does not change the result.

2.2.4 Compton Scattering

In the 1920s, Arthur Compton scattered gamma rays from electrons and found
that the light behaved as particles, now called photons, of energy E = hν and
momentum p = h/λ. In natural, spacetime units, c = 1 and ν = 1/λ, and so
E = p = hν.

Consider the photon-electron scattering represented in Figure 2.21. Before
the scattering, the photon has 4-momentum

⇒
p =


E
p
0
0

 = hν


1
1
0
0

 , (2.73)

and the stationary electron of mass m has 4-momentum

⇒
p e =


m
0
0
0

 = m


1
0
0
0

 . (2.74)

Figure 2.21: Before (left) and after (right) the scattering of a photon and an
electron.
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After the scattering, the photon has 4-momentum

⇒
p
′

=


E′

p′ cos θ
p′ sin θ

0

 = hν′


1

cos θ
sin θ

0

 , (2.75)

and the recoiling and undetected electron has 4-momentum
⇒
p
′
e. By the con-

servation of 4-momentum, which relativistically conserves both energy and mo-
mentum,

⇒
p +

⇒
p e =

⇒
p
′
+
⇒
p
′
e. (2.76)

We can eliminate the unknown
⇒
p
′
e by squaring it, so that

⇒
p
′
e

2

=
(
⇒
p +

⇒
p e −

⇒
p
′)2

=
⇒
p
2

+
⇒
p e

2
+
⇒
p
′2

+ 2
(
⇒
p ·⇒p e −

⇒
p ·⇒p

′
−⇒p e ·

⇒
p
′)
.

(2.77)

Since the magnitude of a 4-momentum is a mass, this implies

m2 = 02 +m2 + 02 + 2
(
⇒
p ·⇒p e −

⇒
p ·⇒p

′
−⇒p e ·

⇒
p
′)
, (2.78)

and so
⇒
p ·⇒p

′
=
⇒
p ·⇒p e −

⇒
p e ·

⇒
p
′
. (2.79)

Implementing the spacetime scalar products with Equation 2.50 gives

h2νν′(1− cos θ) = mhν −mhν′ (2.80)

or

1− cos θ =
m

h

(
1

ν′
− 1

ν

)
=
m

h
(λ′ − λ) (2.81)

or
∆λ

λc
= 1− cos θ, (2.82)

where the wavelength change ∆λ = λ′ − λ and the Compton wavelength of the
electron is

λc =
h

m
=

h

mc
∼ 1

40
Å. (2.83)

The largest absolute wavelength change is for Compton backscattering, when
θ = π and ∆λ = 2λc. To maximize the relative wavelength change, Compton
used the smallest feasible wavelengths, those of gamma rays, whose wavelengths
are less than 0.1Å.
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2.2.5 Pair Production

An electron e− may combine with an antielectron e+ to annihilate into two (or
three) photons. For example,

e− + e+ −→ 2γ, (2.84)

where here, as is conventional, γ represents a photon (and not the relativistic
stretch). In the presence of matter, the inverse process, pair production, is also
possible. For example,

γ +N −→ e− + e+ +N, (2.85)

where N might be the nucleus of an atom.

Figure 2.22: Pair production, before and after (left and right), as observed in
two different reference frames (top and bottom).

In a minimum energy, or threshold, situation, the particles are created at rest
in the center-of-mass, or zero 3-momentum, reference frame, as in Figure 2.22.
Let the initial 4-momentum of the system in the N -frame be

⇒
pN =


E +M
E
0
0

 , (2.86)

where M is the mass of the nucleus and E is the energy and 3-momentum of
the photon. Let the final 4-momentum of the system in the zero 3-momentum
frame be

⇒
p
′
0 =


2m+M

0
0
0

 , (2.87)
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where m is the mass of the electron and antielectron. Conservation of 4-

momentum implies
⇒
p 0 =

⇒
p
′
0 and invariance of mass implies

⇒
p
2

0 =
⇒
p
2

N , and
so

⇒
p
2

N =
⇒
p
′2
0 . (2.88)

Performing the implied spacetime scalar products, again with Equation 2.50,
gives

(E +M)
2 − E2 = (2m+M)

2
(2.89)

or
E = 2m

(
1 +

m

M

)
≥ 2m. (2.90)

If M =∞, then the electron-antielectron pair can be created most econom-
ically with the energy E = 2m = 2mc2. However, if M = 0, then the threshold
energy is an unattainable E =∞. A mass M > 0 must “catalyze” the process;
without it, the 3-momentum and hence the energy of the photon in the zero
3-momentum reference frame would vanish.

2.3 Curved Spacetime of General Relativity

Here we explore Einstein’s 1915 theory of general relativity, which incorpo-
rates gravity. Newton’s theory of gravity makes a relativistic theory of gravity
both necessary and possible: necessary because Newtonian gravity acts instan-
taneously, with all the faster-than-light difficulties that entails; possible because
of the equality of inertial mass and gravitational charge, which we discuss below.

2.3.1 Gravity and Electricity

First we review Newton’s law of gravity by comparing and contrasting it with
Coulomb’s law of electricity. A test electrical charge q separated from a fixed
electrical charge Q by a distance r experiences a force

~F = +k
Qq

r2
r̂ = q~E = −q~∇ϕ = −~∇U, (2.91)

where ~E is the electric field, ϕ is the electric potential (with the SI unit of volts),
and U is the electric potential energy (with the SI unit of Joules). If the charge
q has an inertial mass mI , then its acceleration is

~a =
~F

mI
=

q

mI

~E , (2.92)

which clearly depends on the charge-to-mass ratio.
A test gravitational charge mG separated from a fixed gravitational charge

MG by a distance r experiences a force

~F = −GMGmG

r2
r̂ = mG~g = −mG

~∇ϕ = −~∇U, (2.93)
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where ~g is the gravitational field, ϕ is the gravitational potential, and U is the
gravitational potential energy. If the gravitational charge mG has an inertial
mass mI , then its acceleration is

~a =
~F

mI
=
mG

mI
~g, (2.94)

which appears to depend on the charge-to-mass ratio. However, in Newton’s
theory, by an inexplicable coincidence, the inertial mass and gravitational charge
are always the same,

mI = mG, (2.95)

and hence ~a = ~g always. Thus, in 1971, when Apollo 15 astronaut Dave Scott si-
multaneously dropped a hammer and a feather in the vacuum of Luna’s surface,
they hit the ground together.

The equivalence of inertial mass and gravitational charge makes possible a
geometric theory of gravity in which the fall of an object depends not on force
fields but on geodesics, paths of extremal length, in curved spacetime.

2.3.2 The Equivalence Principle

Einstein’s “happiest thought” was that gravity disappears for a freely falling
observer.

Figure 2.23: The uniform gravitational field of a flat Earth (left) is equivalent
to the constant acceleration of a spacecraft (right).

Imagine you are hanging tightly to a spinning merry-go-round. You feel
a centrifugal pseudoforce pulling you outward, but it’s not real, as you can
cancel it completely by simply letting go. You feel it because you are in the
“wrong” reference frame. Similarly, Einstein reasoned, gravity disappears in
the “right” reference frame, that of a freely falling observer. Astronauts aboard
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the International Space Station freely fall – or float – around Earth, effectively
cancelling gravity.

Figure 2.24: A photon’s passage through an accelerating glass spaceship in the
star frame (left) and spaceship frame (center) and in the equivalent Earth frame
(right). The deflection is greatly exaggerated.

Conversely, thanks to the equality of inertial and gravitational mass, con-
stant acceleration is equivalent to a uniform gravitational field, as is demon-
strated in Figure 2.23. Sealed inside a closed capsule, no experiment can distin-
guish being at rest on a flat Earth from being in constant acceleration relative
to the stars. In both cases, for example, the distances fallen in successive equal
time intervals are proportional to the odd integers, and the cumulative distances
fallen are proportional to the squares of the integers, just as Galileo discovered
in the early 1600s.

A dramatic consequence of the equivalence principle is that light must fall in
a gravitational field with the same acceleration as massive objects, even though
no corresponding Newtonian equation of motion exists, as illustrated in Fig-
ure 2.24. Arthur Eddington’s 1919 expedition to Africa to observe the deflec-
tion of starlight near the sun during a solar eclipse verified this prediction and
helped make Einstein famous.

2.3.3 Gravitational Time Dilation

Another consequence of the equivalence principle is that, near a planet or star,
the lower a clock, the slower it ticks. Suppose we freely fall past two clocks
fixed at different heights above Earth’s surface. Our fall cancels gravity and
makes us an inertial observer, as in the special theory of relativity. We observe
the clocks rushing upward, and hence they both tick slowly, but the lower clock
moves faster – as we have fallen farther and have accelerated relative to Earth
– and hence ticks even more slowly than the higher clock.

To make this quantitative, assume we drop from the higher clock to the
lower clock. If the clocks are separated by a small height h, our speed v � 1,
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then a Newtonian analysis of our motion suffices. Constant acceleration a = g
implies linearly increasing velocity v = gt and quadratically increasing position
h = gt2/2. Hence, the time to fall is t =

√
2h/g and our final speed is v =

√
2gh.

The corresponding relativistic stretch is

γ =
1√

1− v2
=
(
1− v2

)−1/2 ∼ 1 +
1

2
v2 = 1 + gh > 1. (2.96)

The clock we carry runs at the same rate as the higher clock and, of course,
doesn’t vary relative to us. Consequently, as we fall past the lower clock, and
observe it moving relative to us, we can directly compare the higher and lower
clock rates. Suppose all observers measure the duration of a distant event,
perhaps the brightening of a supernova. We measure a duration ∆t = ∆tH ,
while the lower clock measures a duration ∆tL. These durations are related by

∆tH = ∆t = γ∆tL = (1 + gh)∆tL > ∆tL. (2.97)

More time passes for the higher, faster clock, and less time for the lower, slower
clock. A lower charged oscillator oscillates slower and emits lower frequency
“redder” radiation, a gravitational redshift. People living in a penthouse apart-
ment age more rapidly than those living on the ground floor (but perhaps the
view is worth it).

In a Newtonian flat Earth model, the corresponding gravitational potential
energy change is ∆U = mgh. Since the gravitational potential is the gravita-
tional potential energy per unit mass, ϕ = U/m, we may write

∆tH = (1 +∆ϕ)∆tL (2.98)

If observing distant light, where wavelength is proportional to period,

λH = (1 +∆ϕ)λL, (2.99)

and so the fractional change in wavelength with height is

∆λ

λ
=
λH − λL
λL

= ∆ϕ = gh =
gh

c2
, (2.100)

where we briefly revert to SI units to suggest how small this correction is for
everyday heights.

In 1960, Robert Pound and Glen Rebka first observed this redshift in photons
traversing an elevator shaft in Harvard University’s Jefferson tower. The shift
was so small, Pound and Rebka needed to exploit the then recently discovered
“recoilless” emission and absorption of gamma rays from Fe57 nuclei “nailed”
to crystal lattices (the Mössbauer effect) to precisely define the frequencies.
By the late 1990s, the Global Positioning Satellite (GPS) system was already
widely used in consumer products like car navigation systems, and it had to
incorporate both gravitational and special relativistic time dilation in order to
operate correctly.
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2.3.4 Weakly Curved Spacetime

Recall that the flat space of Euclidean geometry is characterized by the Pythag-
orean expression

dr2 = dx2 + dy2 + dz2 (2.101)

for the invariant distance between two nearby places, and the flat spacetime of
special relativity is characterized by the pseudo-Euclidean expression

dτ2 = dt2 − dr2 (2.102)

for the invariant interval between two nearby events. We can account for grav-
itational time dilation by assuming a curved spacetime with interval

dτ2 = (1 + 2ϕ) dt2 − (1− 2ϕ) dr2, (2.103)

where 0 ≤ ϕ � 1 is the weak Newtonian gravitational potential: 1± 2ϕ corre-
spond to “slow time” and “space warp”. This is a good approximation to the
curved spacetime geometry of static, weak sources, such as Earth. For simplic-
ity, in what follows, let x > 0 be the height above the surface, dy = dz = 0, and
ϕ = gx. The metric simplifies to

dτ2 = (1 + 2gx) dt2 − (1− 2gx) dx2. (2.104)

We can characterize the resulting 1+1-dimensional spacetime by its light cone
structure, which we find by demanding dτ2 = 0 and solving Equation 2.104 for
the slopes of the light lines,

± dx

dt
=

√
1 + 2gx

1− 2gx
∼
√

(1 + 2gx)(1 + 2gx) ∼ 1 + 2gx, (2.105)

as 2gx = 2gx/c2 � 1. These slopes determine the openings of the light cones
and imply exponential light curves, some of which are depicted in Figure 2.25.

Suppose observers at rest at higher and lower heights xH and xL measure
the proper times ∆τH and ∆τL between light flashes from the surface separated
by the same coordinate time ∆t. Because the spacetime is curved, the proper
times will not be the same. In fact, from the metric of Equation 2.104, ∆xH = 0
implies

∆τ2H = (1 + 2gxH)∆t2 (2.106)

and hence
∆τH = (1 + 2gxH)

1/2
∆t ∼ (1 + gxH)∆t. (2.107)

Similarly, ∆xL = 0 implies

∆τL = (1 + 2gxL)
1/2
∆t ∼ (1 + gxL)∆t. (2.108)

Therefore,

∆τH
∆τL

=
1 + gxH
1 + gxL

∼ (1 + gxH) (1− gxL) ∼ 1 + g(xH − xL) (2.109)

or
∆τH = (1 + g∆x)∆τL = (1 +∆ϕ)∆τL > ∆τL, (2.110)

which is gravitational time dilation.



56 CHAPTER 2. RELATIVISTIC PHYSICS

Figure 2.25: Light cone structure of the static, weakly curved spacetime near
Earth’s surface (left), and high and low observers measuring the time between
flashes of light from the surface (right). Although the coordinate times are the
same, the proper times are different. (Proper times are distorted in the diagram
as curved spacetime is rendered in the Euclidean space of the page.)

2.3.5 Newton’s Laws from Curved Spacetime

We know from our discussion of the twin paradox that the unaccelerated, un-
kinked worldline between any two events is the one of longest proper time. Thus
a free particle in flat spacetime follows a path of extremal proper time. By de-
manding that a free particle in the weakly curved spacetime near Earth also
follow a path of extremal proper time, we can recover Newton’s laws of motion,
including gravity!

The proper time between two events 1 and 2 near Earth is

∆τ =

∫ 2

1

dτ, (2.111)

or using the metric Equation 2.104,

∆τ =

∫ 2

1

√
(1 + 2ϕ) dt2 − (1− 2ϕ) dx2 =

∫ t2

t1

√
1 + 2ϕ− (1− 2ϕ) v2dt,

(2.112)

where v = dx/dt. Consistent with our assumption that ϕ = gx � 1 is the
assumption that v � 1. Hence, neglecting terms that are cubic or higher in
small quantities,

∆τ ∼
∫ t2

t1

(
1 + 2ϕ− v2

)1/2
dt ∼

∫ t2

t1

(
1 +

1

2

(
2ϕ− v2

))
dt, (2.113)



2.3. CURVED SPACETIME OF GENERAL RELATIVITY 57

which we can write as

∆τ ∼
∫ t2

t1

(
1− 1

m

(
1

2
mẋ2 − V [x]

))
dt, (2.114)

where V [x] = mϕ = mgx is the potential energy and ẋ = v is the velocity. The
worldline that extremizes ∆τ must therefore also extremize

S =

∫ t2

t1

(
1

2
mẋ2 − V [x]

)
dt, (2.115)

which we have already extremized, in Section 1.2.1, to get

max = mẍ = −V ′[x] = −mg, (2.116)

or
ax = −g, (2.117)

which is Newton’s law of gravity for a flat Earth, in accordance with the equiva-
lence principle. We obtain the same result by neglecting the “space warp” term
in Equation 2.103, so objects fall down because time runs slow near Earth!
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Relativity Problems

1. Relativistic Units. How tall are you in seconds? How old are you in
meters? (Hint: Use the exact constant c = 299 792 458 m/s to convert
from traditional units.)

2. Eris Round Trip. A spaceship leaves Earth and travels to the dwarf
planet Eris, about 30 light-hours away, and returns 75 hours later, as
measured by clocks on Earth. How much time has elapsed on the space-
ship, assuming the spaceship accelerates for only a negligible fraction of
its journey? (Hint: Write light-hour as c ·h and don’t convert to SI units.)

3. Nuclear Pancake. The Brookhaven National Laboratory’s Relativistic
Heavy Ion Collider (RHIC) accelerates lead nuclei to v = 0.99995c, where
a lead nucleus at rest is a sphere d = 14 fm in diameter.

(a) In the lab frame, what is the shape and size of the nuclei?

(b) In a head-on collision, how much time elapses between the nuclei first
touching and completely overlapping?

4. Moving Stick. A stick of length ` moves past you at speed v. As
observed in frame O and calculated in frame C, let ∆tOC be the time
between the front and rear ends of the stick coinciding with you. Calculate
the following times. (Hint: Imagine clocks at both ends of the stick,
synchronized in the stick’s frame, and imagine you as a clock.)

(a) Time ∆tYY as observed by you and calculated by you.

(b) Time ∆tSY as observed by stick and calculated by you.

(c) Time ∆tYS as observed by you and calculated by stick.

(d) Time ∆tSS as observed by stick and calculated by stick.

5. Pole & Barn. Alice says she can fit a 20-meter pole in a 10-meter barn
by running with the pole so fast that it is contracted to half its length.
However, Bob points out that, from the pole’s frame of reference, it is the
barn that is contracted to half its length! Analyze this classic paradox,
as we analyzed the tethered rockets paradox, with synchronized clocks at
each end of the pole.

(a) What happens in the pole’s frame?

(b) What happens in the barn’s frame?

(c) Is the pole every entirely in the barn? Can you trap it in the barn
by quickly closing the front and rear doors?
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6. Cookie Cutter. Cookie dough lies on a conveyor belt moving with speed
v. A circular stamp of proper diameter ` stamps out cookies as the dough
rushes by beneath it. Incorporating relativistic effects, quantitatively an-
swer the following.

(a) What is the shape of the cookies (when you later eat them)?

(b) Explain the shape in the factory’s frame (where the cutter moves
only up and down).

(c) Explain the shape in the dough’s frame.

7. Radio Exchange. Two spaceships move in opposite directions at Earth
speed v = 3c/5. Assume the spaceships were together at Earth position
xE = 0 when Earth time tE = 0, and the leftward one sends a radio
signal (at the invariant speed c) toward the rightward one when they are
an Earth distance d apart.

(a) In Earth’s frame, compute the spacetime coordinates {tE1
, xE1

} of
the emission event, {tE2

, xE2
} of the reception event, and the dura-

tion ∆tE = tE2 − tE1 . (Hint: Answer in a multiple of d/c.)

(b) From these, Lorentz transform to find the corresponding {tL1
, xL1

},
{tL2 , xL2}, and ∆tL = tL2 − tL1 in the leftward frame.

(c) Lorentz transform to find the corresponding {tR1
, xR1

}, {tR2
, xR2

},
and ∆tR = tR2 − tR1 in the rightward frame.

8. Staging. The first stage of a multi-stage rocket boosts the rocket to a
speed of 0.1c relative to Earth before being jettisoned. The next stage
boosts the rocket to a speed of 0.1c relative to the final speed of the first
stage, and so on. How many stages is needed to boost the payload to a
speed in excess of 0.95c relative to Earth?

9. Headlight Effect.

(a) A rocket coasts by Earth with velocity v. It emits a flash of light at
an angle ϕR from its direction of motion relative to itself. Show that
the direction of the flash is ϕE from the rocket’s direction relative to
Earth, where in natural units

cosϕE =
cosϕR + v

1 + v cosϕR
. (2.118)

(b) Suppose the rocket emits the light uniformly in all directions, relative
to itself. Using the previous result, show that the light emitted in
the forward hemisphere, relative to the rocket, is concentrated in a
cone of angle

ϕE = sin−1
1

γ
= arcsin

[
1

γ

]
(2.119)

relative to Earth.
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(c) What is the angle of this cone for v = 0.99?

10. Spacetime Causality. Consider two events E1 and E2 in spacetime.
Use Loedel spacetime diagrams to illustrate the following statements.

(a) If E1 and E2 are separated by a timelike interval, and E1 precedes E2

in one reference frame, then E1 precedes E2 in all reference frames.

(b) If E1 and E2 are separated by a spacelike interval, then in some
references frames E1 precedes E2 and in other reference frames E2

precedes E1.

(c) Which kind of events can be causally related?

11. Ansible. The ansible is a science fiction interstellar instantaneous com-
munications device invented by Ursula K. Le Guin and used by Orson
Scott Card. Show how you could use an ansible to communicate with
your past and create a causal paradox. Specifically, show how you can
send a signal at time t and receive it at time t/γ2 < t.

12. Tethered Rockets. Analyze the Section 2.1.5 tethered rockets paradox
with a carefully drawn Loedel spacetime diagram relating the measure-
ments of the uniformly moving Earth and space station observers. (Your
diagram should fill most of an 8.5 × 11-inch page and be accurate and
neat. Use a straight edge and compass or a computer drawing program.)

13. Things That Go Faster Than Light.

(a) A very long straight rod, inclined at an angle ϕ to a horizontal rod,
moves downward at constant speed v so that the intersection between
the two rods moves horizontally at constant speed vH . Under what
conditions can this latter speed exceed light speed? Can the rods
(or scissors) be used to transmit a message horizontally faster than
light?

(b) A powerful searchlight sweeps out a circle in time T . You and I are
a distance d from the searchlight and an angle θ apart. Under what
conditions will the searchlight beam sweep from me to you faster than
a light signal could travel between us? Can we use the searchlight to
transmit information faster than light?

14. 4-Momentum. A 2.0-kg object moves with speed 1.8 × 108 m/s in the
x-direction. What are the components of the object’s 4-momentum, in SI
units of kg m/s?

15. Box of Light. Consider photons of energy E = p and spacetime momen-
tum

⇒
p = {E, ~p}.

(a) Calculate the mass of one of the photons.

(b) Calculate the mass of two photons moving parallel.
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(c) Calculate the mass of two photons moving perpendicular.

(d) Can the contents of a box of light have nonzero mass?

16. Pion-Muon Race. A neutral pion and a muon each have energy 10 GeV.
In a 100-m race, which wins and by how much distance? (Hint: Assume
mπ0

c2 = 135 MeV and mµc
2 = 106 MeV.)

17. Light Bulb. How much mass does a 100-watt light bulb dissipate (in
heat and light) in one year?

18. Energy Costs. Assume electrical energy costs about $0.05 per kW-hr.

(a) If you have $1 million to buy electrical energy to convert to kinetic
energy, about how fast can you make a 1.0-g object travel?

(b) To compete with email, the U.S. Postal Service offers Super Express
Mail, where a letter is sent to its destination at 0.99c using a special
Letter Accelerator. If a typical letter has a mass of about 25 g, what
will be the minimum cost of the letter’s stamp?

(c) If the Super Express Mail letter misses its target and hits a nearby
building, describe the consequences. (For comparison, a megaton of
TNT is about 4 petajoules.)

19. Inelastic Collision. Two identical particles of mass m moving at speed
v collide and stick together.

(a) If relativistic energy and momentum are conserved in the center-of-
mass frame, what is the mass of the final particle?

(b) Now boost to the frame of reference of the right particle and check
that the new 4-momenta are consistent with the relativistic velocity
addition formula. (Hint: Show that the relativistic stretch of the left
particle is γ′ = (1 + v2)/(1− v2).)

20. More Sleep. To exploit gravitational time dilation and be better rested
for the next day’s exam, should you sleep in the attic or the basement?
Estimate how much you can adjust your sleep this way.
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Chapter 3

Quantum Physics

Relativity “completes” classical physics; quantum physics subsumes it.
Richard Feynman wrote, “Things on a very small scale behave like nothing

that you have any direct experience about. They do not behave like waves, they
do not behave like particles, they do not behave like clouds, or billiard balls, or
weights on springs, or like anything that you have ever seen.”

You can’t learn about atoms by playing with billiard balls, but you can learn
about billiard balls by studying atoms. Classical physics follows from quantum
physics, not the other way around.

3.1 Interference and Superposition

The quantum analogues of the classic wave concepts of interference and super-
position reveal deep and surprising features of quantum reality.

3.1.1 Beam Splitter Probabilities

A beam splitter is an optical device that transmits half the light incident on it
and reflects the other half. It could be a mirror with an unusually thin metal
layer or a dielectric slab whose thickness and index of refraction together produce
the desired constructive and destructive interference. We will imagine it to be
two prisms separated by a small gap, as in Figure 3.1. Varying the thickness
of the spacer, a thin film that separates the two prisms, can produce any ratio
of transmitted to reflected light, via an exponentially decaying evanescent wave
propagating through the spacer, a phenomenon called frustrated total internal
reflection.

For simplicity, we imagine that our light source is monochromatic. This
could be a laser, which consists of an electrically excited medium bounded
by two mirrors, one of which is partially reflecting. De-excitation results in
monochromatic, coherent, and directional light escaping the partially reflecting
mirror.

63
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Figure 3.1: Beam splitter reduces the reflected and transmitted bright light
intensity by 1/2 and amplitude by 1/

√
2.

At sufficiently high intensity, light behaves like an electromagnetic wave.
The frequency of visible light is so high (ν = ω/2π ∼ 100 THz) that our eyes
and cameras cannot follow its oscillations. Instead, we are sensitive to the time
averaged square of its electric field, which is called intensity (or irradiance).
Intensity is the energy per unit area per unit time transported by the wave.
If the electric field varies sinusoidally, E = E0 cos[kx − ωt], then its intensity is
proportional to the electric field amplitude squared, I ∝ E2 ∝ E20 . In appropriate
units, we will take I = E20 . Thus, in reducing the intensity of the transmitted
and reflected waves by 1/2, the beam splitter of Figure 3.1 reduces the electric
field amplitude by 1/

√
2.
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Figure 3.2: Beam Splitter reflects and transmits photons with probability 1/2.
For each trial, each PhotoMultiplier Tube reports “1” if it detected a photon
and “0” otherwise. Single Photon Source produces a pair of opposing photons
so that one enters the Beam Splitter and the other announces the trial.

At sufficiently low intensity, the graininess of light becomes apparent, and



3.1. INTERFERENCE AND SUPERPOSITION 65

light behaves like a stream of particles, called photons. The energy of single
visible-light photons is so small (E = hν ∼ 1 eV) that our eyes are not (quite)
able to detect them. Instead, as in our second teaser, we will detect them
with photomultiplier tubes (PMTs) or semiconductor avalanche photodiodes
(APDs), which exploit the photoelectric effect to initiate an electron cascade
that amplifies a single photoelectron to a macroscopic current pulse with near
100% efficiency.

We might radically dim our light source using neutral density filters (NDFs)
or crossed polarizers, so that only one photon is in the beam splitter at any one
time. To avoid photon bunching, we instead use a single photon source. For
example, we wait for positronium to decay into opposing photons and detect
one to herald the other. More practically, we pump a nonlinear birefringent
crystal, like β-BaB2O4 (BBO), with a UV laser to produce two opposing IR
photons and again detect one to announce the other.

What happens? If the first photon is reflected, shouldn’t they all be re-
flected? If the first is transmitted, shouldn’t they all be transmitted? How then
could we recover the bright light classical results from the faint light quantum
results by gradually increasing the light intensity?

We put nature to the test and find that the experiment is not repeatable.
Instead, individual photons are transmitted or reflected with probability 1/2,
as in Figure 3.2, where the binary data strings at each PMT indicate whether
a photon has been detected (1) or not (0) during each trial. More generally,
we find that the probability of detecting a photon is proportional to the square
of the amplitude of the electric field of the corresponding classical wave. In
this way, faint light quantum experiments correspond to bright light classical
experiments.

3.1.2 Two Interpretations

The conventional or Copenhagen interpretation (CI) is that quantum probabil-
ities are ontological rather than epistemological. They reflect how things really
are, not merely what we can know about them. They are inherent in nature,
not merely limitations in our measuring apparatus.

Einstein famously objected, “God does not play dice with the universe”.

In the post-Einstein Many Worlds interpretation (MWI), the ontological
probabilities are eliminated. Instead, each photon is both transmitted and re-
flected, and the world splits into two histories, one for each possibility! Episte-
mological randomness is apparent only to observers, like us, confined to single
histories. From a God’s eye point of view, the MWI is deterministic and, for the
beam splitter, symmetric (both of two equally likely possibilities are realized),
but at the ontological expense of invoking an infinity of equally real worlds to
explain our single observable world.

Other interpretations exist, but none preserve classical reality.
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3.1.3 Mach-Zehnder Interferometer

Probabilities alone don’t exhaust the novelty of quantum reality.
Suppose we recombine the light from a beam splitter using two mirrors and

a second beam splitter, as in Figure 3.3. Such a device is called a Mach-Zehnder
interferometer. If “T” and “R” represent “transmitted” and “reflected”, then
the four paths through the interferometer can be denoted RRR, TRT, RRT,
TRR, where the first two paths exit up and the second two paths exit right. All
paths have the same length, but each transmission and reflection is accompanied
by a phase shift that depends on the details of the optics. Assuming a phase shift
of π/2 at each reflection, light waves interfere constructively when exiting right
(and hence destructively when exiting up), because the corresponding paths
involve the same number of transmissions and the same number of reflections.
(In practice, if one of the mirrors or beam splitters is slightly canted, than the
interference produces a fringe pattern of parallel stripes.)

Figure 3.3: Mirrors (left) and a second beam splitter (right) recombine bright
light split by the first beam splitter.

Suppose we radically dim our light source, so that only one photon is in
the interferometer at any one time, as in Figure 3.4. What happens? Without
the recombining beam splitter, the data strings at the PMTs are perfectly an-
ticorrelated but random. With the recombining beam splitter, the data strings
are still perfectly anticorrelated but are now homogeneous, and all photons exit
right, in agreement with the high intensity experiment. Apparently, interference
happens even with only one photon in the apparatus at a time!

Note how the addition of the recombining beam splitter radically alters the
output of the device. If individual photons were somehow “splitting” (or not) at
the first beam splitter, how could they know whether (or not) the recombining
beams splitter was in place? In fact, since the speed of the photons is c ∼
109 km/hr ∼ 0.3 m/ns, using nanosecond electronics in a table-top experiment,
we can decide to remove or introduce the recombining beam splitter after the
photon has interacted with the first beam splitter! The results of such delayed
choice experiments are exactly the same: in those trials with the recombiner,
all photons exit right; in those trials without the recombiner, half the photons
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Figure 3.4: Mirrors (left) and a second beam splitter (right) recombine photon
paths split by the first beam splitter.

exit right and half exit up.

Can we check the paths taken by the photons? Since each photon carries
momentum p = h/λ, if we float one of the two mirrors, then the mirror’s recoil
(or not) reveals the photon’s path. However, in such which-way experiments,
the constructive and destructive interference, which makes all photons exit right
and none exit up, is destroyed, and instead half the photons exit right and half
exit up. Indeed, which-way information is consistent with the particle nature
of light but is inconsistent with the wave nature of light. Particles take definite
paths and do not interfere, while waves take all paths and do interfere. Ap-
parently, incompatible experimental arrangements elicit complementary aspects
of the wave-particle duality of light: which-way information (no recombiner or
floating mirrors) elicits the particle aspect of light, while no which-way infor-
mation (recombiner and fixed mirrors) elicits the wave aspect of light.

3.1.4 Quantum Eraser

A quantum eraser is a measurement that destroys which-way information. Be-
cause the eraser can restore an interference pattern, Neils Bohr’s classic argu-
ment that the interference pattern is lost because it has been randomly disrupted
by the measurement process is not applicable. Suppose we insert a 0◦ (horizon-
tal) polarizer in one path of our Mach-Zehnder interferometer, a 90◦ (vertical)
polarizer in the other path, a 45◦ (diagonal) polarizer at the input, and final
(analyzing) polarizers at the outputs, as in Figure 3.5. The path polarizers
encode which-way information in a photon by altering its spin angular momen-
tum, the quantum counterpart to the polarization of the corresponding classical
wave, while not changing its linear momentum. (If we float one of the mirrors
and it recoils, we obtain which-way information at the expense of changing the
photon’s linear momentum; although, if we float one of the mirrors and it does
not recoil, we obtain which-way information without affecting the photon.)

If we rotate the analyzers to 0◦, then we observe light propagating in only
one path of the interferometer, and no interference occurs, so half the photons
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Figure 3.5: Path polarizers provide which-way information and interference is
lost (left diagram), where photons exit equally up and right. Rotating the final,
analyzing polarizers 45◦ destroys the which-way information and restores the
interference (right diagram), where photons exit right but not up.

exit right and half exit up. If we rotate the analyzers to 90◦, we obtain similar
results. If we remove the analyzers, still no interference occurs. Apparently,
actually detecting a particular path is not necessary, as merely encoding which-
way information is sufficient to destroy the interference. However, if we rotate
the analyzers to 45◦, so we can no longer distinguish between the 0◦ (horizontal)
and 90◦ (vertical) polarizations, which-way information is erased, interference is
restored, and all photons exit right – and this is so even if the quantum erasure
is a delayed choice!

3.1.5 Interaction-Free Measurement

When we float one of the two mirrors in the Mach-Zehnder interferometer, we
lose the single-photon interference, even if the single photon reflects off the other,
stationary mirror. How can the floating mirror affect the photon if the photon
doesn’t even come near it? Quantum physics allows us to test counterfactuals,
things that might have happened but did not!

The bomb testing problem of Avshalom Elitzur and Lev Vaidman dramat-
ically illustrates such interaction-free or null measurements. Consider bombs
so sensitive that even the slightest movement of their detonators will explode
them. Unfortunately, some fraction of the detonators are jammed and the at-
tached bombs are consequently duds. No classical way exists to identify good
bombs without exploding them, but quantum physics provides a way. We can
test a bomb by attaching its detonator to one of the mirrors of the Mach-Zehnder
interferometer, as in Figure 3.6.

If all photons exit right, the different alternatives are interfering, construc-
tively right and destructively up. The mirror and its attached detonator must be
fixed, so no which-way information exists. Hence, the bomb is a dud. However,
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Figure 3.6: Interference (left) reveals a jammed detonator (and a fixed mir-
ror), while no interference (right) reveals a working detonator (and a recoilable
mirror).

if even one photon exits up, the different alternatives are not interfering. The
mirror and the attached detonator can, in principle, recoil and thereby provide
which-way information. Hence, the bomb is good, and if the photons have all
reflected off the stationary mirror, the bomb is unexploded.

In practice, we can only harvest
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3
(3.1)

of the working bombs this way. However, a variation of this technique can
arbitrarily reduce the fraction of wasted bombs. In the future, null measure-
ments may allow doctors to x-ray patients without exposing them to (potentially
harmful) x-rays!

3.1.6 Quantum Computing

Classically, to distinguish a real coin, with a head and a tail, from a trick coin,
with two heads (or two tails), we would need to look at each side separately and
then compare the results. Using David Deutsch’s “two-bit” quantum algorithm,
we can do it all at once!

As a slightly simplified quantum version of the problem, suppose that a
piece of π-phase-shifting dielectric may or may not be in one or both paths of
a Mach-Zehnder interferometer, as in Figure 3.7. Classically, the presence of
the dielectric in one path but not the other converts, at the exit, constructive
interference to destructive interference, and vice versa. Quantumly, a single
photon explores both paths in parallel. If it exits right instead of up, we know
that both paths are the same; with one photon, we have obtained two bits of
information.
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Figure 3.7: An “inverting” (π-phase shifting) dielectric is in one or both paths of
the interferometer. If the photon exits right (top row), the paths are identical.
If it exits up (bottom row), the paths are nonidentical.

Deutsch’s 1985 two-bit scheme was the first quantum computing algorithm.
In 1994, Peter Shor discovered a quantum computing algorithm to factor num-
bers in polynomial time, so that factoring an N-bit number requires time O[Nk],
for constant k. This is something no classical computer can do. Shor’s algo-
rithm would revolutionize cryptography, if implemented. In 1996, Lov Grover
discovered a quantum computing algorithm to search a database of N elements
in time O[

√
N ], again faster than any classical computer, which requires time

O[N ]. In 2001, an early quantum computer ran Shor’s algorithm and success-
fully factored 15. (That’s not a 15-digit number; that’s the number 15 = 3×5.)

The MWI provides an easy heuristic for understanding the source of the
advantage of these quantum algorithms: they distribute the calculations among
many parallel universes!

3.2 Indeterminacy and Entanglement [Optional]

Quantum reality includes the additional nonclassical surprises of indeterminacy
and entanglement.

3.2.1 Mach-Zehnder Classical Model

Prior to creating a more explicit quantum model of the Mach-Zehnder interfer-
ometer, let’s first create a more quantitative classical model. At high intensity,
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light is split into two wave trains at the first beam splitter, which are recom-
bined at the second beam splitter and exit up and right. Let the electric field
magnitude at the entrance be

E [0, t] = E0 cos[ωt], (3.2)

where t is the time elapsed, and ω = 2π/T is the temporal frequency of the
wave train. Then, the electric field magnitude at the exit due to the wave train
reflected by mirror n is

En[x, t] =
1√
2

1√
2
E0 cos[ωt− kz + δn], (3.3)

where z is the distance traveled, k = 2π/λ is the spatial frequency, and δn is the
extra phase shift due to reflection. Since ω/k = λ/T = c, the spacetime phase
ϕ = ωt− kz = k(ct− z) is zero at z = ct, and hence represents a wave traveling
in the ẑ direction at speed c. The factors of 1/

√
2 are due to the beam splitters.

The total electric field magnitude at the exit is the superposition

E = E1 + E2 =
1√
2

1√
2
E0(cos[ϕ+ δ1] + cos[ϕ+ δ2]). (3.4)

Our eyes and cameras are sensitive to the time-averaged square of this electric
field, which is the intensity

I = E2 =
1

2

1

2
E20 (cos2[ϕ+ δ1] + 2 cos[ϕ+ δ1] cos[ϕ+ δ2] + cos2[ϕ+ δ2]). (3.5)

Using the trigonometric identity 2 cosu cos v = cos[u + v] + cos[u − v], this
becomes

I =
1

2

1

2
E20 (cos2[ϕ+ δ1] + cos[2ϕ+ δ1 + δ2] + cos[δ1 − δ2] + cos2[ϕ+ δ2]). (3.6)

Since the time average of a sinusoid (over an integer number of periods) vanishes,
and the time average of the square of a sinusoid is 1/2, we have

I = I0
1 + cos δ

2
, (3.7)

where I0 = E20/2 is the entrance intensity and δ = δ1 − δ2 is the difference
between the reflection phase shifts of the two paths.

We now assume a phase shift of π/2 radians at each reflection. (The actual
phase shifts depend on the detailed characteristics of the optical elements, but
can always be adjusted by inserting dielectric slabs in one or both paths of the
interferometer). At the up exit, the difference in phase shifts δu = 3(π/2) −
(π/2) = π, and so the intensity Iu = 0. At the right exit, the difference in phase
shifts δr = 2(π/2)− 2(π/2) = 0, and so the intensity Ir = I0.
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3.2.2 Mach-Zehnder Quantum Model 1

Now, how can we create a more quantitative quantum model of the Mach-
Zehnder interferometer, one that works for faint light, when only single photons
are in the interferometer? In particular, how can we reproduce wave interference
with particles? We will adopt a model due to Richard Feynman.

Figure 3.8: Vertical projection (left) of a rotating vector (right) varies sinu-
soidally.

The projection of a rotating arrow in a fixed direction varies sinusoidally, like
a wave train, as in Figure 3.8. This suggests the following scheme. Along each
path through the interferometer, we imagine that a photon carries an arrow that
rotates at the frequency of the corresponding classical light. For the purposes
of the illustration in Figure 3.9, we assume that each arrow rotates π/4 radians
per step, plus an extra π/2 radians per reflection, and shortens by 1/

√
2 at

each beam splitter. At the mirrors and beam splitters, we draw the arrow just
before in gray and just after in black. Adding the arrows for both paths at the
exit and squaring correctly gives the probability of detecting the photon. For
bright light, this corresponds to squaring the electric field amplitude to obtain
the intensity.

3.2.3 Mach-Zehnder Quantum Model 2

We can conveniently and compactly represent the rotating arrows by complex
numbers ρeiϕ of modulus ρ and argument ϕ = kz − ωt, where z and t are the
(real) propagation distance and time, and ω/k = c. We can label the states of
a photon in each segment of the interferometer using the conventional quantum
vector notation |•〉, called a ket (from the word bracket), as in Figure 3.10. These
kets can represent the photon’s non-spin degrees of freedom, such as position
and linear momentum. At the first beam splitter, the initial photon state |A〉
evolves to a quantum superposition of a transmitted photon state |B〉 and a
reflected photon state |C〉. If l is the length and width of the interferometer,
and if the first beam splitter is at z = 0, then at time t the initial photon evolves
into the superposition

e−iωt |A〉 S−→ 1√
2
ei(kl/2−ωt) |B〉+

1√
2
ei(kl/2+π/2−ωt) |C〉 , (3.8)
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Figure 3.9: A photon carries an imaginary arrow that rotates at the frequency of
the corresponding classical light. Adding the arrows at the exit for both paths
and squaring gives the probability of detecting the photon: unity for exiting
right (top row) and zero for exiting up (bottom row).

where the complex numbers multiplying each state record the amplitude and
phase of the rotating arrows: the moduli 1/

√
2 account for the passage through

the beam splitter, while the π/2 in the argument of the second complex number
accounts for the reflection phase shift.

According to the CI, if the experiment were stopped here, and we observed
whether the photon were transmitted or reflected, the square of the moduli of
these complex numbers would be the corresponding probabilities,

P[B] =

∣∣∣∣ 1√
2
ei(kl/2−ωt)

∣∣∣∣2 =
1

2
, (3.9a)

P[C] =

∣∣∣∣ 1√
2
ei(kl/2+π/2−ωt)

∣∣∣∣2 =
1

2
. (3.9b)

According the MWI, the quotient of these two numbers P[B]/P[C] = 1 is the
branching ratio for the two different histories.

In practice, to calculate the interference, we need only record the difference
in the phases of the two paths. Consequently, we can abbreviate the effect of
the first beam splitter by the evolution

|A〉 S−→ 1√
2

(|B〉+ i |C〉) , (3.10)
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Figure 3.10: Photon states in the interferometer.

where i = eiπ/2 accounts for the reflection phase shift. Similarly, the mirrors
induce

|B〉 S−→ i |D〉 , (3.11a)

|C〉 S−→ i |E〉 , (3.11b)

while the second beam splitter induces

|D〉 S−→ 1√
2

(i |F 〉+ |G〉) , (3.12a)

|E〉 S−→ 1√
2

(|F 〉+ i |G〉) . (3.12b)

The complete evolution is

|A〉 S−→ 1√
2

(|B〉+ i |C〉)

S−→ 1√
2

(i |D〉 − |E〉)

S−→ 1

2
(− |F 〉+ i |G〉 − |F 〉 − i |G〉)

S−→ − |F 〉 (3.13)

or more explicitly

|A 〉 S−→ −1 |F 〉+ 0 |G
〉
. (3.14)

Hence, the probabilities
P[F ] = |−1|2 = 1 (3.15)

and
P[G] = |0|2 = 0, (3.16)
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as expected. The certainty of |F 〉 (exiting right) and the impossibility of |G〉
(exiting up) is an example of quantum interference.

3.2.4 Hilbert Space

In general, if |A〉 and |B〉 are quantum states, than any linear combination
a|A〉+ b|B〉, with complex coefficients a and b, is also a quantum state. In fact,
such states form a Hilbert space: a linear vector space with a complex scalar
product. For example, the calcite crystal of Section 1.1.2 can induce a photon
to evolve to a state |ψ〉 that is a superposition of horizontal |h〉 and vertical |v〉
polarization, namely

|ψ〉 = a |h〉+ b |v〉 , (3.17)

where |a|2 + |b|2 = 1 to conserve probability. (Measurement will certainly find
the photon in one of the two states.) The set of all such states form a quantum
bit or qubit, which is of fundamental importance in quantum computing: while
a classical bit can be in one of two states, a qubit can be in an infinite number
of superpositions of states.

A quantum superposition is a kind of complex-number-weighted coexistence
of possibilities (or potentialities). According to the CI, the absolute square
of the weights correspond to the probabilities of measuring the alternatives.
According to the MWI, the quotient of the weights is the branching ratio for
the two different histories. (The branching ratio must be a rational number,
but rationals can approximate real numbers arbitrarily well.)

3.2.5 Quantum Evolution

As we shall show, superpositions evolve continuously and deterministically under
the Schrödinger differential equation, in both the CI and the MWI. For example,

|ψ〉 S−→ |ψ′〉 = a′ |h〉+ b′ |v〉 . (3.18)

The CI, but not the MWI, also includes a discontinuous and probabilistic collapse
of a superposition to classical probability-weighted alternatives when the system
is measured (or observed or registered). For example,

|ψ′ 〉 M−→
{
|h 〉 , P[h] = |a′|2

|v 〉 , P[v] = |b′|2
}
. (3.19)

While the S-evolution is uncontroversial, the same cannot be said about the
M-evolution.

3.2.6 The Measurement Problem (and Schrödinger’s Cat)

Consider a variation of the (in)famous Schrödinger cat experiment, wherein a
(working) bomb amplifies a microscopic superposition to macroscopic propor-
tions, as in Figure 3.11, where a single photon interacts with a beam splitter.
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In the absence of a measurement, the system |ψ〉 evolves into a superposition of
reflected and transmitted photons

|ψ〉 S−→ |ψ′〉 =
1√
2
|↑〉+

1√
2
|→〉 , (3.20)

and unexploded and exploded bombs

|ψ′〉 S−→ |ψ′′〉 =
1√
2
|↑, •〉+

1√
2
|→, ?〉 (3.21)

and calm and distressed observers

|ψ′′〉 S−→ |ψ′′′〉 =
1√
2
|↑, •,, 〉+

1√
2
|→, ?,/〉 . (3.22)

Such macroscopic superpositions are called Schrödinger cat states. (In the orig-
inal thought experiment, the observer was a cat.) However, we do not observe
superpositions of unexploded and exploded bombs, nor of calm and distressed
people, whatever that might mean. According to the CI, to collapse the super-
position

|ψ′′′ 〉 M−→

{
|↑, •,, 〉 , P =

∣∣1/√2
∣∣2 = 1/2

|→, ?,/ 〉 , P =
∣∣1/√2

∣∣2 = 1/2

}
, (3.23)

a measurement must occur at the beam splitter, or at the bomb, or at the
observer, or . . . .

Figure 3.11: Single photon incident on a beam splitter is reflected and detected
by a PMT, calming the observer (left), or is transmitted and detonates a bomb,
distressing the observer (right). The S-evolution places the photon, the bomb,
and the observer in a macroscopic quantum superposition, a Schrödinger cat
state.

But exactly where and when does the superposition collapse? Are not the
beam splitter, the bomb, and the observer all ultimately quantum systems?
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Where is the threshold between microscopic and macroscopic, between experi-
ment and experimenter, between phenomenon and observer, between quantum
and classical? Physicist Eugene Wigner argued that the threshold is human con-
sciousness. The chief architect of the CI, Neils Bohr, argued that the threshold
is relative; it depends on one’s point of view, on how one chooses to analyze the
experiment. So no one right answer exists as to where and when the superpo-
sition’s complex-number-weighted coexistence of multiple possibilities collapses
into a probability-weighted single reality.

The MWI dispenses with this so-called “measurement” problem by entirely
eliminating the discontinuous, probabilistic M-evolution. According to the MWI,
two histories continuously and deterministically emerge from the experiment,
one including a calm observer, an unexploded bomb, and a reflected photon,
the other including a distressed observer, an exploded bomb, and a transmitted
photon. The apparent probabilities and discontinuities are merely artifacts of
individual observers being confined to single histories.

3.2.7 Polarization

Beam splitters and mirrors control the direction of classical light and the lin-
ear momenta of photons. Calcite crystals, quarter wave plates, and polarizers
control the polarization of classical light and the angular momenta (or spin) of
photons. This latter capability facilitates investigation of additional aspects of
quantum reality.

In classical optics, polarization refers to the oscillation of the electric field of
light. For example, if light is traveling in the z-direction at speed c = ω/k, then

~EH [δ] = x̂ E0 cos[kz − ωt+ δ], (3.24a)

~EV [δ] = ŷ E0 cos[kz − ωt+ δ] (3.24b)

represent horizontal and vertical linearly polarized light, because the electric
field is oscillating in a line. We can superpose this light with different relative
phases δH − δV to create differently polarized light. For example, if the relative
phase shift is zero, then

~ED = ~EH [0] + ~EV [0] = (x̂+ ŷ) E0 cos[kz − ωt] , (3.25)

represents diagonally polarized light, which is just linearly polarized light in a
different direction. If the relative phase shift is ±π/2, then

~ER = ~EH [0] + ~EV [+π/2] = (x̂ cos[kz − ωt]− ŷ sin[kz − ωt]) E0, (3.26a)

~EL = ~EH [0] + ~EV [−π/2] = (x̂ cos[kz − ωt] + ŷ sin[kz − ωt]) E0 (3.26b)

represent right hand and left hand circularly polarized light, because the electric
field appears to be rotate in a circle when viewed along the direction of prop-
agation. (We employ the particle physics convention, which is opposite to the
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optics convention, and call the light right-handed when the rotation is similar
to that of a right-handed screw.)

The corresponding relations for photons correspond to the classical relations
for light waves. A “diagonal” photon is a superposition

|D〉 =
1√
2
|H〉+

1√
2
|V 〉 . (3.27)

A right or left “circular” or natural photon is in one of the superpositions

|R〉 =
1√
2
|H〉+

i√
2
|V 〉 , (3.28a)

|L〉 =
1√
2
|H〉 − i√

2
|V 〉 , (3.28b)

where the ±i = e±iπ/2 account for the relative phase shifts. Since photons are
naturally circular, appropriately invert these relations and write

|H〉 =
1√
2

(|R〉+ |L〉) , (3.29a)

|V 〉 =
−i√

2
(|R〉 − |L〉) . (3.29b)

In a measurement of the circular polarization of |V 〉, |R〉 and |L〉 are equally
likely,

|V 〉 M−→

{
|R 〉 , P =

∣∣−i/√2
∣∣2 = 1/2

|L 〉 , P =
∣∣+i/√2

∣∣2 = 1/2

}
, (3.30)

but the complex numbers ±i are crucial to recovering |R〉 when superposing |H〉
and |V 〉, as in Equation 3.28.

3.2.8 Heisenberg Indeterminacy

Measuring the linear polarization of a photon places it in a superposition of
right and left circular polarizations, while measuring the circular polarization
places the photon in a superposition of linear polarizations. In fact, a photon
cannot have both linear and circular polarization simultaneously; knowing one
type of polarization leaves the other type indeterminate, a special case of the
Heisenberg indeterminacy principle.

Optically anisotropic materials with different indices of refraction in different
directions can transform light from one polarization to another. A calcite crystal
can convert a diagonal light beam into parallel beams of horizontal and vertical
light. A quarter wave plate can convert diagonal light into circular light (by
retarding one component by a distance λ/4).
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3.2.9 Crossed Polarizers

An ideal polarizer converts unpolarized light into linearly polarized light by
selectively transmitting only one polarization. Consider light traveling in the
z-direction, and linearly polarized in the x-direction, incident on a polarizer
with transmission axis an angle θ from the x-direction, as in Figure 3.12. If the
transmission direction is x′ and the perpendicular direction is y′, then we can
decompose the incident electric field amplitude as the superposition

~E0 = x̂′E0 cos θ + ŷ′E0 sin θ. (3.31)

Therefore, the transmitted amplitude is

E ′0 = E0 cos θ (3.32)

and, since intensity is proportional to the amplitude squared, the transmitted
intensity is

I ′ = Icos2θ, (3.33)

which is Malus’s Law.

Figure 3.12: A polarizer transmits the component of light parallel to its trans-
mission axis.

Similarly, a photon polarized in the x-direction is a superposition of a photon
polarized in the parallel and perpendicular directions,

|x〉 = cos θ |x′〉+ sin θ |y′〉 . (3.34)

Therefore

|x 〉 M−→
{
|x′ 〉 , P = |cos θ|2 = cos2θ

|y′ 〉 , P = |sin θ|2 = sin2θ

}
, (3.35)

and hence the probability of transmission is cos2θ, which corresponds to Malus’s
law.
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Figure 3.13: Single photon incident on crossed polarizers. Transmission proba-
bilities correspond to Malus’s law.

Consider next a single photon incident on crossed polarizers, as in Figure
3.13. If the probability of transmission at the first polarizer is 1/2 and the prob-
ability of transmission at the second polarizer is cos2θ, then the probability of
transmission through both polarizers is (1/2)cos2θ. If the relative angle between
the two transmission axes is θ = π/2, then no photons get through. However,
if we insert a third polarizer between the previous two with transmission axis
at θ = π/4, one in eight photons gets through — adding an intermediate polar-
izer has increased the probability of transmission! These faint light, quantum
experiments correspond well to the analogous bright light, classical experiments.

3.2.10 Entangled States (and Schrödinger’s Kittens)

Pairs of quantum particles can be entangled so that a property of one, such as its
polarization (spin), is linked intimately with that of the other. Such entangled
or “twinned” pairs of particles are superpositions of states. Entangled states are
sometimes called Schrödinger’s kittens.

Consider positronium, a bound state of an electron e- and its antiparticle, the
positron e+. Its ground state has zero angular momentum and odd (negative)
parity. It is unstable and decays after about 10−10 s into a pair of entangled
photons, as in Figure 3.14. To conserve linear momentum, the photons must
have equal but opposite momenta. To conserve angular momentum, the spin
of the photons must also be equal but opposite, implying identical circular
polarization. To conserve parity, these two indistinguishable alternatives must
superpose with a minus sign to form the entangled state

|ψ〉 =
1√
2
|R〉 |R〉 − 1√

2
|L〉 |L〉 =

1√
2

(|RR〉 − |LL〉) , (3.36)

where the composite state |ab〉 = |a〉|b〉 = |a〉⊗|b〉 is a bilinear “tensor” product.
(Parity refers to the behavior of a system under coordinate inversion. If P is the
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parity operator, then P |RR〉 = |LL〉 and P |LL〉 = |RR〉, and so P |ψ〉 = −|ψ〉.)

Figure 3.14: Positronium (top) annihilates into a pair of right circular photons
(middle) or a pair of left circular photons (bottom). Both possibilities superpose
to form an entangled state. The photon emission is isotropic.

Although photons correspond to circular rather than linear light, they can
be analyzed into completely anticorrelated plane polarizations. Using Equation
3.28 to express circular polarizations as superpositions of linear polarizations,
the entangled state becomes

|ψ〉 =
i√
2
|H〉 |V 〉+

i√
2
|V 〉 |H〉 =

i√
2

(|HV 〉+ |V H〉) . (3.37)

Any linear polarization measurement induces a nonlocal collapse of the super-
position

|ψ 〉 M−→

{
|HV 〉 , P =

∣∣i/√2
∣∣2 = 1/2

|V H 〉 , P =
∣∣i/√2

∣∣2 = 1/2

}
, (3.38)

at least in the CI. After the measurement, one photon is horizontally polarized
and the other is vertically polarized.

3.2.11 EPR-Bohm Experiment

Consider an experiment first proposed in the 1930s by Albert Einstein, Boris
Podolsky, and Nathan Rosen (EPR) and modernized in the 1950s by David
Bohm. Suppose two observers, Alice and Bob, intercept entangled photons with
linear polarizers at a relative angle of θ, as in Figure 3.15. For each photon pair,
the two polarization measurements can be separated by a spacelike interval, so
far apart that not even light can join them. Each measurement can be reduced
to a binary digit, 1 or 0, indicating a photon transmitted or not. Given Alice
and Bob’s binary data for many measurements, we can calculate the correlation
function

C[θ] =
#matches

#trials
= P[match]. (3.39)

For θ = 0, Alice and Bob’s data are sequences of random digits, with 0 and
1 equally likely, but perfectly anticorrelated, in agreement with Equation 3.38,
so that C[0] = 0. For θ = π/2, Alice and Bob’s data are other sequences of
random digits, but now perfectly correlated, again in agreement with Equation
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Figure 3.15: Polarization cross correlations of entangled photon pairs.

3.38, so that C[π/2] = 1. To calculate the quantum prediction for the correlation
function at an arbitrary angle, we begin with basic probability theory. If the
conventional symbols ∧, ∨, |, denote “and”, “or”, “given”, then

P[match] = P[(A = 0 ∧B = 0) ∨ (A = 1 ∧B = 1)]

= P[A = 0]P[B = 0|A = 0] + P[A = 1]P[B = 1|A = 1]

= P[A = 0] (1− P[B = 1|A = 0]) + P[A = 1]P[B = 1|A = 1].
(3.40)

Hence by the Malus’s law results of Section 3.2.9,

C[θ] = P[match] =
1

2︸︷︷︸
no

(
1− cos2θ

)
︸ ︷︷ ︸

no

+
1

2︸︷︷︸
yes

cos2
[π

2
− θ
]

︸ ︷︷ ︸
yes

= sin2θ, (3.41)

which agrees with the extreme cases C[0] = 0 and C[π/2] = 1. For small angles,
sin θ ∼ θ � 1 and C[θ] ∼ θ2, so C[2θ] ∼ 4θ2 > 2θ2 = 2C[θ], or

C[2θ] > 2C[θ]. (3.42)

3.2.12 Bell’s Inequality

In 1964, John Bell demonstrated [1] that any classical (local realistic) explana-
tion for an EPR-Bohm-type experiment must produce weaker correlations (as
the angle θ increases), as we now show. If Alice and Bob’s polarizer are aligned,
so that their relative angle θ = 0, then their binary data are completely anti-
correlated, C[0] = 0. If Bob now rotates his polarizer through an angle θ > 0,
the misalignment introduces some matches into his data (by, say, flipping a 1
to a 0), so C[θ] > 0. If Alice next rotates her polarizer through the same angle,
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the realignment removes the matches from her data (by flipping a 1 to a 0), so
again C[0] = 0. If Bob next rotates his polarizer through an additional angle
θ > 0, the second misalignment once more introduces some matches into his
data, so again C[θ] > 0. However, if Alice had not rotated her polarizer, the
successive misalignments of Bob’s polarizer might have cancelled some matches
(by flipping a 0 to a 1 and then back to a 0 again). Hence

C[2θ] ≤ 2C[θ], (3.43)

which is Bell’s inequality.
The quantum prediction of Equation 3.42 contradicts the classical prediction

of Equation 3.43, and we must put nature to the test. By the 1980s, in a culmi-
nation of a series of increasingly better experiments by many research groups,
Alain Aspect and colleagues convincingly demonstrated that Bell’s inequality is
decisively violated in these kind of experiments. Consequently, something must
be wrong with Bell’s argument, as Bell himself anticipated.

The argument seems to rest on two assumptions: locality and reality. Local-
ity means no superluminal connections, so what happens here and now doesn’t
depend on what happens then and there. For example, we implicitly assume
locality when we reason that, when Bob rotates his polarizer, he alters his data
but not Alice’s, and vice versa. Reality means counterfactual definiteness, the
ability to consistently discuss what might have happened but did not. For ex-
ample, we reason that if Bob had rotated his polarizer through θ, then he would
have introduced some matches, and if he had then rotated through an additional
θ, then some of the matches might have cancelled. One of these two classically
reasonable assumptions must be wrong.

A popular nonlocal interpretation of the EPR-Bohm experiment is that forc-
ing a two-particle interpretation on an entangled particle pair is impossible.
While this may violate the spirit of special relativity, it does not violate the
letter of special relativity. In the CI, quantum randomness prevents using en-
tangled states for superluminal telegraphs, because any message introduced by
rotating one of the polarizers is found only in the correlations between possibly
remote and spacelike experiments. In the MWI, measurements don’t collapse
superpositions, nonlocally or otherwise, and locality is restored.

3.3 Feynman to Schrödinger [Optional]

The Schrödinger differential equation governs the continuous evolution of quan-
tum states. We derive the Schrödinger equation from a remarkable postulate
and sum-over-paths integral by Feynman.

3.3.1 Feynman Postulate

A photon surely doesn’t understand partial differential equations, like the wave
equation. An electron doesn’t understand the Schrödinger equation. How then
do they get from point to point?
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Figure 3.16: Classical light interferes when passing through a double slit in-
terferometer (left). A photon carries an imaginary arrow that rotates at the
frequency of the corresponding classical light (right). Adding the arrows at the
bottom for both paths (a → l → b and a → r → b) and squaring gives the
relative probability of detecting the photon.

Bright light passing through a double slit interferes constructively and de-
structively to form a pattern of light and dark stripes on a projection screen, as
in Figure 3.16. Faint light builds up the same pattern, photon by photon. The
double slit is a kind of interferometer, not unlike the Mach-Zehnder interferom-
eter, and we can model it in the same way. The left and right slits, l and r,
provide two paths through the device. Imagine that, along each path (through
each slit), a photon carries an arrow that rotates at the frequency of the corre-
sponding classical light. At the projection screen, vector addition of the arrows
for both possibilities, followed by the squaring of the resulting length, gives the
relative probability of finding a photon there. Representing the rotating arrows
by complex numbers of unit modulus whose arguments record rotations, we can
write the probability

P[a→ b] = |E [a→ b]|2, (3.44)

where the (normalized) electric field amplitude

E [a→ b] = eiϕ[l] + eiϕ[r], (3.45)

where the phases increase at the rate

dϕ

dt
= ω =

E

~
, (3.46)

where the photon energy E = hν = ~ω.
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In another manifestation of wave-particle duality, if we replace the (mass-
less) photons in the double slit experiment with (massive) electrons, a similar
interference pattern develops. We can analyze single electron interference using
the rotating arrows of the photon experiment, but at what rate do they rotate?
To match experiment, Feynman assumed the probability

P[a→ b] = |A[a→ b]|2, (3.47)

where the probability amplitude

A[a→ b] = eiϕ[l] + eiϕ[r], (3.48)

where the phases increase at the rate

dϕ

dt
= ω =

L

~
, (3.49)

where the classical Lagrangian is difference between the kinetic and potential
energies, L = T − V . (For a free particle, the potential energy V = 0, and
ω = T/~.) Thus, the phase accumulated by the electron as it travels along a
path,

ϕ =

∫
ω dt =

∫
L

~
dt =

S

~
, (3.50)

is the classical action for that path in units of the quantum of action, ~ = h/2π.
Hence, the electron double slit probability amplitude can be written

A[a→ b] = eiS[l]/~ + eiS[r]/~. (3.51)

3.3.2 Path Integral

If a slit has two holes, then the probability amplitude for an electron to get from
point a on one side to point b on the other is

A = A1 +A2, (3.52)

where A1 and A2 are, respectively, the amplitudes to travel via hole 1 and hole 2.
If we drill many more holes in the screen, as in Figure 3.17, the amplitude is
the sum

A =
∑
i

Ai. (3.53)

If we then add many more screens with holes, the amplitude is the double sum

A =
∑
i,j

Ai,j . (3.54)

If we increase the number of holes and screens until infinitely many screens have
infinitely many holes, so the screens aren’t there any more, the amplitude is

A =
∑

all paths

Apath, (3.55)
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Figure 3.17: Infinitely many screens with infinitely many holes implies infinitely
many paths.

where
Apath = eiSpath/~. (3.56)

More formally, the amplitude to go from point a to point b (in time t) is
called the quantum propagator, which we will write as

A[a→ b] =

∫ b

a

Dx[t] eiS[x[t]]/~, (3.57)

where the notation Dx[t] reminds us that this is a sum over all paths, a Feynman
path integral. (Just as real numbers are more numerous than countable numbers,
paths in a plane are more numerous than real numbers. In this sense, path
integrals are to real integrals what real integrals are to countable sums.)

3.3.3 Recovering Classical Mechanics

Since the action S = ~ϕ is an extremum for the classical path xc[t], it is station-
ary with respect to small variations from this path. Thus, the rotating arrows
for paths nearby the classical path will add constructively. Conversely, for ev-
ery distant path, we can find another distant path, by (say) adding an extra
wiggle to the path, with which it will interfere destructively. Hence, the main
contribution to the Feynman path integral is from paths near the classical path.

In fact, for a free (nonrelativistic) particle of a given speed v,

ω =
L

~
=
T

~
=

(1/2)mv2

~
∝ m. (3.58)

Hence, the greater the particle’s mass, the faster its arrow rotates, and the closer
it must be to the classical path to constructively interfere and make a significant
contribution to the total amplitude. For a classical object like a billiard ball,
the classical, extremal path is overwhelmingly preferred. In this way, Feynman’s
postulate implies the principle of extremal action in classical mechanics.
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3.3.4 Schrödinger Equation

Feynman’s sum-over-paths are not easy to do – or even to rigorously define.
However, like Feynman, we can sidestep this difficulty [5]. First, write the
probability amplitude to go from point a to point b as

A[a→ b] =

∫ b

a

Dx[t] eiS[a→b]/~. (3.59)

Next, choose a nonrelativistic Lagrangian, so the action over a path x[t] is

S[a→ b] =

∫ tb

ta

dt

(
1

2
m

(
dx

dt

)2

− V [x]

)
. (3.60)

Now introduce an intermediate point c. Since the action S is the time-integral
of the Lagrangian L, the action is additive

S[a→ b] = S[a→ c] + S[c→ b], (3.61)

and so

A[a→ b] =

∫ b

a

Dx[t] eiS[a→c]/~eiS[c→b]/~. (3.62)

This is equivalent to the amplitude to go from point a to point c times the
amplitude to go from point c to point b summed over all possible intermediate
positions xc, which can be expressed as the conventional integral

A[a→ b] =

∞∫
−∞

dxcA[a→ c]A[c→ b]. (3.63)

Define the wave function Ψ [f ] = A[a → f ] as the amplitude to be at point f .
Then

Ψ [b] =

∞∫
−∞

dxc Ψ [c]A[c→ b], (3.64)

or more explicitly

Ψ [xb, tb] =

∞∫
−∞

dxc Ψ [xc, tc]A[xc, tc;xb, tb]. (3.65)

If the points b and c are separated by an infinitesimal interval, this integral
equation reduces to a famous differential equation. Take {xb, tb} = {x, t + τ}
and {xc, tc} = {y, t} and let τ ↓ 0. Then the future wave function

Ψ [x, t+ τ ] =

∫ ∞
−∞

dy Ψ [y, t]A[y, t;x, t+ τ ]. (3.66)
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Since we need only consider a single path between points whose separation is
vanishing, the transition amplitude

A[y, t;x, t+ τ ] = N exp

[
i

~

∫ t+τ

t

dt

(
1

2
m

(
x− y
τ

)2

− V
[
x+ y

2

])]
, (3.67)

where N is a normalization constant to be defined below. Since
∫ t+τ
t

dt = τ , the
future wave function

Ψ [x, t+ τ ] = N

∫ ∞
−∞

dy Ψ [y, t] exp

[
im

2~τ
(x− y)

2

]
exp

[
− iτ

~
V

[
x+ y

2

]]
. (3.68)

If we define α = −im/2~τ , then by Euler’s theorem, the first exponential

exp
[
−i|α|(x− y)

2
]

= cos
[
|α|(x− y)

2
]
− i sin

[
|α|(x− y)

2
]

(3.69)

oscillates rapidly when the integration variable y is far from the independent
variable x. Since the positive and negative oscillations tend to cancel when
integrating, appreciable contributions to the integral occur only when y is near
x. To exploit this fact, we introduce the change of variable y = x + ξ, so that
dy = dξ and

Ψ [x, t+ τ ] = N

∫ ∞
−∞

dξ Ψ [x+ ξ, t] exp

[
im

2~τ
ξ2
]

exp

[
− iτ

~
V

[
x+

ξ

2

]]
. (3.70)

If y is near x, then ξ is small. More specifically, if we limit the argument of
the first exponential to one radian, so that mξ2/2~τ . 1, then ξ2 . 2~τ1/m
vanishes as τ ↓ 0. Hence, in powers of the small quantities, we expand to O[ξ2τ1]
to get

Ψ [x, t] + τ∂tΨ [x, t] ∼

N

∫ ∞
−∞

dξ

(
Ψ [x, t] + ξ∂xΨ [x, t] +

ξ2

2
∂2xΨ [x, t]

)
exp

[
im

2~τ
ξ2
](

1− iτ

~
V [x]

)
.

(3.71)
(We can contract the limits of integration to ±

√
2~τ/m = ±1/

√
|α| when

expanding in powers of ξ and reset them with impunity afterward thanks to the
rapid cancelling oscillations.) Since all the wave functions Ψ are now evaluated
at {x, t}, we can drop these arguments. If we define the Gaussian integrals

Gn =

∫ ∞
−∞

dξ ξne−αξ
2

=

∫ ∞
−∞

ξne−αξ
2

dξ (3.72)

with an implicit convergence factor δ, such that

e−αξ
2

= e−i|α|ξ
2

↔ e−(i+δ)|α|ξ
2

= e−i|α|ξ
2

e−δξ
2

, (3.73)

where δ ↓ 0 after the integration, then we can expand further to get

Ψ + τ∂tΨ ∼ NG0Ψ +NG1∂xΨ +
1

2
NG2∂

2
xΨ −

iτ

~
V NG0Ψ (3.74)
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plus vanishing terms. Comparing both sides of this equation, we must have
NG0 = 1, so the normalization constant N = 1/G0. Since G0 =

√
π/α, G1 = 0,

and G2 = G0/2α, we get

τ∂tΨ ∼
1

2

(
~τ
−im

)
∂2xΨ −

iτ

~
V Ψ (3.75)

or, multiplying both sides by i~/τ and taking the limit τ ↓ 0,

i~ ∂tΨ = − ~2

2m
∂2xΨ + V Ψ, (3.76)

which is the Schrödinger equation [7].
In 3+1 dimensions, the Schrödinger equation readily generalizes to

i~ ∂tΨ [~r, t] = − ~2

2m
∇2Ψ [~r, t] + V [~r ]Ψ [~r, t], (3.77)

where the Laplacian ∇2 = ∂2x + ∂2y + ∂2z . However, we will focus mainly on 1+1
dimensions.

3.4 Simple Schrödinger Solutions

We explore the nature and implications of the Schrödinger equation and its
simple solutions.

3.4.1 Analogies

Roughly speaking, Newton’s second law is to classical mechanics as Schrödinger’s
equation is to quantum mechanics. In 1+1 dimensions, classically, the accelera-
tion of a particle is proportional to a force Fx and inversely proportional to its
mass m, ax = Fx/m. The force is often derived from the negative gradient of a
potential energy function, Fx = −V ′[x]. The result is the worldline x[t]. This
familiar algorithm is contrasted with the Schrödinger equation in Table 3.1

Contrasting Maxwell’s electromagnetic waves with Schrödinger’s matter waves
is also instructive. Much is sometimes made of the fact that the Schrödinger
equation is explicitly complex. However, the complex Schrödinger equation can
be written as two coupled real equations. Furthermore, the real Maxwell equa-
tions, for the electric and magnetic fields in an electromagnetic wave, can be
combined into a single complex equation, as in demonstrated in Table 3.2.
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Table 3.1: Contrasting Newton with Schrödinger.

Newtonian Mechanics Quantum Mechanics

∂2t x = − 1
m∂xV i~ ∂tΨ = − ~2

2m∂
2
xΨ + V Ψ

x[0] = x0 Ψ [x, 0] = ψ0[x]

(∂tx)[0] = v0
∫
dx
∣∣Ψ [x, 0]

∣∣2 = 1

x[t] Ψ [x, t]

Table 3.2: Contrasting Maxwell with Schrödinger.

Electromagnetic Waves Matter Waves

~F = ~E + ic ~B ∈ C3 Ψ = ΨR + iΨI ∈ C

source free potential free

∂2x ~F = 1
c2 ∂

2
t
~F i~ ∂tΨ = − ~2

2m∂
2
xΨ

real & uncoupled real & coupled

∂2x
~E = 1

c2 ∂
2
t
~E −~ ∂tΨI = − ~2

2m∂
2
xΨR

∂2x ~B = 1
c2 ∂

2
t
~B +~ ∂tΨR = − ~2

2m∂
2
xΨI

energy density probability density

|F|2 = E2 + c2B2 |Ψ |2 = ΨR
2 + ΨI

2

dispersion-less solutions dispersion-full solutions
~F [x, t] = (ŷ + iẑ)A sin[kx− ωt] Ψ [x, t] = A exp[i(kx− ωt)]
ω = kc ~ω = (~k)2

2m
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3.4.2 Schrödinger Wave Equation Simply

Schrödinger captured wave-particle duality in a probability wave equation. In
1+1 dimensions {x, t}, recall that the energy and momentum of photons are
proportional to their temporal and spatial frequencies,

E = ~ω, (3.78a)

p = ~k, (3.78b)

and assume these also hold for matter waves. Further assume a complex sinu-
soidal wave

Ψ [x, t] = Nei(kx−ωt), (3.79)

where eiθ = cos θ+i sin θ and i =
√
−1. The rates of change of the wavefunction

with time and space are

∂tΨ = −iω Ψ, (3.80a)

∂xΨ = +ik Ψ, (3.80b)

or by Eq. 3.78,

+i~ ∂tΨ = E Ψ, (3.81a)

−i~ ∂xΨ = pΨ, (3.81b)

so the space and time derivatives act like multiplication by energy and momen-
tum.

If a particle of mass m moves in a potential energy V [x] at speed v � c,
then its energy

E =
p2

2m
+ V. (3.82)

Multiply by the wavefunction on the right to get

EΨ =
p2

2m
Ψ + V Ψ, (3.83)

or using Eq. 3.81,

+ i~ ∂tΨ =
(−i~∂x)2

2m
Ψ + V Ψ, (3.84)

which expands to

i~ ∂tΨ = − ~2

2m
∂2xΨ + V Ψ. (3.85)

In Leibniz notation

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ V [x]Ψ, (3.86)

and in 3+1 dimensions {x, y, z, t}

i~ ∂tΨ = − ~2

2m

(
∂2xΨ + ∂2yΨ + ∂2zΨ

)
+ V [x, y, z]Ψ. (3.87)
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3.4.3 Probability Conservation

Technically, the wave function Ψ [x, t] is the probability density amplitude for a
particle to be at a position x at a time t, and the absolute square of the wave
function |Ψ |2 is the corresponding probability density. Thus, in 1+1 dimensions,

|Ψ |2 is a probability per unit length, which means that the probability of finding
the particle in the interval dx about x at time t is

dP = dx|Ψ |2, (3.88)

and the probability of finding the particle between x1 and x2 at time t is

P[x1 < x < x2] =

∫ x2

x1

dx |Ψ |2, (3.89)

provided that we normalize Ψ [x, t] by requiring

1 =

∫ ∞
−∞

dxΨ∗Ψ =

∫ ∞
−∞

dx |Ψ |2, (3.90)

bcause the particle must certainly be found somewhere!
The Schrödinger equation conserves probability, a property called unitarity.

For example, if

I[t] =

∫ ∞
−∞

dxΨ [x, t]
∗
Ψ [x, t], (3.91)

then the time derivative

İ =

∫ ∞
−∞

dx (Ψ∂tΨ
∗ + Ψ∗∂tΨ) . (3.92)

But from the Schrödinger equation

∂tΨ = − ~
2mi

∂2xΨ +
V

i~
Ψ, (3.93)

and by its complex conjugate

∂tΨ
∗ = +

~
2mi

∂2xΨ
∗ − V

i~
Ψ∗. (3.94)

Hence, by substitution,

İ =
~

2mi

∫ ∞
−∞

dx
(
Ψ∂2xΨ

∗ − Ψ∗∂2xΨ
)
. (3.95)

Adding and subtracting (∂xΨ)(∂xΨ
∗) in the integrand yields

İ =
~

2mi

∫ ∞
−∞

dx ∂x (Ψ∂xΨ
∗ − Ψ∗∂xΨ) . (3.96)

Since integration and differentiation are inverse operations,

İ =
~

2mi
(Ψ∂xΨ

∗ − Ψ∗∂xΨ) |∞−∞ = 0, (3.97)

because if Ψ did not vanish at infinity, it could not be square normalized. Hence,
if Ψ [x, 0] is normalized so that I[0] = 1 initially, then I[t] = 1 always.
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3.4.4 Schrödinger Wave Packets

Because the Schrödinger equation is linear in Ψ , any superposition of plane wave
solutions is also a solution. Hence, we can form the physical (and normalizable)
wave packet

Ψ [x, t] =

∫ ∞
−∞

dpϕ[p]ei(px−E[p]t)/~, (3.98)

where the plane wave coefficients ϕ[p] are essentially the Fourier transform, or
momentum space representation of the initial wave packet

Ψ [x, 0] =

∫ ∞
−∞

dpϕ[p]eipx/~. (3.99)

Figure 3.18: A wave packet that is static in momentum space (left) but evolving
in position space (right).

If ϕ[p] is a Gaussian function of width ∆p centered on p0, then Ψ [x, t] is another
Gaussian with width ∆x centered on p0t/m, as in Figure 3.18. By Fourier’s
theorem, large spatial frequencies k = p/~ are required to synthesize a spa-
tially narrow peak, and hence the widths of the wave packet in momentum and
position space are inversely related, ∆p∆x > ~/2, which in quantum physics
is known historically as the Heisenberg uncertainty principle but in reality is
another example of quantum indeterminacy. Recall that knowing the circular
polarization of a photon renders its linear polarization indeterminate, and vice
versa. Similarly, knowing the position (∆x = 0) of a particle renders its momen-
tum (∆p =∞) indeterminant, and vice versa. Circular and linear polarization
are incompatible observables, as are position and momentum.

3.4.5 Separation of Variables

Notice that the plane wave solutions can be written as a product of a function
of x times a function of t, ei(kx−ωt) = eikxe−iωt. We seek the most general such
separable solution,

Ψ [x, t] = X[x]T [t]. (3.100)
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Substituting into the Schrödinger equation, partial derivatives simplify to total
derivatives, ∂tΨ = XṪ and ∂2xΨ = X ′′T , so that

i~XṪ = − ~2

2m
X ′′T + V XT. (3.101)

Dividing by the product XT yields

i~
Ṫ

T
= − ~2

2m

X ′′

X
+ V [x], (3.102)

the left side of which is a function of t alone, and the right side is a function of
x alone. This is only possible if both sides are constant, else by varying t, for
example, we could change the left side without changing the right side, thereby
breaking the equality. The common separation constant has the dimensions of
energy, and we denote it by E. In summary,

f [t] = g[x] = constant = E. (3.103)

Thus, the original partial differential equation separates into two ordinary dif-
ferential equations. The t-equation

i~
Ṫ

T
= E (3.104)

is exactly integrable ∫ T [t]

T [0]

i~
dT

T
=

∫ t

0

E dt, (3.105)

and yields
T [t] = T [0]e−iEt/~. (3.106)

However, the x-equation

− ~2

2m

X ′′

X
+ V [x] = E (3.107)

or

− ~2

2m
X ′′ + V [x]X = EX (3.108)

involves the generic potential energy function V [x], which must be specified
before the equation can be solved.

3.4.6 Hamiltonian Eigenfunctions

Sometimes Equation 3.76 is called the time-dependent Schrödinger equation and
Equation 3.107 is called the time-independent Schrödinger equation. The rela-
tionship between the two equations can be elucidated by defining the following
differential operators. The Hamiltonian is

Hop =
p2op
2m

+ V, (3.109)
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where the momentum operator is

pop = −i~ ∂x = −i~ ∂

∂x
. (3.110)

The energy operator is

Eop = +i~ ∂t = +i~
∂

∂t
. (3.111)

In 3+1 dimensions, where

⇒
p op =


Eop

px,op
py,op
pz,op

 =


+i~ ∂t
−i~ ∂x
−i~ ∂y
−i~ ∂z

 = i~


+∂t
−∂x
−∂y
−∂z

 (3.112)

is a hint of relativity. However, unlike the classical wave equation, for example,
the Schrödinger equation is manifestly nonrelativistic, as it treats space and
time asymmetrically, involving as it does a first derivative in time ∂t but a
second derivative in space ∂2x.

If we introduce the more common notation ψE [x] = X[x] and employ the
differential operators, then the time-dependent Schrödinger becomes

HopΨ = EopΨ, (3.113)

and the time-independent equation becomes

HopψE = EψE , (3.114)

where
Ψ [x, t] = ψE [x]e−iEt/~. (3.115)

Equation 3.114 implies that ψE [x] is an eigenfunction of the Hamiltonian Hop

with eigenvalue E. Both ψE [x] and E may be chosen to be real (rather than
complex). The ψE [x] are called stationary states because the corresponding
probabilty density is independent of time,

|Ψ [x, t]|2 = ψE [x]e−iEt/~ψE [x]e+iEt/~ = ψE [x]
2
. (3.116)

Nothing happens in a stationary state. Furthermore, the ψE [x] form a com-
plete set of solutions, as the most general solution can be written as a linear
superposition

Ψ̃ [x, t] =
∑
E

cEΨ [x, t] =
∑
E

cEψE [x]e−iEt/~, (3.117)

where the complex coefficients cE are determined by the initial superposition

Ψ̃ [x, 0] =
∑
E

cEψE [x]. (3.118)

(In a similar way, any vibration of a guitar string can be written as a linear
superposition of normal mode motions.)

In summary, the Hamiltonian eigenfunctions ψE [x] are stationary states of
definite energy forming a complete set of solutions to the Schrödinger equation.
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3.4.7 Qualitative Solutions

Developing heuristic rules for sketching the Hamiltonian eigenfunctions ψE [x]
for various potential energy functions V [x] is instructive. We begin by rewriting
the eigenfunction-eigenvalue Equation 3.114 as

ψE
′′ = −2m

~2
(E − V [x])ψE = −2m

~2
T [x]ψE . (3.119)

If the kinetic energy T [x] = E − V [x] > 0, then

ψE [x] ∼ e±ik[x]x, (3.120)

at least for small ranges of x, where the spatial frequency

2π

λ[x]
= k[x] =

√
+

2m

~2
T [x]. (3.121)

Conversely, if the kinetic energy T [x] < 0, then

ψE [x] ∼ e±κ[x]x, (3.122)

at least for small ranges of x, where the decay constant

κ[x] =

√
−2m

~2
T [x]. (3.123)

Thus, in the classically allowed regions of positive kinetic energy, T > 0,
the eigenfunctions are sinusoidal with spatial frequency k ∝

√
+T . In the clas-

sically forbidden regions of negative kinetic energy, T < 0, the eigenfunctions
are sinusoidal with decay constant κ ∝

√
−T . Eigenfunctions bend toward axis

in allowed regions and away from axis in forbidden regions. In addition, large
positive kinetic energy corresponds to fast classical motion and hence low proba-
bility of being there, which suggests (but doesn’t guarantee) small eigenfunction
amplitude. Conversely, small positive kinetic energy corresponds to slow clas-
sical motion and hence large probability of being there, which suggests large
eigenfunction amplitude. These heuristics are illustrated in Figure 3.19.

If the potential energy function V [x] is symmetric, then the eigenfunctions
ψE [x] are either symmetric or antisymmetric. To prove this, suppose V [−x] =
V [x]. This implies Hop[−x] = Hop[x], and so both Hop[x]ψE [x] = EψE [x]
and Hop[x]ψE [−x] = EψE [−x]. Assuming the eigenvalues are nondegenerate,
this means that ψE [x] and ψE [−x] must be proportional to each other. If the
proportionality constant is K, then ψE [−x] = KψE [x] = K2ψE [−x], and so
K2 = 1. Further, since the eigenfunctions and eigenvalues may be assumed
real, K = ±1. Therefore ψE [−x] = ±ψE [x].

If the potential energy function V [x] is continuous – or has only finite discon-
tinuities – both the eigenfunction ψE [x] and its derivative ψE

′[x] are continuous.
To prove this, suppose the V [x] has a finite discontinuity at x0. Let Vc[x] be a
continuous version of V [x], which is the same everywhere, except in the interval
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Figure 3.19: Generic potential energy function V [x] and one of its energy eigen-
functions ψE [x]. Eigenfunctions bend toward axis in classically allowed regions
and away from axis in classically forbidden regions. Large amplitude and large
wavelength (small spatial frequency) tend to occur together.

{x0 − δ, x0 + δ}, where it linearly interpolates across the discontinuity. The
corresponding eigenfunction ψc[x] obeys

ψc
′′ = −2m

~2
(E − Vc[x])ψc. (3.124)

Integrating both sides, we get

ψc
′[x0 + δ]− ψc′[x0 − δ] = −2m

~2

∫ x0+δ

x0−δ
dx(E − Vc[x])ψc[x]. (3.125)

In the limit δx → 0, both Vc → V and ψc → ψ, and so, using the mean value
theorem for integrals,

ψ′[x0 + δ]− ψ′[x0 − δ] = −2m

~2
(2δ)

(
E − V [x0 + δ] + V [x0 − δ]

2

)
ψ[x0]→ 0,

(3.126)
provided V [x] is bounded. Hence, ψ′[x] (and all the more ψ[x]) is continuous at
x0.

3.4.8 Particle in a Box

Consider the canonical example of a particle confined to a semi-rigid box, per-
haps an electric charge confined to a vacuum tube by electric fields, as in Figure
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3.20. Potential energy V [x] (in Joules) is proportional to the electric potential
ϕ[x] (in volts), V = qϕ. Force Fx[x] (in Newtons) is the negative gradient of
the potential energy, Fx = −dV/dx.

Figure 3.20: A positive charge trapped in a vacuum tube by electric fields.

Figure 3.21: Finite square well with energy eigenvalues E and corresponding
eigenfunctions ψE . The nondiverging, normalizable, physical solutions ψn are
alternately symmetric or antisymmetric.

Idealize the confining potential energy function V [x] by a finite square well,
as in Figure 3.21. Imagine sweeping the energy E from the bottom to the
top of the square well and, for each energy, numerically integrating the time-
independent Schrödinger equation from left to right. Beginning with a very
small wave function of very small slope on the far left, the wavefunction increases
exponentially in the classically forbidden region on the left, joins continuously
and smoothly to sinusoidal oscillations in the classically allowed region in the
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center, and joins continuously and smoothly to some superposition of increasing
and decreasing exponentials in the classical forbidden region on the right. As
the energy E = T [x] + V [x] increases, the exponential decay constants decrease
and the sinusoidal spatial frequency increases. Only for certain, discrete en-
ergies En does the wave function vanish exponentially both left and right and
allow nondiverging, normalizable, physical solutions. In this way, a continuous
differential equation gives rise to discrete or quantized energies.

3.4.9 Particle in a Rigid Box

The rigid box is a limiting case of the particle-in-the-box model as the depth of
the finite square well increases until it becomes an infinite square well. In this
instructive special case, our qualitative methods become quantitative!

Figure 3.22: Infinite square well with normalized eigenfunctions superimposed
on corresponding energy eigenvalues.

As the depth of the well increases, the exponential decay constants in the
classically forbidden region increase until, in the limit, the eigenfunction decays
immediately, as in Figure 3.22. Thus, the physical, normalizable eigenfunctions
are sinusoids with nodes at each wall of the box and an integer quantum number
of half wavelengths in the box,

n
λn
2

= L, (3.127)

where L is the length of the box. By the de Broglie relation pn = h/λn and the
energy relation En = p2n/2m, the set of allowed energies or energy spectrum of
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a particle inside the rigid box is

En = n2E1, (3.128)

where the lowest or ground state energy is

E1 =
h2

8mL2
=

π2~2

2mL2
. (3.129)

(The term “spectrum” comes from spectroscopy, where the spectral lines of
an element arise from transitions among different allowed energy levels.) The
corresponding eigenfunctions are, by inspection, the boxed sinusoids

ψn[x] =

{
N sin[nπx/L], x ∈ [0, L]

0, x /∈ [0, L]

}
, (3.130)

where N =
√

2/L is a normalization constant determined by the requirement

1 =

∫ ∞
−∞

dx|ψn|2 =

∫ L

0

dxψ2
n. (3.131)

Note how the infinite discontinuities in the potential energy function at the walls
of the box kink the eigenfunctions, so that while ψn[x] is continuous, ψn

′[x] is
not.

Figure 3.23: For large quantum numbers, the quantum probability distribution
of a particle in a rigid box corresponds to the classical probability distribution.

Particle-in-a-box states of small quantum number n do not have classical
analogues. In fact, such eigenfunctions are very wave-like, dominated by nodes
near which the probability of finding the particle is near zero. However, we can
recover a classical correspondence by considering states of large quantum num-
ber, say n = 20, as in Figure 3.23. Classically, a particle in the box with positive
kinetic energy would bounce back and forth between the walls at constant speed.
It would equally likely be found anywhere, and its position would have a uniform
detection probability distribution ρc[x]. The corresponding squared-sinuosidal
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quantum probability distribution |ψ20|2 oscillates rapidly. However, any macro-
scopic detector would average over these oscillations to obtain an effectively
uniform distribution.

Note that the particle could not be in the box at rest, because then its (zero)
momentum and position would both be known simultaneously, in violation of
the Heisenberg uncertainty principle.

3.4.10 Escape from the Box: Negative Kinetic Energy?

As we have seen, if a particle is confined to a semi-rigid box, in a stationary
state of definite energy, its eigenfunction “leaks” into the classically forbidden
region. Thus, when in its ground state, a nonzero probability exists to observe
the particle just outside the box, say to the left,

P[x ≤ 0] =

∫ 0

−∞
dx|ψ1[x]|2 > 0. (3.132)

But in this region, classically, the particle would have negative kinetic energy –
whatever that might mean. Can we observe its negative kinetic energy?

No! Localizing the particle’s position to just outside the box delocalizes its
momentum, and hence also its kinetic energy, thereby obscuring the observation,
as we now argue. Suppose we localize the particle just outside the box, so that
it is within the “e-folding” distance of the exponential tail of |ψ1[x]|2, a distance
∆x ∼ 1/κ from the box. The uncertainty in its momentum must therefore be

∆p ≥ ~
2∆x

∼ ~
2
κ =

1

2

√
−2mT. (3.133)

But if −T = p2/2m, then the consequent uncertainty in the kinetic energy is

−∆T =
p

m
∆p &

√
−2mT

m

1

2

√
−2mT = −T, (3.134)

which is at least as large as the negative kinetic energy we had hoped to measure
in the first place.

3.4.11 Escape from the Box: STM!

Does the eigenfunction’s exponential tail into the classically forbidden region
have practical significance? Yes! It is the basis of the exquisitely sensitive
Scanning Tunneling Microscope (STM). An electron in a solid is like a particle
in a semi-rigid box. It moves in a finite-square-well-type potential, as indicated
in Figure 3.24. An electron in the tip of an STM moves in a similar potential.
When the two potentials are brought near one another, the exponential tail of
a joint eigenfunction can allow an electron to “leak” or “tunnel” from sample
to probe across the classically forbidden region. (This is the quantum analogue
of frustrated internal reflection’s evanescent wave, which was the basis of our
beam splitter in Section 3.1.1.)
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Figure 3.24: Electron confined to sample (top) moves in finite square well po-
tential. However, when an STM probe is near (bottom), it can “tunnel” across
the classically forbidden region.

If the eigenfunction ψ[x] = ψ[0]e−κx decays exponentially, then the prob-

ability density ψ[x]
2

= ψ[0]
2
e−2κx does so also. Consequently, the tunnelling

current
I[x] = I[0]e−2κx ∼ I[0] (1− 2κx) (3.135)

is exponentially sensitive to the tiny gap distance x . 1/κ and, as the probe
scans the surface, then the relative change in current

∆I

I[0]
=
I[0]− I[x]

I[0]
∼ 2κx (3.136)

is proportional to the gap distance.
For typical energies of |T | ∼ 4 eV, from Equation 3.123, the exponential

decay constant

κ =

√
2m |T |
~2

=

√
2 (mc2) |T |

(~c)2
∼
√

2 (0.5 MeV) 4 eV(
2 keV · Å

)2 =
1

1Å
. (3.137)

Thus, if the gap distance is x ∼ 1Å, then the relative change in current is of
the order ∆I/I[0] ∼ 2(1/Å)(1Å) = 2, which is easily detected. As the STM
scans an atomic surface in a raster pattern, the tunneling current as a function of
position reflects the topography of the surface. Thanks to the exponential decay
of the electron wavefunctions in the gap, fine STM tips are readily fabricated, as
almost all current flows through the single atom in the tip nearest the surface.
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3.4.12 Quantum Tunneling in NH3

The ammonia molecule NH3 provides another fascinating example of quantum
tunneling. NH3 is shaped like a pyramid, with a large N molecule at the apex
and a triangle of small H atoms at the base, as depicted in Figure 3.25.

Figure 3.25: By quantum tunneling, the pyramidal ammonia molecule can spon-
taneously invert, like an umbrella catching a gust of wind.

In addition to electronic, translational, vibrational, and rotational degrees
of freedom, NH3 has an additional degree of freedom: the base of H atoms can
be on one side of the N atom or the other. Classically, a potential energy barrier
prevents such an “inverting umbrella” transition, which we can simply model
with a finite square barrier inside an infinite square well, as in Figure 3.26. The
potential barrier reflects the repulsion between the N and the H atoms; the
potential side walls reflect the chemical bonding, which insures the molecule’s
cohesion; the two minima represent the two stable configurations. Quantumly,
the molecule can tunnel between these two configurations, and it does so spon-
taneously, in the absence of any forcing.

We can infer the double-well energy eigenvalues, or spectrum, and the corre-
sponding energy eigenfunctions, by beginning with a broad infinite square well,
which is exactly solvable, and growing a central barrier to infinity, where it
breaks the broad infinite square well into a pair of narrow infinite square wells,
which are similarly exactly solvable, as in Figure 3.27. As the barrier height
grows from zero, pairs of symmetric and antisymmetric eigenvalues of the broad
infinite square well converge to a single degenerate eigenvalue. Conversely, as
the barrier height shrinks from infinity, each eigenvalue of the pair of infinite
square wells splits into a pair of eigenvalues.

When the barrier height is nonzero, we will denote the first two eigenfunc-
tions, which are necessarily symmetric and antisymmetric, by ψs and ψa and
the corresponding eigenvalues by Es and Ea. When the barrier height is high,
as in the top right of Figure 3.27, the sum of these eigenfunctions

ψL[x] =
1√
2

(ψs[x] + ψa[x]) (3.138)

can represent the ammonia molecule with the H base on the left of the N, as
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Figure 3.26: We idealize the actual potential energy function (top) by a finite
square barrier inside an infinite square well (bottom). The coordinate xH locates
the base plane containing the hydrogens.

the sum nearly vanishes on the right, while the difference

ψR[x] =
1√
2

(ψs[x]− ψa[x]) (3.139)

can represent ammonia with the H base on the right, as the difference nearly
vanishes on the left.

Suppose, at t = 0, the H base is on the left, so that the wavefunction for our
ammonia model (neglecting its other degrees of freedom) is

Ψ [x, 0] = ψL[x]. (3.140)

According to the Equation 3.117 general Schrödinger solution, to find the wave
function at later times we must expand the initial state as a linear combination
of stationary states of definite energy

Ψ [x, 0] =
1√
2

(ψs[x] + ψa[x]) , (3.141)

using Equation 3.138, and thereafter the complex phase of each such state ro-
tates at a frequency proportional to the corresponding energy

Ψ [x, t] =
1√
2

(
ψs[x]e−iEst/~ + ψa[x]e−iEat/~

)
. (3.142)



3.4. SIMPLE SCHRÖDINGER SOLUTIONS 105

Figure 3.27: Tunneling eigenvalues and eigenfunctions interpolated from ex-
treme infinite square wells. The barrier height Vb-axis is nonlinear.

(This is an especially simple case of the the wave packet preparation and evo-
lution recipe of Equations 3.98 and 3.99.) It can be written as

Ψ [x, t] =
1√
2
e−iEt/~(ψs[x]e+iωt/2 + ψa[x]e−iωt/2), (3.143)

where the average energy E = (Es+Ea)/2 and the energy splitting ~ω = Ea−Es.
Consequently, the probability density

|Ψ [x, t]|2 =
1

2

(
ψs[x]

2
+ 2ψs[x]ψa[x] cos[ωt] + ψa[x]

2
)

(3.144)

sloshes back∣∣∣∣Ψ [x, 2π

ω

]∣∣∣∣2 =
1

2

(
ψs[x]

2
+ 2ψs[x]ψa[x] + ψa[x]

2
)

= ψL[x]
2

(3.145)

and forth∣∣∣Ψ [x, π
ω

]∣∣∣2 =
1

2

(
ψs[x]

2 − 2ψs[x]ψa[x] + ψa[x]
2
)

= ψR[x]
2
. (3.146)

sinusoidally at the frequency ω.
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NH3 is a polar molecule, as the N attracts the H electrons creating an electric
dipole moment pointing from the apex perpendicular to the base. Consequently,
due to quantum tunneling, NH3 can emit or absorb electromagnetic radiation
at a frequency (∼ 24 GHz) proportional to the energy splitting (∼ 10−4 eV) and
in the microwave (∼ 1.25 cm) region of the electromagnetic spectrum. This is
the basis of the ammonia maser. (The word MASER was originally an acronym
for “Microwave Amplification by the Stimulated Emission of Radiation”).

3.4.13 Band Structure of Solids

What if we take three infinite square wells and drop the barriers between them?
Each energy eigenvalues splits into three, as in Figure 3.28. Thus, the spectrum
of three semi-rigid boxes close together consists of triplets of allowed energies
separated by bands of forbidden energies.

What if we have Avogadro’s number NA ∼ 1024 such boxes? The spectrum
then consists of effectively continuous bands of allowed energies separated by
bands of forbidden energies. This band structure is critical to understanding the
physics of solids, including insulators, conductors, and semiconductors.

Figure 3.28: Interpolating the energy eigenvalues and corresponding eigenfunc-
tions for three boxes close together.

3.5 Quantum Harmonic Oscillator

We quantitatively solve the Schrödinger equation for a simple harmonic oscilla-
tor, the most important single example, which is at the core of quantum field
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theory, the union of special relativity and quantum mechanics.

3.5.1 Classical Harmonic Oscillator

Consider a simple (or ideal) harmonic oscillator, a mass m connected to a
Hooke’s law spring of stiffness k. If the displacement is x, then the linear
restoring force is Fx = −kx, and the quadratic (or parabolic) potential energy
function is

V [x] =
1

2
kx2. (3.147)

The equation of motion follows from Newton’s second law ax = Fx/m, namely

∂2t x = − 1

m
∂xV (3.148)

or

ẍ = − k
m
x. (3.149)

This has the well-known sinusoidal solution

x[t] = A sin[ωt+ ϕ], (3.150)

provided the angular frequency ω =
√
k/m. The constants A and ϕ depend on

the initial conditions.
Real springs, of course, aren’t so simple. If you stretch them too far, for

example, they break. However, almost any potential energy function is approx-
imately parabolic near a local minimum, as we now show. If the potential V [x]
has a minimum at x0, expand in a Taylor series to get

V [x] = V [x0] + V ′[x] (x− x0) +
1

2
V ′′[x0](x− x0)

2
+ · · · . (3.151)

Since V ′[x0] = 0, near x0

V [x]− V [x0] ∼ 1

2
V ′′[x0](x− x0)

2
(3.152)

or

δV ∼ 1

2
k(δx)

2
, (3.153)

where k = V ′′[x0]. Thus, the simple harmonic oscillator is a canonical system
of widespread importance.

3.5.2 Heuristic Spectrum

Heuristically, the Eq. 3.128 and Eq. 3.129 energy spectrum for a rigid box fol-
lows from kinetic energy E = p2/2m, the de Broglie relation p = h/λ, and
quantized waves nλ/2 = L to give E ∝ n2/L2, where the length L is the dis-
tance between the classical turning points. If the latter increases with energy,
the quadratically increasing excited energy levels will fall until they bunch up
instead of spread out, as in Fig. 3.29. The energy levels are equally spaced only
for the intermediate case of the simple harmonic oscillator.
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Figure 3.29: Energy spectra for rigid box, simple harmonic oscillator, and “1D
hydrogen atom” have increasing, constant, and decreasing energy level separa-
tions.

3.5.3 Dimensionless Variables

The parallel quantum problem is to find square normalizable eigenfunctions
ψ[x] and the corresponding eigenvalues E for the quantum harmonic oscillator
Hamiltonian. This means solving the time independent Schrödinger equation

− ~2

2m
ψ′′ +

1

2
kx2ψ = Eψ, (3.154)

subject to the constraint

1 =

∫ ∞
−∞

dxψ2. (3.155)

This famous problem is nontrivial. However, we will follow in the footsteps of
those who have solved such problems before us.

A good first step is to introduce dimensionless variables. For the position
scale, let x0 be the classical turning point for a harmonic oscillator with energy
E0 = ~ω/2. Thus

1

2
~ω = E0 = T + V =

1

2
mv2 +

1

2
kx2 = 0 +

1

2
kx20, (3.156)

which implies

x0 =

√
~ω
k

=

√
~
mω

. (3.157)

Use this scale to define a dimensionless position

ξ =
x

x0
(3.158)
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and a dimensionless eigenfunction

ϕ[ξ] =
√
x0ψ[x]. (3.159)

Then the derivatives transform like

ψ′ =
dψ

dx
=

1
√
x0

dϕ

dx
=

1
√
x0

dξ

dx

dϕ

dξ
=

1

x03/2
ϕ′ (3.160)

and

ψ′′ =
dψ′

dx
=

1

x03/2
dϕ′

dx
=

1

x03/2
dξ

dx

dϕ′

dξ
=

1

x05/2
ϕ′′, (3.161)

where, as usual, the prime denotes derivative with respect to the argument (x or
ξ, as appropriate). Putting this altogether, our problem transforms to solving

ϕ′′ =
(
ξ2 − ε

)
ϕ (3.162)

subject to the constraint

1 =

∫ ∞
−∞

dξ ϕ2, (3.163)

where the dimensionless energy

ε =
E

E0
. (3.164)

3.5.4 Asymptotic Behavior

When ξ is large, we can neglect ε and write

ϕ′′ ∼ ξ2ϕ, (3.165)

which has the approximate exponential solutions

ϕ ∼ ±e± 1
2 ξ

2

. (3.166)

To verify this, note that

ϕ′ ∼ ξe± 1
2 ξ

2

(3.167)

and
ϕ′′ ∼

(
±1 + ξ2

)
e±

1
2 ξ

2

∼ ξ2ϕ. (3.168)

Since only the decaying exponential is square normalizable, strip off the
asymptotic behavior and assume solutions of the form

ϕ[ξ] = h[ξ]e−
1
2 ξ

2

, (3.169)

where we expect the functions h[ξ] to be polynomials. Then

ϕ′ = (h′ − ξh) e−
1
2 ξ

2

(3.170)

and
ϕ′′ =

(
h′′ − 2ξh′ +

(
ξ2 − 1

)
h
)
e−

1
2 ξ

2

. (3.171)

With these substitutions, the exponentials cancel, and our differential equation
becomes

h′′ − 2ξh′ + (ε− 1)h = 0. (3.172)
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3.5.5 Power Series Solution

We write our solution as a power series

h[ξ] = a0 + a1ξ + a2ξ
2 + a3ξ

3 + · · · =
∞∑
m=0

amξ
m, (3.173)

and its first derivative

h′[ξ] = 0 + a1 + 2a2ξ + 3a3ξ
2 + · · · =

∞∑
m=0

mamξ
m−1, (3.174)

and its second derivative

h′′[ξ] = 0 + 0 + 2a2 + 3 · 2a3ξ + · · · =
∞∑
m=0

m (m− 1) amξ
m−2. (3.175)

Substituting these power series into Equation 3.172 gives

∞∑
m=0

m (m− 1) amξ
m−2 − 2ξ

∞∑
m=0

mamξ
m−1 + (ε− 1)

∞∑
m=0

amξ
m = 0. (3.176)

By shifting the dummy index m→ m+2 in first summation, we can consolidate
this as

∞∑
m=0

((m+ 2) (m+ 1) am+2 − 2mam + (ε− 2) am) ξm = 0. (3.177)

The only way this can be true for all ξ is if the coefficients are all zero, which
means

am+2 =
2m+ 1− ε

(m+ 1) (m+ 2)
am. (3.178)

This recursion relation separately links coefficients of odd and even indices.
It thereby specifies two independent solutions, corresponding to the two arbi-
trary constants determined by the initial conditions of our second-order differ-
ential equation. The constant a0 specifies symmetric solutions h[−ξ] = h[ξ]
in even powers of ξ, while the constant a1 specifies antisymmetric solutions
h[−ξ] = −h[ξ] in odd powers of ξ. This is consistent with our expectation that
symmetric potentials V [−x] = V [x] imply eigenfunctions of definite symmetry
ψ[−x] = ±ψ[x].

3.5.6 Power Series Diverges

For large m� 1, the recursion relation simplifies to

am+2 ∼
2m

m ·m
am =

am
m/2

. (3.179)
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This has the approximate solution

am ∼
K

(m/2)!
, (3.180)

for some constant K, because it implies

am+2 ∼
K

(m/2 + 1)!
=

K

(m/2 + 1) (m/2)!
∼ am
m/2 + 1

∼ am
m/2

. (3.181)

However, this means

h[ξ] ∼
∑
m�1

K

(m/2)!
ξm = K

∑
m�1

(
ξ2
)m/2

(m/2)!
∼ K

∞∑
l=0

(
ξ2
)l
l!

= Keξ
2

. (3.182)

Thus
ϕ[ξ] = h[ξ]e−

1
2 ξ

2

∼ K̃e+ 1
2 ξ

2

, (3.183)

for some constant K̃, which is precisely the divergent, unnormalizable behavior
we don’t want.

3.5.7 Truncate Series

The only way to avoid nonphysical solutions is for the infinite power series to
terminate. This can happen if the numerator of the recursion relation vanishes
for some m = n <∞, in which case an+2 = 0 and hence am≥n+2 = 0. The only
way for the numerator to vanish is if the dimensionless energy ε is quantized
according to

εn = 2n+ 1, (3.184)

which implies that the dimensional energy E is quantized according to

En = εnE0 = (2n+ 1)
~ω
2

=

(
n+

1

2

)
~ω, (3.185)

for n = 0, 1, 2, . . .. Thus, the physically relevant recursion relation is

am+2 =
2m+ 1− εn

(m+ 1) (m+ 2)
am = − 2 (n−m)

(m+ 1) (m+ 2)
am, (3.186)

where m = 0, 1, 2, . . . , n. This defines a symmetric or antisymmetric nth order
hermite polynomial Hn[ξ].

3.5.8 Standard Form Solutions

We can write the harmonic oscillator eigenfunctions in standard form as

ψn[x] = NnH[x/x0]e−
1
2 (x/x0)

2

, (3.187)
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where x0 is the classical turning point of Equation 3.157 and the normalization
constant

Nn =
1√

x02nn!
√
π

(3.188)

is fixed by the constraint Equation 3.155. The first few eigenfunctions are listed
in Table 3.3 and graphed in Figure 3.30.

Table 3.3: First few harmonic oscillator eigenvalues and eigenfunctions.

n En ψn[x]

0 1
2E0 N0e

− 1
2 (x/x0)

2

1 3
2E0 N12(x/x0)e−

1
2 (x/x0)

2

2 5
2E0 N2

(
− 2 + 4(x/x0)

2)
e−

1
2 (x/x0)

2

3 7
2E0 N3

(
− 12(x/x0) + 8(x/x0)

3)
e−

1
2 (x/x0)

2

Figure 3.30: First few harmonic oscillator eigenfunctions superimposed on the
corresponding energy eigenvalues of the quadratic potential. The dots denote
concavity changes, the smooth joining of sinusoids and exponentials, at the
classical turning points.

The ground state or zero-point energy E0 = ~ω/2 is nonzero due to the
Heisenberg uncertainty principle. If it were zero, the oscillator’s position and
momentum would be both be exactly zero, but as we have seen, if one of the
two is exact, the other must be indeterminate. The zero-point energy of the
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quantum vacuum may be related to the Dark Energy (or Clear Tension!) that
seems to be accelerating the expansion of the universe.

The regular energy spacing ∆E = En+1−En = ~ω makes possible the pho-
ton model of light. Transitions between adjacent energy levels are accompanied
by the emission or absorption of photons of energy ~ω, corresponding to classical
light of temporal frequency ω.

3.5.9 Classical Correspondence

Quantum harmonic oscillator states of small quantum number n do not have
classical analogues. In fact, such eigenfunctions are very wave-like, dominated
by nodes near which the probability of finding the particle is near zero. However,
we can recover a classical correspondence by considering states of large quantum
number.

Figure 3.31: At even the modest quantum number n = 20, the quantum prob-
ability density corresponds well to the classical probability density.

For comparison, we must first compute the probability distribution for a
classical harmonic oscillator. The sinusoidally oscillating position of Equation
3.150,

x = A sin[ωt+ ϕ], (3.189)

implies a sinusoidally oscillating velocity

ẋ = vx = ωA cos[ωt+ ϕ]. (3.190)

Together, these imply an elliptical phase space {x[t], vx[t]} trajectory

x2 +
(vx
ω

)2
= A2 (3.191)

and a speed

|vx| = ω
√
A2 − x2. (3.192)



114 CHAPTER 3. QUANTUM PHYSICS

Suppose the oscillator mass m spends a time dt in distance dx about position
x. The probability of finding it there is inversely proportional to its speed, so

dP = ρc[x]dx = Ndt = N
dx

|vx|
= N

dx

ω
√
A2 − x2

, (3.193)

where the normalization constant N is determined by the constraint

1 =

∫ A

−A
ρc[x]dx =

∫ t0+T/2

t0

Ndt = N
T

2
. (3.194)

Thus, N = 2/T = ω/π, and the classical probability density is

ρc[x] =
1

π
√
A2 − x2

. (3.195)

The classical turning point coordinate xn corresponding to the energy En is
defined by

(2n+ 1)E0 = En = V [xn] = E0

(
xn
x0

)2

, (3.196)

or
xn = x0

√
2n+ 1. (3.197)

The quantum probability density follows the classical probability density with
A = xn, as in Figure 3.31, for n = 20.
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Quantum Problems

1. String Wave. Transverse waves on a string obey

y[x, t] = 0.3 m cos[1.57 s−1t− 6.28 m−1x]. (3.198)

Find the wave amplitude, period, wavelength, and speed. Which way does
the wave propagate?

2. Wave Equation. By direct substitution, show that Ex = E0 sin[kz − ωt]
obeys the classical wave equation

∂2Ex
∂z2

=
1

c2
∂2Ex
∂t2

. (3.199)

(Hint: Section A.4 is a quick review of partial differentiation.)

3. Null Measurements. Justify the Eq. 3.1 interaction-free measurement
probability. (Hint: Add probabilities of mutually exclusive events and
multiply probabilities of independent events.)

4. Inverse Quantum Zeno Effect. Consider a sequence of n+1 polarizers
each rotated at an angle (π/2)/n with respect to its neighbors. Suppose
a photon passes through the first polarizer.

(a) What is the probability that it passes through all the rest of the
polarizers?

(b) Show that the probability of transmission increases to unity as the
number of polarizers increases to infinity. Thus, a dense set of “mea-
surements” can rotate the plane of polarization of the photon through
a right angle!

5. Classical Polarization. First consider classical light propagating in the
z-direction.

(a) Show that

~Er = A
1√
2

(x̂+ iŷ) ei(kz−ωt), (3.200a)

~E` = A
1√
2

(x̂− iŷ) ei(kz−ωt) (3.200b)

represent circularly polarized light. (In classical optics, the real part
of these expressions typically represents the light.)

(b) Show that

~Ex =
1√
2

(
~Er + ~E`

)
, (3.201a)

~Ey =
−i√

2

(
~Er − ~E`

)
(3.201b)

represent linearly polarized light.
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(c) Show that the two kinds of polarizations are also related by

~Er =
1√
2

(
~Ex + i~Ey

)
, (3.202a)

~E` =
1√
2

(
~Ex − i~Ey

)
. (3.202b)

6. Photon Polarization. In order to correspond with classical light, as-
sume that the circularly polarized photons are superpositions of linearly
polarized photons and that their states related by

|r〉 =
1√
2

(|x〉+ i|y〉) , (3.203a)

|`〉 =
1√
2

(|x〉 − i|y〉) . (3.203b)

(a) Show that

|x〉 =
1√
2

(|r〉+ |`〉) , (3.204a)

|y〉 =
−i√

2
(|r〉 − |`〉) . (3.204b)

(b) Rotate the linear coordinate system through an angle θ and justifiy

|x′〉 = + cos θ|x〉+ sin θ|y〉, (3.205a)

|y′〉 = − sin θ|x〉+ cos θ|y〉. (3.205b)

(c) Show that the rotated circular polarizations satisfy

|r′〉 = e−iθ|r〉, (3.206a)

|`′〉 = e+iθ|`〉. (3.206b)

(d) Show then that the probability of measuring a circularly polarized
photon to have a particular linear polarization is the same at any
angle. (Hint: Expand |r′〉 and |`′〉 in terms of |x〉 and |y〉.)
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7. Gaussian Integrals. Gaussian integrals occur frequently in quantum
physics (and probability and statistics).

(a) Show that

I0[1] =

∫ ∞
−∞

dx e−x
2

=
√
π (3.207)

using the the method first employed by Laplace in 1778: First com-
pute its square

I0[1]2 =

∫ ∞
−∞

dx e−x
2

∫ ∞
−∞

dy e−y
2

=

∫ ∞
−∞

∫ ∞
−∞

dx dy e−(x
2+y2)

(3.208)
by converting the two-dimensional integral to polar coordinates. Why
should we replace the area element dx dy by r dr dθ?

(b) Show that

I0[a] =

∫ ∞
−∞

dx e−ax
2

=

√
π

a
, (3.209)

where a > 0, by scaling x and using I0[1].

(c) Show that

I1[a] =

∫ ∞
−∞

dxxe−ax
2

= 0 (3.210)

using symmetry.

(d) Show that

I2[a] =

∫ ∞
−∞

dxx2e−ax
2

=
1

2a

√
π

a
, (3.211)

by differentiating I0[a] with respect to the parameter a.

(e) If the parameter a = i|a| is imaginary, the Gaussian integrals do
not converge. However, in quantum physics, one often defines such
integrals by replacing i|a| with (i−ε)|a| and letting the small positive
convergence factor ε → 0 after the integration. Use a convergence
factor to evaluate ∫ ∞

−∞
dx ebx

2

, (3.212)

where b = i|b| is imaginary.
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8. Qualitative Stationary States. For each of the below 9 potential en-
ergy functions V [x], carefully sketch the requested stationary state wave
functions ψE [x]. The horizontal dashed lines suggest the appropriate en-
ergy levels. ψn[x] corresponds to the nth energy level En, and n = 1
corresponds to the lowest (ground) state. Check the number of nodes,
relative amplitudes, local wavelengths, and decay constants. Relate each
wave function to the potential function by using a common x-axis. (Hint:
For the last two cases, imagine pushing the boxes together.)
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9. Rigid Box Stationary States. Consider a particle confined to a (one-
dimensional) box by an infinite square potential energy well of width L.

(a) Show that the nth definite-energy stationary-state wave function can
be written as ψn[x] = N sin knx inside the box. What is kn? What
is ψn[x] outside the box?

(b) Find the normalization constant N by requiring that |ψn|2 bound a
unit area.

(c) If the particle is in its ground state, calculate the probability that it
will be found in the middle half of the well. Compare this with the
corresponding classical probability.

(d) Show that the probability for a particle in the nth state to be in the
middle half of the well approaches 1/2 in the limit as n→∞.

10. Rigid Box Dynamic State. The initial state of a particle in a rigid box
box is a linear superposition of first and second eigenfunctions

ψ[x] =

√
1

3
ψ1[x]−

√
2

3
ψ2[x], (3.213)

with probability Pn =
∫
dxψ∗ψn to be in state ψn with energy En.

(a) Is ψ[x] normalized? Don’t assume that the the eigenfunctions are
orthonormal.

(b) What is the state Ψ [x, t] at a later time?

(c) What is the probability amplitude to again observe the initial state
at a later time, assuming the eigenfunctions are orthonormal? (Hint:
Compute the projection 〈Ψ |ψ〉 =

∫
dxΨ∗ψ using 〈n|n〉 =

∫
dxψ∗nψn =

1 and 〈1|2〉 =
∫
dxψ∗1ψ2 = 0.)

(d) What is the corresponding probability? (Hint: Express P = |〈Ψ |ψ〉|2
using a cosine function, where P = 1 at t = 0.)

11. Spring Dynamic State. The initial state of a simple harmonic oscillator
is a linear superposition of first and second eigenfunctions

ψ[x] =

√
1

5
ψ0[x] +

√
4

5
ψ1[x], (3.214)

with probability Pn =
∫
dxψ∗ψn to be in state ψn with energy En.

(a) Check that ψ[x] is normalized without assuming the eigenfunctions
are orthonormal. (Hint: For the Gaussian integrals, check Prob-
lem 7.)

(b) Write the state Ψ [x, t] at a later time.
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(c) What is the probability amplitude to now observe the initial state,
assuming the eigenfunctions are orthonormal?

(d) What is the corresponding probability?

12. Big Mass & Spring. A spring of stiffness k = 0.1 N/m confines a
(macroscopic) particle of mass m = 0.01 kg.

(a) What is the spacing ∆E between its quantized energy levels? Would
this be easy to detect experimentally?

(b) Displace the mass 1 cm from equilibrium and release it from rest.
What is the (approximate) quantum number n of this state?



Appendix A

Mathematics Background

A.1 Complex Numbers

Complex numbers are used extensively in quantum mechanics. They also enable
beautiful theorems in mathematics, like the Fundamental Theorem of Algebra,
which says that an nth degree polynomial has exactly n complex roots

z = x+ iy, (A.1)

where x and y are real numbers and the imaginary unit

i =
√
−1. (A.2)

A common operation is complex conjugation

z∗ = x− iy = z. (A.3)

The real and imaginary parts of a complex number,

Re z =
z + z∗

2
= x (A.4)

and

Im z =
z − z∗

2i
= y (A.5)

are both real. The modulus

mod z = |z| =
√
z∗z =

√
zz∗ =

√
x2 + y2 (A.6)

and argument

arg z = atan
[y
x

]
(A.7)

offer an alternate way of specifying the complex number, as in Figure A.1.
Euler’s theorem

eiθ = cos θ + i sin θ, (A.8)

121
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Figure A.1: The complex plane.

which can be proved by expanding each term in a Taylor series, allows us to
interconvert the polar and rectangular representations of a complex number by

reiθ = r cos θ + ir sin θ = x+ iy, (A.9)

where r = modz and θ = arg z. A special case of Euler’s theorem, θ = π,
generates the remarkable formula (purportedly engraved on Euler’s tombstone)

eiπ + 1 = 0, (A.10)

which elegantly and surprisingly interconnects the base of the natural loga-
rithms, the imaginary unit, the ratio of a circle’s circumference to its diameter,
unity, and zero!

A.2 Hyperbolic Functions

Hyperbolic functions are intimately related to trigonometric functions. Recall
Euler’s theorem

eiθ = cos θ + i sin θ (A.11)

and its complex conjugate

e−iθ = cos θ − i sin θ. (A.12)

Adding and subtracting implies

cos θ =
eiθ + e−iθ

2
(A.13)
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and

sin θ =
eiθ − e−iθ

2i
. (A.14)

The substitution θ → iθ replaces a real angle with an imaginary angle and
generates hyperbolic functions from trigonometric functions. For example,

cos[iθ] =
e−θ + eθ

2
= cosh θ (A.15)

and

sin[iθ] =
e−θ − eθ

2i
= i

eθ − e−θ

2
= i sinh θ. (A.16)

Hence,

cosh[iθ] =
e−iθ + eiθ

2
= cos θ (A.17)

and

sinh[iθ] =
e−iθ − eiθ

2i
= i

eiθ − e−iθ

2
= i sin θ. (A.18)

Notice how the cosine “swallows” the i when becoming a hyperbolic cosine,
while the sine “spits out” the i when becoming a hyperbolic sine. (Similarly,
the cosine swallows a minus sign, cos[−θ] = cos θ, while the sine spits out a
minus sign, sin[−θ] = − sin[θ].)

Figure A.2: Graphs of hyperbolic functions, with tanh θ = sinh θ/ cosh θ.

Every trigonometric identity corresponds to a hyperbolic identity. For ex-
ample, take (cos θ)

2
+ (sin θ)

2
= 1 and substitute θ → iθ to get (cos[iθ])

2
+

(sin[iθ])
2

= 1 or

(cosh θ)
2 − (sinh θ)

2
= 1. (A.19)

The hyperbolic functions are real, exponential, and nonrepeating functions,
as depicted in Figure A.2.
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A.3 Spatial Rotations

Spatial rotations are analogues for Lorentz-Einstein transformations. Suppose
an (x′, y′) coordinate system is rotated counterclockwise through an angle θ
relative to an (x, y) coordinate system, as in Figure A.3.

Figure A.3: Two coordinate systems with a common origin but rotated through
an angle θ relative to each other.

From the trigonometry, the y-coordinate can be expressed as

y =
y′

cos θ
+ x tan θ, (A.20)

which implies
y′ = −x sin θ + y cos θ. (A.21)

Similarly, the x′-coordinate can be expressed as

x′ =
x

cos θ
+ y′ tan θ, (A.22)

which implies
x = x′ cos θ − y′ sin θ (A.23)

or, simultaneously negating θ and interchanging primes and un-primes,

x′ = x cos θ + y sin θ. (A.24)

We can summarize the rotation transformation of Equation A.24 and Equation
A.21 in the matrix equation

x′

y′
=

cos θ sin θ
− sin θ cos θ

x
y

, (A.25)
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which readily checks for θ = 0 and θ = π/2.
In terms of the relative slope s = tan θ, cos θ = 1/

√
1 + s2 = Γ and sin θ =

s/
√

1 + s2 = sΓ , and hence

x′

y′
=

Γ sΓ
−sΓ Γ

x
y

= Γ
1 s
−s 1

x
y

. (A.26)

A.4 Partial Derivatives

In one-dimension, the function

f [x] = 3x2 + 1 (A.27)

has the derivative
df

dx
= 6x+ 0 = 6x. (A.28)

In two dimensions, the function

f [x, y] = 3xy2 + 2x+ 3y + 2 (A.29)

has the partial derivatives

∂f

∂x
= 3y2 + 2 + 0 + 0 = 3y2 + 2, (A.30a)

∂f

∂y
= 6xy + 0 + 3 + 2 = 6xy + 5, (A.30b)

which are just like ordinary derivatives, but with other variables held constant.

A.5 Function Notation

Standard mathematics notation suffers a serious ambiguity involving paren-
theses. In particular, parentheses can be used to denote multiplication, as in
a(b + c) = ab + ac and f(g) = fg, or they can be used to denote a function
evaluated at a point, as in f(t) and g(b + c). One must sometimes struggle to
determine the intended meaning from context.

In these notes, to avoid ambiguity, round parentheses (•) always denote mul-
tiplication, while square brackets [•] always denote function evaluation. Thus,
f [x] denotes a function evaluated at a point, while a(b) = ab denotes the prod-
uct of two quantities. The Wolfram Language and Mathematica employ the
same convention.
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Problems

1. Complex Plotting. Plot the following numbers and their complex con-
jugates in the complex z = x+ iy = {x, y} plane.

(a) 1 + i

(b) 1− i
√

3

(c)
√

2e−iπ/4

2. Complex Simplification. Simplify the following numbers to the form
x+ iy.

(a)
1

1 + i

(b) 25e2i

(c)
3i− 7

i+ 4

(d)

(
1 + i

1− i

)137

(Hint: Don’t use a calculator!)

(e) ii (Hint: Find the principal value.)

3. Complex Identities. Derive the following equations.

(a) eiθ = cos θ + i sin θ (Hint: Try infinite power series expansion.)

(b) eiπ + 1 = 0

(c) cos θ =
eiθ + e−iθ

2

(d) sin θ =
eiθ − e−iθ

2i
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