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Chapter 1

Energy

Constancy always accompanies change as motion conserves energy.

Figure 1.1: On 1971 August 2 on Luna’s Hadley Plain, in the near vacuum
at the lunar surface, Apollo 15 astronaut Dave Scott dropped a feather and a
hammer side-by-side, and they hit the ground simultaneously [1]. In 2002, a
survey of the most beautiful physics experiments by PhysicsWorld magazine
ranked Galileo’s experiment on the equality of falling bodies number two.

1.1 Free Fall

Drop a ball, and watch it fall. How does it move?

11
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By 1632, Galileo Galilei concluded that objects fall identically regardless of
their mass [2], provided air resistance is negligible. Some historians doubt that
Galileo actually tested this idea by dropping different masses from the Leaning
Tower of Pisa, partly because Aristotelians of his time purportedly performed
the test to demonstrate that greater masses hit first! We now attribute this
discrepancy to air resistance, and in 1971 Dave Scott definitively demonstrated
Galileo’s law of fall on the airless surface of the moon. Figure 1.1 is a video
frame of his famous experiment.

Figure 1.2: Simple arithmetic patterns underlie free fall, which is straight in
space (left) and parabolic in spacetime (right).

Galileo further concluded that a freely falling object obeys precise arithmeti-
cal laws, which are striking examples of patterns in natural phenomena. For
example, the distances fallen in successive equal time intervals are proportional
to the odd integers, and the cumulative distances fallen are proportional to the
squares of the integers, as in Fig. 1.2. In modern and conventional notation,
the upward space coordinate s in meters m depends depends quadratically on
the time coordinate t in seconds s according to

s[t] = −1

2
gt2, (1.1)

where at Earth’s surface the acceleration

g ≈ 9.8
m

s2
≈ 22

mph

s
. (1.2)

That’s zero to 66 mph in just 3 s; by comparison, a 2014 Corvette Stingray can
accelerate from zero to 60 mph in 3.8 s. If you accidentally fall long enough to
think “I’m falling”, you’re in grave danger.
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The motion of a real projectile through air is actually quite complicated.
However, there exist nomological machines – configurations of matter that be-
have simply – of which a particle falling in a vacuum is a paradigmatic example.

1.2 Free Fall Energy

Velocity is the rate of change of position with time (and speed is the velocity
magnitude). Compute velocity by dividing a small change in space by the
corresponding change in time to form the velocity derivative

vs =
ds

dt
= lim
∆t→0

∆s

∆t
= lim
∆t→0

s[t+∆t]− s[t]
∆t

, (1.3)

where square brackets [•] enclose function arguments and round parentheses (•)
are reserved for grouping. For Galileo’s Eq. 1.1 law of fall, the derivative

vs = −1

2
g lim
∆t→0

(t+∆t)2 − t2

∆t

= −1

2
g lim
∆t→0

SSt2 + 2t��∆t +∆t�2 − SSt2

��∆t

= −1

2
g lim
∆t→0

(2t+∆t)

= −gt, (1.4)

so the velocity decreases linearly with time. Similarly acceleration is the rate of
change of velocity with time. Compute it by

as =
dvs
dt

= lim
∆t→0

vs[t+∆t]− vs[t]
∆t

= −g lim
∆t→0

Ct+��∆t − Ct
��∆t

= −g, (1.5)

so the acceleration is constant, independent of time.
Eliminate time t from the Eq. 1.1 and Eq. 1.4 position and velocity to get

s = −1

2
g

(
−vs
g

)2

= −v
2
s

2g
, (1.6)

Multiply through by the mass m and rearrange to find

0 =
1

2
mv2s +mgs. (1.7)

This is a profound result: as the object falls, its position s and velocity vs
are continually changing, yet the Eq. 1.7 combination is constant; an invariant
core organizes the continuous change. More generally, if the object is thrown
vertically with an initial velocity v0 from an initial position s0,

1

2
mv20 +mgs0 =

1

2
mv2s +mgs. (1.8)
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Write this constant-of-the-motion as the energy

E = K + U (1.9)

and identify the kinetic energy

K =
1

2
mv2s (1.10)

and the flat-Earth gravitational potential energy

U = mgs. (1.11)

The symbol U resembles a potential well or valley. Constant total energy and
its decomposition into time-varying kinetic and potential parts are at the core
of classical mechanics.

Although total energy is always conserved, this particular decomposition is
useful only under certain (very important) conditions: For the Eq. 1.10 kinetic
energy, the speeds most be small compared to the constant speed of light, v �
c = 3.0×108 m/s ≈ 109 kph; for the Eq. 1.11 potential energy, the distance above
Earth’s surface must be small compared to Earth’s radius, s� R⊕ ≈ 6400 km.

1.3 Momentum

Energy conservation and the principle of relativity imply a second conserved
quantity. Consider a direct “head-on” collision of two objects of mass ma and
mb. If the objects are free, the potential energy vanishes, U = 0. If energy is
not lost to other forms (such as sound or heat), the collision is elastic and the
total kinetic energy K is the same before and after. If accent marks denote
quantities after the collision, then

K = K ′, (1.12a)

Ka +Kb = K ′a +K ′b, (1.12b)

1

2
mav

2
a +

1

2
mbv

2
b =

1

2
mav

′2
a +

1

2
mbv

′2
b , (1.12c)

so the sum of the masses times the squares of the velocities are the same before
and after. The notation va is short for vas, the component of object a’s motion
in the s direction, and so on.

Imagine two observers in relative motion recording the collision, as in the
spacetime diagrams of Fig. 1.3. By the principle of relativity, both record the
conservation of kinetic energy. Specifically, if the first observer records Eq. 1.12c
and is moving at a velocity vr relative to the second observer, then the second
observer records

1

2
ma(va + vr)

2 +
1

2
mb(vb + vr)

2 =
1

2
ma(v′a + vr)

2 +
1

2
mb(v

′
b + vr)

2. (1.13)



Chapter 1. Energy 15

Figure 1.3: Spacetime diagrams of a direct, elastic collision between two objects
according to two observers in relative motion. (Although the motion is one-
dimensional in space, it is two-dimensional in spacetime.)

Expand the binomials and use Eq. 1.12c to simplify to

mavavr +mbvbvr = mav
′
avr +mbv

′
bvr. (1.14)

If vr 6= 0, then

mava +mbvb = mav
′
a +mbv

′
b, (1.15a)

pa + pb = p′a + p′b, (1.15b)

ps = p′s, (1.15c)

so the sum of the masses times the velocities are the same before and after!
Generically, a mass m with velocity vs has momentum

ps = mvs (1.16)

in the s direction. The conventional momentum symbol p can stand for “punch”:
the greater an object’s momentum, the greater its punch. (Likewise, the conven-
tional kinetic energy symbol K can stand for “kick”: the greater and object’s
kinetic energy, the greater its kick.) The momentum is the velocity rate of
change of the kinetic energy,

ps = mvs = m
1

2

d

dvs
v2s =

d

dvs

(
1

2
mv2s

)
=
dK

dvs
. (1.17)

Kinetic energy and momentum conservation work together to predict the
outcome of elastic collisions. Consider Newton’s cradle, which consists of a series
of swinging spheres that are close but not initially touching and collide only in
pairs, as shown schematically in Fig. 1.4. For each collision, energy conservation
alone allows multiple outcomes from which momentum conservation selects a
unique result.
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Figure 1.4: Schematic diagram of elastic collisions in Newton’s cradle, before
(left) and after (right). All of the collisions conserve kinetic energy, but only
the one’s boxed in yellow also conserve momentum, and they are the ones that
happen.

1.4 Quantitative Evolution

Consider an object moving in 1 spatial dimension (or 1 + 1 = 2 spacetime
dimensions). Rewrite the Eq. 1.9 energy decomposition as

1

2
mv2s = K = E − U, (1.18)

and solve for the velocity

ds

dt
= vs = ±

√
2K

m
. (1.19)

For each time step dt, the corresponding space step

ds = v dt = ±
√

2K

m
dt = ±

√
2

m

(
E − U [s]

)
dt, (1.20)

where again the notation U [s] is a reminder that the potential energy is a func-
tion of the space coordinate. Given an initial condition, such as s0 = 0 and
v0 > 0, use a computer to apply Eq. 1.20 repeatedly to step the position s
forward in time and simulate the object’s motion. If the time step is small, this
is a good quantitative solution.

1.5 Qualitative Evolution

To qualitatively study the dynamics, energy diagrams plot total energy E and
potential energy U versus position s.

1.5.1 Flat Earth Gravity

For free fall the linear potential energy is large for high objects and small for
low objects, as in Fig. 1.5. The difference between the total and potential
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Figure 1.5: Free fall energy diagram (top) and state space (bottom) for three
different initial conditions. Horizontal colored lines (top) are total energies E.

energy curves is the kinetic energy K, which vanishes when the curves intersect
at a turning point. Such diagrams are often paired with state space diagrams
of velocity vs versus position s, as it requires both position and velocity to
determine the future (and past) of the object. The free fall state space paths
are always pieces of parabolas.

1.5.2 Mass and Spring

Another paradigmatic dynamical system in classical mechanics is the simple
harmonic oscillator, which consists of a mass attached to an idealized spring.
While a linear potential energy models free fall near Earth’s surface, a quadratic
potential energy models the simple harmonic oscillator. If s is the displacement
of the mass from its equilibrium position and κ determines the stiffness of the
spring, then the potential energy

U =
1

2
κs2 (1.21)

is large at large (positive or negative) displacements, small at small displace-
ments, and minimum at zero displacement. Figure 1.6 illustrates energy and
state space diagrams for simple harmonic motion. The state space trajecto-
ries are ellipses, so the position and velocity vary sinusoidally but 90◦ out of
phase. The Eq. 1.21 parabolic potential energy is extremely useful because it
well approximates generic potential energy minima.
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Figure 1.6: Simple harmonic oscillator energy diagram (top) and state space
(bottom) for three different initial conditions. The state-space trajectories are
ellipses.

Figure 1.7: Simple pendulum energy diagram (top) and state space (bottom)
for three different initial conditions. A separatrix (dashed blue curve) separates
high speed rotation (left and right) and low speed libration (center).



Chapter 1. Energy 19

1.5.3 Simple Pendulum

A final paradigmatic dynamical system is the simple pendulum, which consists of
a mass swinging in a vertical circle under gravity. Instead of a linear or quadratic
potential energy, a sinusoidal potential energy models the simple pendulum.
Assume a mass m at a distance ` from a fixed pivot swings through an angle θ
from downward. Differentiate the arc length from downward

s = `θ (1.22)

to get

vs =
ds

dt
= `

dθ

dt
= `ωθ, (1.23)

where the angular velocity ωθ = dθ/dt. The kinetic energy

K =
1

2
mv2θ =

1

2
m(`ωθ)

2 =
1

2
m`2ω2

θ =
1

2
Iω2

θ , (1.24)

where the rotational inertia
I = m`2. (1.25)

The potential energy depends on the height h of the mass, and so

U = mgh = mg(`− ` cos θ) = mg`(1− cos θ) (1.26)

is large for angles near unstable 180◦ (upward) and small for angles near stable
0◦ (downward) and is periodic every 360◦. Figure 1.7 illustrates energy and state
space diagrams for pendulum motion. For large positive or negative velocities,
the end-over-end motion is called rotation; for small velocities, the back-and-
forth motion is called libration.

1.6 Limitations

Conservation of energy can predict the motion of only a fraction of mechan-
ical systems, typically those of low dimensionality. Seek a more fundamental
principle: the principle of stationary action.
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Problems

1. Use explicit conversion factors to reexpress g ≈ 9.8 m/s2 in mph/s.

2. Assuming the Eq. 1.1 law of fall, show algebraically that the distances
fallen in successive equal time intervals are proportional to the odd inte-
gers. Hint: Compute ∆sn = sn − sn−1, where sn = s[n∆t].

3. Derive an equation describing the space rate of change of velocity for a
falling object. Why do you think Galileo rejected this acceleration defini-
tion in favor of the time rate of change of velocity? Hint: If y = xr, then
dy/dx = rxr−1, even for non-integer exponents r.

4. Derive the Eq. 1.8 law of energy conservation by assuming the most general
quadratic law of fall, s = s0 + v0t − (1/2)gt2. What do the constants s0
and v0 represent physically?

5. Verify that kinetic energy is conserved for each of the Fig. 1.4 possible
outcomes, but momentum is only conserved for the yellow boxed outcomes.

6. Prove that the simple harmonic oscillator state space ovals of Fig. 1.6 are
ellipses. Assuming the states are initially at the large dots, is the motion
clockwise or counterclockwise?

7. Derive a formula for the time t needed by a mass m to fall a distance h.

8. Throw three identical stones off a cliff with the same speed: one almost
vertically upward, one horizontally, and one vertically downward. Ne-
glecting air friction, which stone hits the ground with the greatest speed?
Hint: By equating the sum of the kinetic and potential energies initially
and finally, derive a formula for the final speed in terms of the initial speed
and the height.

9. Throw a baseball up into the air. Including air friction, does the ball
spend more time going up or coming down? Repeat on the lunar surface.
Hint: Compare the energy of the ball at one height as it goes up and
comes down, accounting for the loss of energy to the air.

10. Sketch energy and state space diagrams for a bistable oscillator with po-
tential energy U = as2/2−bs4/4, where a, b > 0. Sketch a separatrix curve
in the state space separating two qualitatively different kinds of motion.
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Action

Motion “stationizes” action – motion is such that action is stationary!

Figure 2.1: Electrons passing through a double slit buildup a wave-like interfer-
ence pattern, which is a probability distribution for their arrivals [3]. In 2002,
a survey of the most beautiful physics experiments by PhysicsWorld ranked
Feynman’s double slit experiment with electrons number one.

2.1 Wave-Particle Duality

Subatomic entities or quanta like electrons and photons act like particles in some
contexts and waves in others, as in Fig. 2.1. Such wave-particle duality is cen-
tral to quantum mechanics and contains the key to unlock classical mechanics.
Understand billiard balls by first understanding electrons, not the other way
around. Begin by understanding classical waves.

21
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2.1.1 Classical Waves

Consider a sinusoidal traveling wave, with zeros separating maxima and minima,
like the crests and troughs in ripples on a pond. The wave’s period T is the time
between maxima (or minima) at a fixed position s; the wave’s wavelength λ is
the distance between maxima (or minima) at a fixed time t. The wave travels
a wavelength λ in a period T , as in Fig. 2.2, so its velocity magnitude or speed

v =
λ

T
= λf > 0, (2.1)

where f is its frequency. Other widely used secondary parameters include the
angular frequency or temporal frequency

ω =
2π

T
= 2πf (2.2)

and the wave number or spatial frequency magnitude

k =
2π

λ
. (2.3)

The wave height
h[s, t] = A sin

[
ϕ[s, t]

]
, (2.4)

where the amplitude A is half the height between a maxim and a minimum,
and the phase

ϕ[s, t] = 2π

(
s

λ
− t

T

)
= kss− ωt = ks(s− vt) (2.5)

is the number of wave cycles elapsed since the origin, including fractional cycles,
times 2π radians or 360◦. The subscript s on the spatial frequency indicates a
wave traveling in the s direction.

Figure 2.2: Spacetime plot (left) and three spatial snapshots (right) of a sinu-
soidal traveling wave of amplitude A, wavelength λ, period T , and speed v.

At a fixed time, say t = 0, the phase ϕ[s, 0] = 2πs/λ increases by 2π when
the distance s increases by one wavelength λ; at a fixed position, say s = 0, the
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phase ϕ[0, t] = −2πt/T decreases by 2π when the time t increases by one period
T . Since the height h[vt, t] = 0 = h[0, 0], the initial zero is always at s = vt,
and the wave travels in the positive s direction at speed v.

2.1.2 Young’s Double Slit Experiment

In 1803, Thomas Young demonstrated that light behaves like a wave when
passing through sufficiently small and close holes, as in Fig. 2.3. If the paths
from the holes to a distant screen differ by an odd number of half wavelengths,
then the maxima of waves from one path arrive simultaneous with the minima
from the other and destructively interfere causing darkness. If the paths differ
by an even number of half wavelengths (or an integer number of wavelengths),
then the maxima (and minima) of waves from both paths arrive simultaneously
and constructively interfere causing brightness. The frequency of visible light,
f ∼ 500 THz, is too high to observe directly; instead the eye is sensitive to the
mean-square amplitude or irradiance I ∝ 〈A2〉.

Figure 2.3: Young’s double slit experiment (left). If the paths from the slits to
screen differ by three half wavelengths, for example, then the light arrives “crest
to trough” and destructive interference causes darkness (right).

In the 1900s, Young’s experiment was repeated with very faint light – so faint
that the “graininess” of light became apparent, and the probability to detect
individual grains of light or photons was found to be proportional to the wave’s
amplitude squared, P ∝ 〈A〉2. Even when the light was detected photon-by-
photon, so there was only one particle at the slits at any given time, the same
interference pattern accumulated. It became clear that the classical concepts
of “wave” and “particle”, either separately or collectively, did not exhaustively
describe light.
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2.1.3 Matter Waves

In the early 1900s, at the birth of quantum mechanics, Albert Einstein first
proposed that particles are associated with waves, and Louis de Broglie then
suggested that waves are associated with particles. Specifically, Einstein argued
that light is emitted or absorbed in packets or quanta, now called photons,
whose energies are proportional to the light’s frequency,

E = ~ω =

(
h

��2π

)
(��2πf) = hf, (2.6)

where Planck’s constant

h = 2π~ ≈ 6.6× 10−34 J s = 0.66
zJ

THz
(2.7)

is the rate of change of photon energy with frequency. By symmetry, de Broglie
later argued that particles, like electrons, should be associated with waves whose
spatial frequencies are proportional to the particles’ momenta,

ps = ~ks, (2.8)

or in terms of momentum magnitude,

p = ~k =

(
h

��2π

)(
��2π

λ

)
=
h

λ
, (2.9)

where Planck’s reduced constant is also the rate of change of photon momentum
with inverse wavelength.

As Richard Feynman famously emphasized in an early 1960s thought ex-
periment [4], wave-particle duality means that Young’s double slit experiment
should also work with electrons, and indeed it does. By 2000, Feynman’s thought
experiment had been realized using beams of electrons, atoms, small molecules,
and even buckyballs (C60 “soccer ball” molecules).

2.1.4 Sum Over Paths

How can photons or electrons buildup an interference pattern, especially if they
pass through the slits one by one? In Feynman’s sum-over-paths approach to
quantum mechanics, each quantum takes both paths through the double slit
experiment and interferes with itself according to the phase difference between
the paths.

Consider an electron or other quantum moving through space [5] with the
Eq. 2.5 phase

ϕ = ks s− ω t. (2.10)

Its rate of change with time is

dϕ

dt
= ks

ds

dt
− ω = ksvs − ω, (2.11)
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where vs = ds/dt is the quantum’s velocity. Multiply by Planck’s reduced
constant ~ and substitute the Eq. 2.8 Einstein-de Broglie relations to write

~
dϕ

dt
= ~ks vs − ~ω = psvs − E. (2.12)

But the combination

psvs − E = mv2s −
1

2
mv2s − U =

1

2
mv2s − U = K − U = L, (2.13)

where L is the Lagrangian. Hence, the difference in the kinetic and potential
energies determines the rate of change with time of the quantum’s phase,

~
dϕ

dt
= L = K − U. (2.14)

The total phase accumulated over the quantum’s path is the sum or integral

~ϕ =

∫
~ dϕ =

∫
~
dϕ

dt
dt =

∫
L dt = A, (2.15)

whereA is the classical action for the path. The total phase ϕ = A/~ is precisely
the path’s action in units of the quantum of action, Planck’s reduced constant
~.

If, for example, the total phases for two paths differ by π radians, corre-
sponding to a half a cycle, destructive interference results; if the total phases
for two paths differ by 2π radians, corresponding to a full cycle, constructive
interference results.

Figure 2.4: Imagine space filled with infinitely many barriers containing in-
finitely many slits – so they aren’t there any more!

2.1.5 Recovering Classical Mechanics

Replace Young’s two slits with many slits. Now quanta like photons and elec-
trons take many interfering paths through the slits, from source to screen. Next
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imagine filling space with many barriers each with many slits – or even infinitely
many barriers with infinitely many slits, as in Fig. 2.4.

Conclude that quanta explores all possible paths, including complicated zig-
zag paths or even backward-in-time paths. Most of the paths will interfere
destructively and won’t contribute to the probability amplitude, as in Fig. 2.5.
For example, for any zig-zag path, another path with an extra zig or zag will
accumulate an extra π phase shift to cancel it.

However, there is typically a special path whose phase and action ϕ = A/~
are stationary with respect to small path variations, like the black path in
Fig. 2.5. A narrow bundle of paths about this path interferes constructively to
increase the probability of such a path. The special path is the classical path.
In many important cases, such as the motion of large masses, the bundle is very
thin making a path like the classical path nearly certain. Thus, the observed
motion is such that action is stationary: motion “stationizes” action.

Figure 2.5: An electron explores all paths between fixed initial and final
points. The wiggly paths interfere destructively, but the narrow pencil of paths
about the classical path interfere constructively, because differences among their
phases – and hence actions – are negligible.

2.2 Free Fall Action

Returning to the Chapter 1 problem of free fall, take the difference of the kinetic
and potential energies to form the Lagrangian

L = K − U. (2.16)

Consider the area bounded by a plot of the Lagrangian versus time, as on the
right of Fig. 2.6. Compute this area by decomposing it into narrow rectangles of
height L and width dt and summing from t = 0 to t = T . The resulting action
integral is simply the mean height 〈L〉 times the total time T or

A =
∑
∆t→0

L∆t =

∫
L dt =

(
1

T

∫ T

0

L dt

)
T = 〈L〉T = 〈K − U〉T. (2.17)
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Thus, the action is proportional to the average difference between the kinetic
and potential energies over the path. Like the potential energy, the actual value
of the action is determined only up to an additive constant. But for free fall, as
in Fig. 2.6, infinitesimal path changes never alter it, while finite path changes
always increase it.

Figure 2.6: Actual spacetime free fall path s[t] (top) conserves energy E (center)
and minimizes action A (right). Changing the path (bottom) varies the energy
(center) and increases the action (right).

2.2.1 Stationary vs. Least

While the action is always stationary for variations about the actual path, in
important examples it is sometimes also least. For an analogy, consider an
undulating two-dimensional surface. At stationary points the surface has van-
ishing slope; maxima are like hill tops, minima are like depression bottoms, and
saddles are maxima in some directions and minima in other directions. Like-
wise, for sufficiently short sections of any path, the action is always a minimum,
but for longer sections, it can be a saddle, so that it’s a minimum for some
variations and a maximum for others. The action is never a maximum for all
variations [6]. Historically the idea of “least action” has suggested the economy
and elegance of nature. Represent stationarity symbolically by

δA = 0 (2.18)

as a reminder that the differences in action δA between the real path and nearby
virtual trajectories are negligible.
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2.2.2 Simple Examples

To get a sense of how this works, first consider a free object with a vanishing
potential energy U = 0 moving between two places in a fixed time, as on the left
of Fig. 2.7, so that the Lagrangian L = K and the action A =

∫
K dt = 〈K〉T =

(1/2)m〈v2s〉T . Consider two velocities v1 and v2. Quarter the inequality

0 ≤ (v1 − v2)2 = 2(v21 + v22)− (v1 + v2)2 (2.19)

and rearrange to prove that the square of the mean is a lower bound for the
mean of the square,

〈vs〉2 =

(
v1 + v2

2

)2

≤ v21 + v22
2

= 〈v2s〉. (2.20)

The inequality is “saturated” and equality happens when the velocities are
equal, v1 = v2. Because the path’s endpoints fix the left-side mean, this also
minimizes the right-side mean square. More generally, constant velocity vs = v0
minimizes the mean square velocity 〈v2s〉, the mean kinetic energy 〈K〉, and the
action A, exactly as expected for a free object.

Figure 2.7: Straight spacetime path minimizes the action A = 〈K − U〉T for a
free object (left), while a parabolic path minimizes the action for a gravitation-
ally bound object (right).

Next consider an object under gravity with the Eq. 1.11 potential energy
moving between two places in a fixed time, as on the right of Fig. 2.7. Because
the action is the mean difference between the kinetic and potential energies,
moving higher decreases the action by increasing the potential energy. However,
moving higher also increases the action by increasing kinetic energy near the
start and stop. The actual path is a compromise that adds potential energy
without adding too much kinetic energy.

2.2.3 Global to Local

Energy conservancy and action stationarity are key physical insights. The ac-
tion principle is a global, integral condition, but it implies a local, differential
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constraint: Isaac Newton’s second law of motion [7].
Imagine perturbing the spacetime path of an object under gravity [8, 9].

Leaving the endpoints fixed, raise the midpoint of a short path segment of
duration 2dt by a height ds, as in Fig. 2.8. The segment’s action

A =

∫
L dt = Lbdt+ Ladt = (Lb + La)dt, (2.21)

where the subscripts b and a indicate before and after the midpoint. Since the
action is stationary with respect to small variations,

0 = δA = δ(Lb + La)dt, (2.22)

and since the duration dt 6= 0,

0 = δ(Lb + La) = δ(Kb +Ka)− δ(Ub + Ua). (2.23)

Figure 2.8: Perturbing a short segment of a free fall path (left) with closeup
approximating the path and its perturbation as straight line segments (right).

The kinetic energy changes because the slopes, and hence the velocities,
before and after the midpoint change. Specifically, before the midpoint the
slope increases by

δvb = +
ds

dt
(2.24)

and after the midpoint the slope decreases by

δva = −ds
dt
. (2.25)

Generically, by Eq. 1.17, kinetic energy changes with velocity like

δK = psδvs, (2.26)

so the kinetic energy change in the variation is

δ(Kb +Ka) = pbδva + paδvb = (pb − pa)
ds

dt
= −δps

ds

dt
= −dps

dt
δs, (2.27)
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where δs/δt = ds/dt in the limit where δt→ 0, and so on.
The potential energy changes because the average heights before and after

the midpoint change. Specifically, before and after the midpoint the mean height
change

〈δs〉 =
δs

2
, (2.28)

so the potential energy change in the variation is

δ(Ub + Ua) = mg
δs

2
+mg

δs

2
= mg δs. (2.29)

Substitute the Eq. 2.27 and Eq. 2.29 changes into the Eq. 2.23 non-change
to find

0 = −dps
dt
δs−mg δs (2.30)

or
dps
dt
��δs = −mg��δs. (2.31)

Thus, the gravitational force

fs =
dps
dt

= −mg. (2.32)

is the rate of change of momentum with time. This is an example of Newton’s
second law of motion, a differential constraint on the momentum that is the
local version of the global variational constraint on the action.

Similarly, for a generic potential energy function U [s], the Eq. 2.23 non-
change becomes

0 = −dps
dt
ds− dU = −dps

dt
ds− dU

ds
ds, (2.33)

so the corresponding generic force

fs =
dps
dt

= −dU
ds
. (2.34)

The force is proportional to the rate of change of potential energy with distance.
Geometrically, the force is the negative slope of the potential energy function,
as in Fig. 2.9. And so a ball rolls down hill.

For the quadratic Eq. 1.21 simple harmonic oscillator potential function, the
linear force

fs = − d

ds

(
1

2
κs2
)

= −κs, (2.35)

which is Hooke’s law. The larger the stretch s > 0 or squeeze s < 0 of the
spring, the larger the force magnitude, but always in the opposite direction.
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Figure 2.9: Linear (left) and quadratic (right) potentials and their force func-
tions. Force is minus the gradient of the potential energy.
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Problems

1. Reexpress Planck’s constant h ≈ 0.66 zJ/THz in abol/Tm to emphasize
its alternate role as the rate of change of photon momentum with spatial
frequency. Assume 1 bol = 10−5 kg m/s and 1 m = 1 m−1. (The “bole”
has been proposed as a unit of linear momentum; the symbol “m”, which is
an upside-down letter “m”, is pronounced “me” and represents an inverse
meter.)

2. In the Fig. 2.3 schematic of Young’s experiment, show that the nth bright
band or fringe is a distance nλD/d from the central fringe, where d is
the small distance between the slits, D � d is the large distance from
the slits to the screen, and λ is the light wavelength. Hint: In Fig. 2.3,
tan θ ∼ sin θ ∼ θ � 1, and the paths from the slits to the nth fringe are
nearly parallel.

3. Write the equation for a sinusoidal wave of amplitude a and wavelength
Λ traveling in the negative x direction at a speed c.

4. If n water wave crests and troughs pass a point in time τ , and the hori-
zontal distance between crest and the nearest trough is a distance `, what
is the wave’s speed?

5. Download the “EnergyActionHW” Mathematica manipulator. Click and
drag the spacetime events to minimize the action. What happens to the
energy? Include a screenshot of your best result with your solution.

6. Using dimensionless variables, consider an object freely falling between
s = 0 at t = 0 and s = −1/2 at t = 1. Assume the object follows the path
s = −(1/2)ta with kinetic energy K = (1/2)(ds/dt)2 and potential energy
U = s. Compute the action A for a = 1, 2, 3. Which is smallest and why?
Hint: Use the Chapter 1 Problem 3 hint to find the velocities and then

integrate term-by-term using
∫ 1

0
tb dt = 1/(b+ 1).
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7. Use Eq. 2.9 to compute the de Broglie wavelength λ of an apple falling
from a tree. Make intelligent estimates of the mass m and speed v of the
apple. Why would it be difficult to observe a double slit interference with
the apple?

8. According to Eq. 2.34, to what force fs does the Eq. 1.21 simple harmonic
oscillator potential energy function U [s] correspond? Sketch a graph of
the force and potential energy versus position.
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Calculus in a Nutshell

Infinitesimal calculus is a cornerstone of physics and mathematics.

Figure 3.1: Isaac Newton and Gottfried Leibniz independently and intuitively
developed the calculus in the mid 1600s. Augustin-Louis Cauchy and others
rigorously refined the calculus in the 1800s and later.

3.1 Fundamental Theorem

The fundamentals of infinitesimal calculus were discovered in the 1600s by Isaac
Newton and Gottried Liebniz of Fig. 3.1. For Newton, the fundamental prob-
lem was twofold: given positions s[t], find the corresponding velocities vs[t],
and given velocities v[t], find the corresponding positions s[t]. For Leibniz, in
his famous notation, these are the problems of differentiation vs = ds/dt and

35
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integration s =
∫
vs dt, or the problem of slopes and areas. Differentiation

and integration undo one another, which is obvious from Newton’s dynamical
perspective but perhaps not from Leibniz’s geometric perspective.

Figure 3.2: Differentiation and integration relate slopes (top) and areas (bot-
tom).

Consider the geometry of the position s[t] and velocity vs[t] plots in Fig. 3.2.
Intuitively, during short “infinitesimal” times dt, the bottom velocity plot sweeps
out small differential areas ds = vsdt, and during longer times sweeps out large
cumulative areas

s =

∫
ds =

∫
vs dt (3.1)

that are the sum or integral of these differential areas. Correspondingly, in a
short time dt, the slope of the position plot is the velocity

ds

dt
=
s[t+ dt]− s[t]

dt
= vs[t]. (3.2)

Combine these results to show that the integral of the derivative is the function
itself,

s =

∫
ds

dt
dt, (3.3)

which means that the integral of a function is its anti-derivative. More precisely,
the area between two times t1 and t2 swept out by the velocity vs[t] is

s[t2]− s[t1] =

∫ t2

t1

ds =

∫ t2

t1

ds

dt
dt =

∫ t2

t1

vs dt. (3.4)

Differentiate both sides with respect to t2 to show conversely that the derivative
of the integral is the function itself,

vs[t2] =
d

dt2

∫ t2

t1

vs[t] dt. (3.5)
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3.2 Derivatives & Antiderivatives

Since the derivative of a constant is zero, two function that differ by a constant
share the same derivative. Thus, their antiderivatives or indefinite integrals are
not unique. For example, from Chapter 1, we know

d

dt

(
t2
)

= 2t, (3.6)

but also
d

dt

(
t2 + 1

)
= 2t+ 0 = 2t. (3.7)

Hence the antiderivative ∫
2t dt = t2 + C, (3.8)

where C is an undefined constant. Fortunately, we will often deal with definite
integrals whose limits fix the constant. For example,∫ 4

3

2t dt = t2
∣∣∣∣4
3

= 42 − 32 = 7. (3.9)

Table 3.1: Basic derivatives and antiderivatives without integration constants.
Antiderivative Function Derivative Graphs∫
f [x] dx f [x]

d

dx
f [x]

xn+1

n+ 1
xn nxn−1

− cosx sinx + cosx

+ sinx cosx − sinx

expx expx expx

x log x− x log x
1

x
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Table 3.1 contains a list of important derivatives and antiderivatives. As is
common in theoretical physics and pure mathematics, log x = loge x = lnx is
the inverse of expx = ex.

3.3 Compound Operations

Because differentiation is a linear operation, the derivative of the sum of two
functions f [x] and g[x] is simply the sum of the derivatives,

d

dx
(af + bg) = a

df

dx
+ b

dg

dx
, (3.10)

where a and b are constants. If x changes by δx, then the product of the
functions fg changes by

δ(fg) = (f + δf)(g + δg)− fg
= δf g + f δg + δf δg, (3.11)

and so
δ(fg)

δx
=
δf

δx
g + f

δg

δx
+
δf

δx
δg. (3.12)

In the limit δx → 0, both δf → 0 and δg → 0 such that the derivative of a
product is

d

dx
(fg) =

df

dx
g + f

dg

dx
. (3.13)

For example,
d

dt

(
s0 + v0t+

1

2
gt2
)

= v0 + gt (3.14)

and
d

dt
(t2 sin t) = 2t sin t+ t2 cos t (3.15)

and, from Table 3.1,

d

dx
(x log x− x) = 1 log x+ x

1

x
− 1 = log x. (3.16)

The derivative of a composition of functions, such as the function of a func-
tion f [ g[x] ], is simply

df

dx
=
df

dg

dg

dx
=
df

dg

dg

dx
, (3.17)

which is known as the chain rule. Thus, the derivative of a composition is the
derivative of the outer function with respect to its argument (the inner function)
times the derivative of the argument. For example,

d

dt
(A sin[ωt]) = A cos[ωt]

d

dt
(ωt) = ωA cos[ωt] (3.18)
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and
d

dt

(
I0e

κt
)

= I0e
κt d

dt
(κt) = κI0e

κt. (3.19)

Table 3.2: Basic differentiation rules.
Rule Form

sum
d

dx
(af + bg) = a

df

dx
+ b

dg

dx

product
d

dx
(fg) =

df

dx
g + f

dg

dx

composition or “chain”
df

dx
=
df

dg

dg

dx

partial
∂f

∂x
=
df

dx

∣∣∣∣
y

The partial derivative of a function of two variables f [x, y] with respect to
one of them x is simply the ordinary derivative with the other variable y held
constant,

∂f

∂x
=
df

dx

∣∣∣∣
y

=
d

dx
f [x, y = const]. (3.20)

For example, if
h[s, t] = A sin[kss− ωt], (3.21)

then the partial derivatives

∂h

∂s
= A cos[kss− ωt]

∂

∂s
(kss− ωt) = +ksA cos[kss− ωt] (3.22)

and

∂h

∂t
= A cos[kss− ωt]

∂

∂t
(kss− ωt) = −ωsA cos[kss− ωt]. (3.23)

If x and y are independent variables,

∂x

∂x
= 1 (3.24)

but
∂y

∂x
= 0, (3.25)

as the latter is the rate of change of y with x assuming all other variables
including y are held constant. The pseudo-letters partial ∂ and nabla ∇ may
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be pronounced “del” in analogy with the Greek letters δ and ∆, which are
pronounced “delta”.

Second derivatives are simply derivatives of derivatives. In Leibniz’s classic
notation

d

dx

(
d

dx
(f)

)
=

d

dx

d

dx
f =

(
d

dx

)2

f =
d2

dx2
f =

d2f

dx2
, (3.26)

and similarly for higher orders. Table 3.2 summarizes the basic differentiation
rules.
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Problems

1. Compute the following derivatives.

(a)
d

dx

(
3x2 + 4x3

)
(b)

d

dφ
(3 sinφ+ 4 cosφ)

(c)
d

dt
(3 exp t− 2 log t)

(d)
d

dz
(3 exp z log z)

(e)
d

ds
(2 sin ks cos ks)

2. Compute the following partial derivatives.

(a)
∂

∂x

(
3x2y3

)
(b)

∂

∂y

(
3x2y3

)
(c)

∂

∂s

(
3s2 + es

3t2
)

(d)
∂

∂t

(
3s2 + es

3t2
)

3. Compute the following anti-derivatives or indefinite integrals. Check each
one by differentiating the result.

(a)

∫
x2dx

(b)

∫
(cos θ + 3 sin θ) dθ

(c)

∫
3e3tdt

4. Compute the following areas or definite integrals. Hint: In Eq. 3.4, s is
the antiderivative of vs.

(a)

∫ 3

0

x3dx

(b)

∫ π

−π
(sin θ − cos θ) dθ

(c)

∫ ∞
0

4e−2tdt
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Chapter 4

Lagrange’s Equations

Lagrange’s equations are the formal differential expression of stationary action.

Figure 4.1: Postage stamp history of mechanics: from Newton’s forces (1600s) to
Lagrange’s differential equations (1700s) to Hamilton’s integral action principle
(1800s) to Feynman’s sum-over-paths quantum mechanics (1900s).

4.1 Differential Equations of Motion

Newton’s classical mechanics was successively reformulated by Lagrange and
Hamilton in the action principle elucidated by Feynman’s quantum mechanics,
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as summarized in Fig. 4.1. Elementary calculus can reduce the requirement of
stationary action to equations involving derivatives that both describe motion
and are especially well-suited for computer solution [10, 11]. These Lagrange or
Euler-Lagrange equations generalize the Eq. 2.34 force equation.

First replace continuous time t with discrete or stroboscopic time tn = ndt,
where n is an integer and dt is a small time step. Assume the Lagrangian L[s, vs]
depends only on space and velocity, with sn = s[tn] and

vn =
dsn
dt

=
s[tn + dt]− s[tn]

dt
=
sn+1 − sn

dt
, (4.1)

so the action

A =

∫
L dt =

∑
n

L [sn, vn] dt =
∑
n

L
[
sn,

sn+1 − sn
dt

]
dt. (4.2)

Any one point, say n = 8, appears just twice in the action sum,

A = · · ·+ L [s7, v7] dt+ L [s8, v8] dt+ · · ·

= · · ·+ L
[
s7,

s8 − s7
dt

]
dt+ L

[
s8,

s9 − s8
dt

]
dt+ · · · . (4.3)

Enforce the principle of stationary action by demanding that the rate of change
A with s8 be zero. Use the Eq. 3.17 composition rule to expand and get

0 =
∂A
∂s8

=

(
0 +

∂L
∂v7

∂v7
∂s8

+
∂L
∂s8

+
∂L
∂v8

∂v8
∂s8

+ 0

)
dt. (4.4)

Cancel the time step and evaluate the derivatives of the velocities to show

0 =
∂L
∂v7

(
1− 0

dt

)
+
∂L
∂s8

+
∂L
∂v8

(
0− 1

dt

)
. (4.5)

Isolate and implement the derivative definition to find

∂L
∂s8

=
∂L/∂v8 − ∂L/∂v7

dt
=

d

dt

(
∂L
∂v7

)
=

d

dt

∂L
∂v7

. (4.6)

Because the times t7 and t8 are infinitesimally close, the general Lagrange dif-
ferential equation is

∂L
∂s

=
d

dt

∂L
∂vs

, (4.7)

where vs = ds/dt is the velocity in the s direction.
In the variational calculus, the action A[ s[t] ] depends on the path s[t] and

its corresponding velocity vs[t] = ds[t]/dt, but the Lagrangian L[sn, vn] =
L[ s[tn], v[tn] ] depends on the values of the positions sn and velocities vn, which
are independent at any time tn because they may arise from completely different
virtual paths. The stationary action requirement removes their independence
during the derivation to select one actual path.
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Equation 4.7 is the simplest example of a Lagrange equation. It easily gen-
eralizes to multiple particles moving in multiple dimensions. Cast it in the form
of Newton’s second law

fs =
dps
dt
, (4.8)

where the generalized force

fs =
∂L
∂s
, (4.9)

and the generalized momentum

ps =
∂L
∂vs

, (4.10)

which reduces to ps = dK/dvs = mvs in simple cases, in agreement with
Eq. 1.17.

4.2 Numerical General Solution

Coupled with initial condition s[0] = s0 and v[0] = v0, the Lagrange equation
becomes an initial value problem for the spacetime path s[t], which can some-
time be solved exactly but more often must be solved numerically, especially by
computer. By the Eq. 4.8 Newtonian form, in a short time dt, force changes
momentum by dps = fs dt or, if mass m is constant, acceleration changes ve-
locity by dvs = as dt, where as = fs/m. Always velocity changes position by
ds = vs dt. This suggests the semi-implicit Euler or Euler-Cromer [12] algo-
rithm for numerically approximating the path s[t]. First initialize velocity and
position by

vs ← v0, (4.11a)

s← s0, (4.11b)

and then repeatedly update them with

as ← fs/m (4.12)

and

vs ← vs + as dt, (4.13a)

s← s+ vs dt. (4.13b)

This approximate solution can be very good if the integration step dt is very
small, but a computer might take very long to execute the algorithm. In prac-
tice, a large fraction of the word’s computer resources implement such algorithms
by balancing accuracy against computation time.

4.3 Example Initial Value Problems

Use the Lagrange equations to create initial value problems for the Section 1.5
fundamental dynamical systems. Solve them exactly if possible.
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4.3.1 Flat Earth Gravity

Toss a stone of mass m from a height s0 with a velocity v0. The flat Earth
Lagrangian

L[s, vs] = K[vs]− U [s] =
1

2
mv2s −mgs. (4.14)

Substitute into the Eq. 4.7 Lagrange equation and differentiate to find

∂

∂s

(
1

2
mv2s −mgs

)
=

d

dt

∂

∂vs

(
1

2
mv2s −mgs

)
, (4.15)

or

(0−mg) =
d

dt
(mvs − 0) , (4.16)

or

−��mg =��m
dvs
dt
. (4.17)

The resulting equation

− g =
dvs
dt

=
d

dt

ds

dt
=

(
d

dt

)2

s =
d2

dt2
s =

d2s

dt2
(4.18)

or
d2s

dt2
= −g. (4.19)

Integrate once to get the linear velocity

ds

dt
= vs[t] = v0 − gt (4.20)

and twice to get quadratic position

s[t] = s0 + v0t−
1

2
gt2, (4.21)

as expected. Differentiate to check the integration. Substitute t = 0 to check
the initial conditions, s[0] = s0 and v[0] = v0.

4.3.2 Mass and Spring

An ideal spring of stiffness κ anchors a mass m to a fixed point. Stretch the
spring an initial distance s0 and release it from rest. The corresponding simple
harmonic oscillator Lagrangian

L[s, vs] = K[vs]− U [s] =
1

2
mv2s −

1

2
κs2. (4.22)

Substitute into the Eq. 4.7 Lagrange equation and differentiate to find

∂

∂s

(
1

2
mv2s −

1

2
κs2
)

=
d

dt

∂

∂vs

(
1

2
mv2s −

1

2
κs2
)
, (4.23)
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or

(0− κs) =
d

dt
(mvs − 0) , (4.24)

or

− κs = m
dvs
dt
. (4.25)

The resulting simple harmonic oscillator differential equation

d2s

dt2
+
κ

m
s = 0 (4.26)

has the solution
s[t] = s0 cos[ωt], (4.27)

where the temporal frequency

ω =

√
κ

m
(4.28)

increases with spring stiffness and decreases with mass. Differentiate to check
the integration. Substitute t = 0 to check the initial conditions, s[0] = s0 and
v[0] = 0.

4.3.3 Simple Pendulum

A mass m moves in a circle of radius `. At time t it is at an angle θ from down-
ward moving with angular velocity ωθ = dθ/dt. Rotate the mass to an initial
angle θ0 and release it from test. The corresponding pendulum Lagrangian

L[θ, ωs] = K[ωθ]− U [θ] =
1

2
m`2ω2

θ −mg`(1− cos θ). (4.29)

Substitute into the Eq. 4.7 Lagrange equation and differentiate to find

∂

∂θ

(
1

2
m`2ω2

θ −mg`(1− cos θ)

)
=

d

dt

∂

∂ωθ

(
1

2
m`2ω2

θ −mg`(1− cos θ)

)
,

(4.30)
or

(0− 0−mg` sin θ) =
d

dt

(
m`2ωθ − 0

)
, (4.31)

or

−��mgÀ sin θ =��m`C2
dωθ
dθ

. (4.32)

The resulting pendulum differential equation

d2θ

dt2
+
g

`
sin θ = 0 (4.33)

infamously does not have an elementary solution. However, for small angles
sin θ ∼ θ � 1 and

d2θ

dt2
+
g

`
θ = 0 (4.34)
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has the solution

θ[t] = θ0 cos[ωt], (4.35)

where the temporal frequency

ω =

√
g

`
(4.36)

increases with gravitational acceleration and decreases with pendulum length.
The frequency and the corresponding period

T =
2π

ω
=

√
`

g
(4.37)

famously does not depend on time, as first observed by Galileo, thereby facil-
itating the pendulum clock. Differentiate to check the integration. Substitute
t = 0 to check the initial conditions, θ[0] = θ0 and ωθ[0] = 0.

4.4 Conservation Laws from Symmetries

Something is symmetric if it is invariant under a transformation. For example,
a ball is spherically symmetric because it is invariant under rotations about any
axis through its center. A Lagrangian is time symmetric if it is invariant under
time translations. Show that a system whose Lagrangian L does not explicitly
depend on time conserves energy.

Consider a more general Lagrangian L[s[t], vs[t], t] with both implicit and
explicit time dependence (via, for example, a time varying potential energy
U [s, t]). Use the Eq. 3.17 composition rule to expand the time derivative

dL
dt

=
∂L
∂s

ds

dt
+
∂L
∂vs

dvs
dt

+
∂L
∂t
. (4.38)

Substitute the Eq. 4.7 Lagrange equation and use the Eq. 3.13 product rule to
condense the right side to

dL
dt

=

(
d

dt

∂L
∂vs

)
vs +

∂L
∂vs

dvs
dt

+
∂L
∂t

=
d

dt

(
∂L
∂vs

vs

)
+
∂L
∂t
. (4.39)

Collect terms and use the Eq. 3.10 sum rule to show

− ∂L
∂t

=
d

dt

(
∂L
∂vs

vs − L
)

=
dH
dt
, (4.40)
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where the Hamiltonian

H =
∂L
∂vs

vs − L

=
∂

∂vs

(
1

2
mv2s − U [s, t]

)
vs −

(
1

2
mv2s − U [s, t]

)
= (mvs − 0) vs −

1

2
mv2s + U

=
1

2
mv2s + U

= E (4.41)

is simply the energy of the system. By Eq. 4.40, if the Lagrangian does not
explicitly depend on time, ∂L/∂t = 0, and both Hamiltonian and energy are
conserved.

Similarly, and more simply, a system whose Lagrangian L does not explicitly
depend on space conserves momentum. For example, the Lagrangian for a single
free particle

L = K =
1

2
mv2s (4.42)

implies a vanishing force

fs =
∂L
∂vs

= 0 (4.43)

and a constant momentum ps = mvs. More broadly, the intimate relation
between symmetry principles and conservation laws was first proved by Emmy
Noether [13] in the early 1900s.
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Problems

1. Verify the solutions to the Section 4.3 initial value problems by substitut-
ing into the differential equations and checking the initial conditions.

(a) The Eq. 4.21 flat Earth gravity.

(b) The Eq. 4.27 mass and spring.

(c) The Eq. 4.35 simple pendulum.

2. How does the Eq. 4.27 simple harmonic oscillator solution change if the
mass is kicked from equilibrium with s[0] = 0 and v[0] = v0 rather than
released from a stationary stretch?

3. Consider a massless spring of stiffness κ suspending a mass m vertically
under flat Earth gravity g. Assume the spring’s stretch is `− `u, where `
is the spring length downward from its fixed end to its mass end and `u is
the spring’s unstretched length. Assume the mass’s velocity is v` = d`/dt.

(a) Write formulas for the system’s kinetic and potential energies and its
Lagrangian. Hint: The formulas for spring and gravitational poten-
tial energies are slight variations of earlier versions.

(b) Substitute into the Eq. 4.7 Lagrange equation, differentiate, and de-
rive a second-order differential equation for the spring length `[t].

(c) Show that when the acceleration vanishes, d2`/dt2 = 0, the spring
length ` is the equilibrium length `e = `u +mg/κ.

(d) Guess a sinusoidal solution of the form ` = `e +A cos[ωt], and derive
a formula for the constant temporal frequency ω by substituting into
the Lagrange equation.

(e) Compare the vertical spring under gravity to the horizontal spring
(or the vertical spring without gravity). What is the same and what
is different?



Chapter 5

Vectors in a Nutshell

Vector algebra helps generalize mechanics from one spatial dimension to three.

Figure 5.1: Arrows representing vectors for magnitudes and directions (left) and
successive displacements (right) on a baseball diamond.

5.1 Vectors & Coordinates

Physical displacements are models for vectors. They have both direction and
magnitude, and they can be multiplied or scaled by numbers. They are often
represented as arrows in Euclidean space.

As an example, from a baseball diamond’s home plate, run 90 ft east to 1st
base, then run 90 ft north to 2nd base. Alternately, run about 130 ft northeast
directly from home plate to 2nd base, as in Fig. 5.1. Since the sum of the first
two displacements is the third displacement, write

⇀u + ⇀v = ⇀w, (5.1)
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or
~u+ ~v = ~w, (5.2)

where the harpoons and arrows over the letters denote vectors. Also write

(90 ft)ê+ (90 ft)n̂ = ~w, (5.3)

where ê and n̂ are unit vectors in the east and north directions and their coef-
ficients are the corresponding components. The harpoon ⇀• or arrow ~• notation
suggests displacement with both magnitude and direction, while the hat or ar-
rowhead notation •̂ suggests direction only. Read the equation ~v = 3x̂ as “v
vector equals three x hat”. By the Pythagorean theorem, the displacement
magnitude

w = |~w| = mag [ ~w ] =
√

(90 ft)2 + (90 ft)2 ≈ 130 ft (5.4)

is the sum of the square of the components in the orthogonal east and north
directions.

Figure 5.2: For right-handed coordinate systems, rotating x into y points a
right-handed thumb (left perspective) in the z direction. Rotating x into y also
advances a right-handed screw (right projection) in the z direction. Dot � and
cross ⊗ represent an arrow head and tail indicating “out” and “in”.

In three dimensions, use an orthogonal coordinate system {x, y, z} where
the basis unit vectors {x̂, ŷ, ẑ} point in the direction of increasing coordinates.
(Other common basis vector notations include {x̂1, x̂2, x̂3}, which generalizes
easily to higher dimensions; {e1, e2, e3} from the German “einheit” for unit;
and {i, j,k} after Hamilton’s quaternions.) By common convention, make the
coordinate system right-handed so that rotating the fingers of a right hand 90◦

from the x-axis to the y-axis points the thumb in the direction of the positive
z-axis, as in Fig. 5.2. Similarly, rotating a right-handed screw from x to y
advances it in z. Expand a generic vector in terms of the basis vectors like

~v = x̂ vx + ŷ vy + ẑ vz

= vxx̂+ vy ŷ + vz ẑ. (5.5)

If the basis vectors are implicit, then just list the components like ~v = {vx, vy, vz}
or ~v = 〈vx, vy, vz〉.
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5.2 Vector Addition

Add vectors like displacements. Geometrically, represent each vector as an arrow
of the same direction and with a proportional magnitude. Draw the first arrow
~u from head to tail. Next draw the second arrow ~v from the head of the first
arrow. Finally draw the sum arrow ~w = ~u+~v from the tail of the first arrow to
the head of the second arrow, as in Fig. 5.3.

The reverse of a vector ~v is the negative of the original vector −~v. The
difference of two vectors ~u − ~v is the sum of the first vector and the reverse of
the second ~u+(−~v). Twice a vector ~v is simply the sum of the vector with itself
~v + ~v = 2~v, and similarly for other scalar multiples. Thus compute any linear
combination.

Figure 5.3: Geometric addition, reverse, subtraction, and scalar multiplication
of vectors. Vector addition readily checks vector subtraction.

Algebraically, compute
~w = a~u+ b~v. (5.6)

by combining the components, either separately like

wx = a ux + b vx, (5.7a)

wy = a uy + b vy, (5.7b)

wz = a uz + b vz, (5.7c)

or arranged in columns like wx
wy
wz

 = a

 ux
uy
uz

+ b

 vx
vy
vz

 =

 a ux + b vx
a uy + b vy
a uz + b vz

 . (5.8)

Vector scaling, or multiplication of vectors by scalars, enables the creation of
unit vectors by normalization. For example,

v̂ =
~v

v
=

1

v
~v =

1

|~v |
~v =

1√
v2x + v2y + v2z

~v. (5.9)
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5.3 Vector Multiplication

A single geometric product decomposes into the classic dot and cross products.

5.3.1 Geometric Product

Compared to vector addition, vector multiplication is abstract with multiple
kinds, as in Fig. 5.4. However, like vector addition, vector multiplication is very
useful.

Figure 5.4: Vector dot, wedge, and cross products descend from the geometric
product.

Denote the abstract geometric product [14] by the juxtaposition of two vec-
tors ~u~v. The geometric product is associative, so multiplication can be done in
any order,

~u(~v ~w) = ~u~v ~w = (~u~v)~w, (5.10)

but it is not necessarily commutative, so sometimes ~u~v 6= ~v~u. In particular, the
geometric product of the basis vectors are antiysmmetric

x̂ŷ = −ŷx̂, x̂ẑ = −ẑx̂, ŷẑ = −ẑŷ, (5.11)

but normalized
x̂x̂ = 1, ŷŷ = 1, ẑẑ = 1. (5.12)

This abstract algebra enables the multiplication of any two vectors. For example,
the geometric product of the vectors

~u~v = (x̂+ 2ŷ)(x̂− ŷ)

= x̂x̂− x̂ŷ + 2ŷx̂− 2ŷŷ

= −1− 3x̂ŷ (5.13)

is a scalar plus a bivector.
A special element of the algebra is the trivector

I = x̂ŷẑ. (5.14)

Repeated applications of the Eq. 5.11 antisymmetries and the Eq. 5.12 normal-
izations imply

I2 = x̂ŷẑ x̂ŷẑ = −ŷx̂ẑx̂ŷẑ = +ŷẑx̂x̂ŷẑ = +ŷẑŷẑ = −ẑŷŷẑ = −ẑẑ = −1, (5.15)
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so I squares to negative unity like the imaginary number i =
√
−1. In fact, I

relates vectors and bivectors via the duality transformations

Ix̂ = x̂ŷẑx̂ = −x̂ŷx̂ẑ = +x̂x̂ŷẑ = +ŷẑ, (5.16a)

I ŷ = x̂ŷẑŷ = −x̂ŷŷẑ = −x̂ẑ, (5.16b)

I ẑ = x̂ŷẑẑ = +x̂ŷ. (5.16c)

Further permutations imply

x̂I = Ix̂ = ŷẑ, (5.17a)

ŷI = I ŷ = ẑx̂, (5.17b)

ẑI = I ẑ = x̂ŷ. (5.17c)

Thus the trivector I commutes with all vectors, ~v I = I ~v.

5.3.2 Dot, Wedge, & Cross Products

Expand the geometric product of two generic vectors

~u~v = (x̂ ux + ŷ uy + ẑ uz)(x̂ vx + ŷ vy + ẑ vz) (5.18)

to get

~u~v = + x̂x̂ uxvx + x̂ŷ uxvy + x̂ẑ uxvz

+ ŷx̂ uyvx + ŷŷ uyvy + ŷẑ uyvz

+ ẑx̂ uzvx + ẑŷ uzvy + ẑẑ uzvz. (5.19)

Invoke the antisymmetries and normalizations of the basis vectors to segregate
the symmetric and antisymmetric parts and write

~u~v = + uxvx + uyvy + uzvz

+ ŷẑ(uyvz − uzvy) + ẑx̂(uzvx − uxvz) + x̂ŷ(uxvy − uyvx), (5.20)

which is a scalar plus a bivector

~u~v = ~u · ~v + ~u ∧ ~v. (5.21)

The symmetric, scalar part is the interior or inner or dot or scalar product

~u · ~v = uxvx + uyvy + uzvz (5.22)

and the antisymmetric, bivector part is the exterior or outer or wedge or bivector
product

~u ∧ ~v = ŷẑ(uyvz − uzvy) + ẑx̂(uzvx − uxvz) + x̂ŷ(uxvy − uyvx). (5.23)

Use the Eq. 5.17 dualities to write the wedge product as

~u ∧ ~v = I x̂(uyvz − uzvy) + I ŷ(uzvx − uxvz) + I ẑ(uxvy − uyvx) (5.24)
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or
~u ∧ ~v = I ~u× ~v, (5.25)

where the traditional cross or vector product

~u× ~v = x̂(uyvz − uzvy) + ŷ(uzvx − uxvz) + ẑ(uxvy − uyvx). (5.26)

To remember the cross product formula, begin with xyz,

~u× ~v = x̂ uyvz + · · · , (5.27)

antisymmetrize the components by subtraction,

~u× ~v = x̂(uyvz − uzvy) + · · · , (5.28)

and symmetrize the indices by cyclic permutation x→ y → z → x,

~u× ~v = x̂(uyvz − uzvy)

+ ŷ(uzvx − uxvz)
+ ẑ(uxvy − uyvx). (5.29)

The Eq. 5.22, Eq. 5.23, and Eq. 5.26 product formulas imply multiplication
rules for the dot product

x̂ · x̂ = 1,
x̂ · ŷ = 0,
x̂ · ẑ = 0,

ŷ · x̂ = 0,
ŷ · ŷ = 1,
ŷ · ẑ = 0,

ẑ · x̂ = 0,
ẑ · ŷ = 0,
ẑ · ẑ = 1,

(5.30)

and the wedge product

x̂ ∧ x̂ = 0,
x̂ ∧ ŷ = x̂ŷ,
x̂ ∧ ẑ = x̂ẑ,

ŷ ∧ x̂ = ŷx̂,
ŷ ∧ ŷ = 0,
ŷ ∧ ẑ = ŷẑ,

ẑ ∧ x̂ = ẑx̂,
ẑ ∧ ŷ = ẑŷ,
ẑ ∧ ẑ = 0,

(5.31)

and the cross product

x̂× x̂ = ~0,
x̂× ŷ = +ẑ
x̂× ẑ = −ŷ,

ŷ × x̂ = −ẑ,
ŷ × ŷ = ~0,
ŷ × ẑ = +x̂,

ẑ × x̂ = +ŷ,
ẑ × ŷ = −x̂,
ẑ × ẑ = ~0.

(5.32)

Thus the dot product vanishes for perpendicular vectors and the wedge and cross
products vanish for parallel vectors. Furthermore, by Eq. 5.21, if two vectors
are parallel, their wedge product vanishes and their geometric product reduces
to their dot product; if they are perpendicular, their dot product vanishes and
their geometric product reduces to their wedge product. One consequence is
that a vector’s geometric square is also its length squared,

~v 2 = ~v · ~v + ~v ∧ ~v = ~v · ~v = |~v|2 = v2. (5.33)
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Figure 5.5: Multiplication tables, left times top, for the dot, wedge, and cross
products.

The Fig. 5.5 multiplication tables enable dotting, wedging, or crossing any
two vectors. For example, if ~u = 3x̂− 2ŷ and ~v = 2x̂+ ẑ, then

~u · ~v = (3x̂− 2ŷ) · (2x̂+ ẑ)

= 6x̂ · x̂+ 3x̂ · ẑ − 4ŷ · x̂− 2ŷ · ẑ
= 6 + 0− 0− 0

= 6 (5.34)

and

~u× ~v = (3x̂− 2ŷ)× (2x̂+ ẑ)

= 6x̂× x̂+ 3x̂× ẑ − 4ŷ × x̂− 2ŷ × ẑ
= ~0− 3ŷ + 4ẑ − 2x̂

= −2x̂− 3ŷ + 4ẑ. (5.35)

5.3.3 Geometric Intepretation

Given any two vectors ~u and ~v, without loss of generality rotate and scale the
axes so that

~u = x̂ (5.36)

and

~v = x̂ vx + ŷ vy. (5.37)

From the geometry of Fig. 5.6, the dot product

~u · ~v = x̂ · (x̂ vx + ŷ vy) = vx = v cos θ = uv cos θ. (5.38)

and the cross product

~u× ~v = x̂× (x̂ vx + ŷ vy) = ẑ vy = ẑ v sin θ = n̂ uv sin θ, (5.39)

where n̂ is a unit vector perpendicular to both ~u and ~v pointing in the direction
a right-handed screw would advance when rotated from ~u to ~v. The dot product
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Figure 5.6: The dot product generates the projected length (left) and the wedge
and cross products generate the shaded area (right).

is proportional to the cosine of the angle between the vectors and, complemen-
tarily, the cross product is proportional to the sine of the angle between the
vectors. The dot product generates a scalar and, complementarily, the cross
product generates a vector.

If n̂ is a unit vector and ~v is a general vector, then decompose any vector

~v = n̂2~v = (n̂n̂)~v = n̂n̂~v = n̂(n̂~v) = n̂(n̂ · ~v + n̂ ∧ ~v) = ~v‖ + ~v⊥, (5.40)

where
~v‖ = n̂(n̂ · ~v) (5.41)

is the projection and
~v⊥ = n̂(n̂ ∧ ~v) (5.42)

is the rejection of ~v, parallel and perpendicular to n̂.

Figure 5.7: The projection and rejection of the vector ~v on the vector n̂.

For an example, consider the vectors

n̂ = x̂, (5.43)

~v = x̂+ 2ŷ, (5.44)
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as in Fig. 5.7. The dot and wedge products are

n̂ · ~v = 1, (5.45)

n̂ ∧ ~v = 2x̂ŷ, (5.46)

and so the projection and rejection are

~v‖ = x̂, (5.47)

~v⊥ = 2ŷ. (5.48)
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Problems

1. Given the vectors ~u = x̂ − 2ŷ + 3ẑ, ~v = x̂ − ŷ + ẑ, ~w = 2x̂ + ŷ, evaluate
the following sums.

(a) ~u+ ~v.

(b) ~u− ~w.

(c) ~u+ 2~v − 3~w.

2. Repeatedly apply the Eq. 5.11 antisymmetries and the Eq. 5.12 normal-
izations to prove the Eq. 5.17 geometric product dualities.

3. Using the vectors of Problem 5.1, evaluate the following dot products.

(a) x̂ · ŷ.

(b) x̂ · x̂.

(c) ~u · ~v.

(d) ~u · ~w.

(e) ~u · (~v + ~w).

(f) ~u · ~u.

(g) What is the angle between ~u and ~v?

(h) Can you see the top of Mount Everest from a boat floating in the
Bay of Bengal? Hint: Project the vector from Earth’s center to the
top of Everest on the line joining Earth’s center to the boat.

(i) Use the dot product to find the angles between the body diagonals
of a cube.

4. Using the vectors of Problem 5.1, evaluate the following cross products.

(a) x̂× ŷ.

(b) x̂× x̂.

(c) ~u× ~v.

(d) ~u× ~w.

(e) ~u× (~v + ~w).

(f) Construct a unit vector perpendicular to both ~u and ~v.

(g) Prove that the magnitudes of ~r × ~s is the area of the parallelogram
whose sides are ~r and ~s.

(h) Prove that the “box” product ~q · ~r × ~s is the volume of the paral-
lelepiped whose sides are ~q, ~r, and ~s.

5. Use the dot and wedge products to find the projection and rejection of
the vector ~v = 3x̂ − 2ŷ parallel and perpendicular to the direction n̂ =
(x̂+ ŷ)/

√
2. Draw a picture like Fig. 5.7 illustrating the construction.
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Newton’s Laws

Newton’s laws organize mechanics by vector forces rather than scalar energies.

Figure 6.1: Isaac Newton’s personal first edition copy of his Mathematical
Principles of Natural Philosophy with his own handwritten corrections for the
second edition [16].

6.1 Translation

Newton postulated three laws of motion: constant velocity inertial motion is
natural; forces vary directly with accelerations and inversely with masses; forces
come in action-reaction pairs. These laws follow from the principle of stationary

61



Chapter 6. Newton’s Laws 62

action and its corollaries of momentum and energy conservation.
For translational motion, where the Lagrangian L[s, vs] = K[vs] − U [s] de-

pends on positions and linear velocities, the Eq. 4.8 force is the rate of change
of momentum with time,

fs =
dps
dt
, (6.1)

which is Newton’s second law. In modern vector notation,

~f =
d~p

dt
. (6.2)

An everyday push or pull is the force that changes the momentum of a mass.
This form of the second law, which is found in the Principia Mathematica of
Fig. 6.1, applies even to systems whose mass is changing, like a rocket exhausting
burned fuel – or a horse-drawn cart losing hay as it rolls along a bumpy road.

If the mass m is constant, then

~f =
d~p

dt
=

d

dt
(m~v) = m

d~v

dt
= m~a (6.3)

or

~a =
~f

m
, (6.4)

where the force is implicitly the vector sum of all the forces acting on the mass,

~f = ~fnet = ~ftot = ~f1 + ~f2 + · · ·+ ~fN =

N∑
n=1

~fn. (6.5)

A mass’s acceleration, or the rate of change of velocity with time, is the net or
total force divided by the mass. This suggests the causality: force causes accel-
eration, force changes motion (not force causes motion). Imagine the constant
downward force of gravity changing the motion of tossed ball from up to down
(or changing its velocity from positive to negative).

Solve many practical problems by decomposing the force law into compo-
nents along a particular direction. For example, the sum of the forces in the s
direction is the mass time the acceleration in the s direction,∑

fs = mas. (6.6)

Since the momentum of an isolated system is conserved, the momentum
~p = m~v is constant. Further, if the system’s mass m does not change, then its
velocity is constant,

~v = ~v0, (6.7)

which is Newton’s first law. As Galileo had already concluded, in the absence
of external interactions, mass moves at constant velocity. Constant velocity
means unchanging speed in a straight line. The first law is a special case of
the second law where force ~f = ~0 and so acceleration ~a = ~f/m = ~0. It can be
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counterintuitive or difficult to observe in everyday life because of the practical
problem of reducing or eliminating external interactions. Figure skating is one
familiar activity where the law of “inertia” might be somewhat intuitive.

In order to conserve total momentum, when two masses interact, they must
exchange momenta that are equal in magnitude but opposite in direction. Dur-
ing a small time dt, the change in the momentum of mass mi due to its interac-
tion with mass mj is d~pij . The total momentum of the isolated system of both
masses

~0 = d~p = d~p12 + d~p21 (6.8)

does not change, so
d~p12 = −d~p21 (6.9)

and
~f12 =

d~p12
dt

= −d~p21
dt

= −~f21, (6.10)

which is Newton’s third law. When two masses interact, the force on one is equal
in magnitude and opposite in direction to the force on the other.

However, “equal but opposite” momentum transfers can have very different
results if the masses are very different. For example, when you jump to dunk a
basketball, Earth barely recoils. Note that the Eq. 6.10 “action-reaction” forces
always apply to different masses. In the basketball jump, you push on Earth and
Earth pushes on you, but your smaller mass results in a far larger acceleration,
as acceleration is inverse to mass by Newton’s second law.

6.1.1 Contact Acceleration

Newton’s laws build good intuition about forces and accelerations. Suppose an
external force ~f accelerates a heavier block of mass m1 in contact with a lighter
block of mass m2 < m1, as on the left of Fig. 6.2. By Newton’s second law, the
acceleration ~a of both blocks together or the lighter block alone

~a =
~f21
m2

=
~f

m1 +m2
. (6.11)

Hence the contact force

~fc = ~f21 =
m2

m1 +m2

~f =
1

1 +m2/m1

~f. (6.12)

As a check, using Newton’s third law, the acceleration of the heavier block alone

~a =
~f + ~f12
m1

=
~f − ~f21
m1

=
1

m1

(
1− m2

m1 +m2

)
~f =

~f

m1 +m2
, (6.13)

as expected.
If the external force accelerates the lighter block in contact with the heavier

block, as on the right of Fig. 6.2, the new contact force

~f ′c = ~f ′12 =
m1

m2 +m1

~f =
1

1 +m1/m2

~f, (6.14)
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Figure 6.2: An external force ~f accelerates two blocks in contact. A larger
contact force f ′12 > f21 accelerates the larger mass.

and the ratio of the contact forces magnitudes

f21
f ′12

=
fc
f ′c

=
m2

m1
< 1, (6.15)

so the larger contact force accelerates the larger mass.

6.1.2 Train

A locomotive accelerates a train of four cars of mass m with a force ~f = ~f4, as
in Fig. 6.3, where the tension in the coupling between the cars is ~fn.

Figure 6.3: A locomotive accelerates a train of four cars. The tension coupling
the cars decreases toward the rear of the train. Each dashed subgroup separately
obeys Newton’s second law.

By Newton’s second law, the acceleration of the train as a whole and of any
sequence of cars is

~a =
~f

4m
=

~f3
3m

=
~f2

2m
=

~f1
m
. (6.16)

Hence the tensions are

~f1 = m~a, (6.17a)

~f2 = 2m~a, (6.17b)

~f3 = 3m~a, (6.17c)

~f = ~f4 = 4m~a. (6.17d)

While accelerating, the greatest tension is between the locomotive and the first
car, and the least tension is between the penultimate car and the caboose.
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6.1.3 Atwood Machine

An Atwood machine demonstrates constant acceleration. It consists of two
masses M and m ≤ M hanging from either side of an ideal pulley by a single
massless string, as in Fig. 6.4. If the string’s tension force magnitude is ft > 0
and the gravity force magnitude or weight of the masses is Fg = Mg and
fg = mg, then Newton’s second law applied to both masses requires

~ft + ~fg = m~a, (6.18a)

~Fg + ~ft = M ~A. (6.18b)

If the string is inextensible, the accelerations of both masses are the same, ~a = ~A.
Projecting onto the s direction gives

ft −mg = mas, (6.19a)

Mg − ft = Mas. (6.19b)

Adding implies
(M −m)g = (M +m)as, (6.20)

so the constant acceleration

as =
M −m
M +m

g ≥ 0. (6.21)

Figure 6.4: An Atwood machine exhibits constant acceleration (left) and may
be conceptually “unwrapped” to a straight line (right).

Substituting the acceleration into Eq. (6.19a) gives the tension magnitude

ft = m(as + g) =
2Mm

M +m
g = 2mrg, (6.22)

where the reduced mass

mr =
Mm

M +m
=

1

M/m+ 1
M ≤M (6.23)
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and

mr =
Mm

M +m
=

1

1 +m/M
m ≤ m (6.24)

is less than either mass and is the reciprocal of the sum of the reciprocals of the
masses,

1

mr
=

1

M
+

1

m
. (6.25)

Thus the tension magnitude is less than twice either weight, and by addition
and halving, the tension magnitude is less than the total weight,

ft ≤ (M +m)g. (6.26)

When the masses are equal, M = m, the acceleration vanishes, as = 0, the
masses move at constant (possibly zero) velocity, and the tension magnitude is
the weight of either mass, ft = mg = Mg.

Check the acceleration using the Lagrangian approach. The kinetic energy

K =
1

2
Mv2s +

1

2
mv2s (6.27)

and the potential energy
U = −Mgs+mgs, (6.28)

so the Lagrangian

L = K − U =
1

2
(M +m)v2s + (M −m)gs. (6.29)

The Lagrange equation

(M −m)g =
∂L
∂s

=
d

dt

∂L
∂vs

= (M +m)as, (6.30)

so the acceleration

as =
M −m
M +m

g (6.31)

as before.

6.1.4 Incline

A box rests on a plank. How far can the plank tilt before the box slides, as in
Fig. 6.5?

Assume a maximal frictional force magnitude proportional to the normal or
perpendicular force between the box and the plank,

ff = µfn, (6.32)

where the proportionality constant µ is the static friction coefficient. By New-
ton’s second law, no slipping means zero acceleration and

~ff + ~fn + ~fg = m~a = ~0. (6.33)
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Figure 6.5: The steepest incline θ for which the box does not slide down an
incline with friction coefficient µ.

Choose a coordinate system parallel and perpendicular to the incline and de-
compose this vector equation into two scalar equations

µfn + 0−mg sin θ = max = 0, (6.34a)

0 + fn −mg cos θ = may = 0, (6.34b)

or

µfn = mg sin θ, (6.35a)

fn = mg cos θ, (6.35b)

and by division
µ = tan θ. (6.36)

The friction coefficient µ sets the maximum angle θ, and measuring this angle
determines the coefficient.

6.1.5 Movable Incline

A box of mass m slides down a movable wedge of mass M and inclination angle
θ, as in Fig. 6.6. Neglecting friction, what are the accelerations of the box and
wedge?

The acceleration of the box relative to the ground ~a is the acceleration of
the box relative to the wedge ~ar plus the acceleration of the wedge relative to
the ground ~A,

~a = ~ar + ~A, (6.37)

or in components parallel and perpendicular to the ground

aX = +ar cos θ −A, (6.38a)

aY = −ar sin θ. (6.38b)

Newton’s second law applied to the box implies

~fg + ~fn = m~a (6.39)
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Figure 6.6: The wedge recoils as the box slides down it. The relative acceleration
~ar between the box and the wedge is parallel to the wedge’s slope.

and applied to the wedge implies

~Fg − ~fn + ~Fn = M ~A, (6.40)

or in components parallel and perpendicular to the ground

fn sin θ = maX = +mar cos θ −mA, (6.41a)

−mg + fn cos θ = maY = −mar sin θ, (6.41b)

and

−fn sin θ = MAX = −MA, (6.42a)

−Mg + Fn − fn cos θ = MAY = 0. (6.42b)

Solve these four equations in four unknowns to find the accelerations

A =
m sin θ cos θ

M +m sin2 θ
g, (6.43)

ar =
(M +m) sin θ

M +m sin2 θ
g, (6.44)

and the normal forces

fn =
m cos θ

M +m sin2 θ
Mg, (6.45)

Fn =
M +m

M +m sin2 θ
Mg. (6.46)

As a check, if the wedge is very massive so that M →∞, then

A→ 0, (6.47)

ar → g sin θ, (6.48)

fn → mg cos θ, (6.49)

Fn →∞, (6.50)
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as expected.
Further check the acceleration using the Lagrangian approach. The velocity

of the box relative to the ground ~v is the velocity of the box relative to the wedge
~vr = d~r/dt plus the velocity of the wedge relative to the ground ~V = d~R/dt,

~v = ~vr + ~V . (6.51)

Hence, the kinetic energy

K =
1

2
MV 2 +

1

2
mv2, (6.52)

where

v2 = ~v ·~v = v2r +2~vr · ~V +V 2 = v2r +2vrV cos[π−θ]+V 2 = v2r−2vrV cos[θ]+V 2.
(6.53)

The potential energy
U = −Mgr sin θ. (6.54)

The Lagrangian

L = K − U

=
1

2
MV 2 +

1

2
m(v2r − 2vrV cos[θ] + V 2) +Mgr sin θ

=
1

2
(M +m)V 2 +

1

2
mv2r −mvrV cos[θ] +Mgr sin θ. (6.55)

There are two Lagrange equations, one for the wedge coordinate R and the
other for the box coordinate r,

0 =
∂L
∂R

=
d

dt

∂L
∂V

= (M +m)A−mar cos θ, (6.56a)

mg sin θ =
∂L
∂r

=
d

dt

∂L
∂vr

= mar −mA cos θ. (6.56b)

Multiply the second equation by cos θ and add to the first to get

mg sin θ cos θ = (M +m)A−mA cos2 θ (6.57)

and so

A =
mg sin θ cos θ

M +m−m cos2 θ
=

m sin θ cos θ

M +m sin2 θ
g, (6.58)

as before.

6.2 Rotation

An extended mass of pieces dm at distances r from a fixed axis rotates with
angular velocity ωθ = dθ/dt, as on the left of Fig. 6.7. At a distance r, rotation
through an angle θ sweeps out an arc length ` = rθ, which implies a tangential
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speed vθ = rωθ (and a tangential acceleration aθ = rαθ). The total kinetic
energy is the sum

K =

∫
dK =

∫
1

2
dmv2θ =

∫
1

2
dmr2ω2

θ =
1

2

(∫
dmr2

)
ω2
θ =

1

2
Iω2

θ , (6.59)

where the rotational inertia

I =

∫
dmr2 =

∫
r2dm (6.60)

depends on the mass and its distribution about the rotation axis.

Figure 6.7: Rotation about a fixed axis (left) and motion past a fixed axis (right).

For rotational motion, where the Lagrangian L[θ, ωθ] = K[ωθ]−U [θ] depends
on angles and angular velocities rather than positions and linear velocities, the
generalized force is the torque

τθ = fθ =
∂L
∂θ

= −∂U
∂θ

, (6.61)

and the generalized momentum is the angular momentum

Lθ = pθ =
∂L
∂ωθ

= Iωθ, (6.62)

where τ and L are conventional symbols for torque and angular momentum.
The resulting Lagrange equation

fθ =
dpθ
dt

(6.63)

or

τθ =
dLθ
dt

(6.64)

is the rotational form of Newton’s second law. In vector notation,

~τ =
d~L

dt
. (6.65)
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If the mass and its distribution are fixed, then

~τ = I
d~ω

dt
= I~α, (6.66)

where ~α = d~ω/dt is the mass’s angular acceleration.
A point mass m moving with velocity ~v at a displacement ~r from a fixed

axis, as on the right of Fig. 6.7, has angular velocity

~ω = ωω̂ =
∣∣∣vθ
r

∣∣∣ ω̂ =
v sinϕ

r
ω̂ =

ω̂ rv sinϕ

r2
=
~r × ~v
r2

, (6.67)

and hence angular momentum

~L = I~ω =

∫
dmr2~ω =

(∫
dm

)(
r2~ω

)
= m~r × ~v = ~r × ~p (6.68)

and torque

~τ =
d~L

dt
=

d

dt
(~r × ~p) =

d~r

dt
× ~p+ ~r × d~p

dt
= ~v ×m~v + ~r × ~f = ~r × ~f. (6.69)

In general, torque is the moment of force ~τ = ~r × ~f , and angular momentum is
the moment of momentum ~L = ~r × ~p.

Table 6.1: Translation and rotation formulas in popular notation.
Translation Rotation

d~r d~θ

~v =
d~r

dt
~ω =

d~θ

dt

~a =
d~v

dt
=
d2~r

dt2
~α =

d~ω

dt
=
d2~θ

dt2

m I =

∫
dmr2

K =
1

2
mv2 K =

1

2
Iω2

~p = m~v ~L =
bulk

I~ω =
point

~r × ~p

~f ~τ = ~r × ~f∑
~f =

d~p

dt

∑
~τ =

d~L

dt∑
~f = m~a

∑
~τ = I~α

Table 6.1 compares the key translational and rotational formulas (not all
of which are valid in every situation). One disanalogy between rotation and
translations is that while vectors can represent translations, they cannot repre-
sent finite rotations, which do not commute. (For example, rotating a book 90◦
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about its cover and then 90◦ about its spine orients it differently than rotating
it 90◦ about its spine and then 90◦ about its cover.) Fortunately, infinitesi-
mal rotations do commute, allowing vectors to represent rotational or angular
velocity and acceleration.

6.2.1 Massive Pulley

As an example, an ideal cable draped over a pulley of mass Mp, radius R, and
rotational inertia I = 1

2MpR
2, ties a box of mass m sliding horizontally to a

box of mass M falling vertically, as in Fig. 6.8.

Figure 6.8: An ideal cable draped over a pulley of rotational inertia I ties a box
of mass m sliding horizontally to a box of mass M falling vertically.

The translational and rotational versions of Newton’s second law applied to
each mass imply

~fn + ~fg + ~ft = m~a, (6.70)

~r × ~ft + ~R× ~Ft = I~α, (6.71)

~Ft + ~Fg = M ~A, (6.72)

where r = R and a = A (even though ~r 6= ~R and ~a 6= ~A as r̂ ⊥ R̂ and â ⊥ Â).
The angular acceleration ~α is parallel to the pulley’s axis and inward, so that
if the fingers of a right hand curl with the rotation of the pulley, then the
thumb points in the direction of the angular acceleration. Decompose along the
acceleration to find

0 + 0 + ft = ma, (6.73)

−�Rft +�RFt =

(
1

2
Mp@R �

2

)( a
@R

)
, (6.74)

−Ft +Mg = Ma. (6.75)
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Add the equations to get

Mg = ma+
1

2
Mpa+Ma, (6.76)

and so the acceleration

a =
M

m+Mp/2 +M
g ≤ M

m+M
g. (6.77)

Check the acceleration using the Lagrangian approach. If the velocity ~v =
d~s/dt, where s locates the positions of the boxes, then the kinetic energy

K =
1

2
mv2 +

1

2
Iω2 +

1

2
Mv2

=
1

2
mv2 +

1

2

(
1

2
MpR

2

)( v
R

)2
+

1

2
Mv2

=
1

2

(
m+

Mp

2
+M

)
v2, (6.78)

and the potential energy
U = −Mgs, (6.79)

as the potential energy decreases as s increases. Hence the Lagrangian

L = K − U =
1

2

(
m+

Mp

2
+M

)
v2 +Mgs. (6.80)

The Lagrange equation

Mg =
∂L
∂s

=
d

dt

∂L
∂vs

=

(
m+

Mp

2
+M

)
a, (6.81)

so the acceleration

a =
M

m+Mp/2 +M
g (6.82)

as before.

6.3 Circular Motion

Newton’s second law relates forces to accelerations or velocity changes. Acceler-
ations can change both the magnitudes and directions of velocities. Importantly,
objects in constant circular motion have velocities of constant magnitude but
changing direction.

Consider an object moving in a circle of radius r at speed v, as in Fig. 6.9.
In a short time dt, it moves an arc length

d` = r dϕ (6.83)
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at a constant speed

v =
d`

dt
= r

dϕ

dt
= rω, (6.84)

yet from the geometry, its velocity changes by

d~v = −r̂ v dϕ (6.85)

with an acceleration

~a =
d~v

dt
= −r̂ v dϕ

dt
= −r̂ vω (6.86)

or

~a = −r̂ rω2 = −r̂ v
2

r
, (6.87)

which is a = rω2 = v2/r towards the circle’s center.

Figure 6.9: An object in constant circular motion at times t and t+ dt.

For a more algebraic and less geometric derivation, if the object’s position

~r = x̂R cosϕ+ ŷR sinϕ, (6.88)

then its velocity

~v =
d~r

dt
= −x̂R sinϕ

dϕ

dt
+ ŷR cosϕ

dϕ

dt
= (−x̂R sinϕ+ ŷR cosϕ)ω, (6.89)

and its acceleration

~a =
d~v

dt
= (−x̂R cosϕ− ŷR sinϕ)ω2 = −~r ω2 = −r̂ rω2, (6.90)

as before.
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6.3.1 Hill

As an example, consider a car moving at speed v over a hill of radius R, as in
Fig. 6.10. How fast can the car drive and still stay in contact with the road?

Figure 6.10: A car cresting a hill is instantaneously moving in a circle.

At the peak of the hill, the car is instantaneously moving in a circle of radius
R at speed v, and so Newton’s second law

~fn + ~fg = m~a (6.91)

implies

− fn +mg = madown = +m
v2

R
, (6.92)

or equivalently

+ fn −mg = maup = −mv2

R
. (6.93)

Hence the normal force of the hill on the car is less than the car’s weight,

fn = mg −mv2

R
= m

(
g − v2

R

)
< mg. (6.94)

For the car to remain in contact with the road, the normal force must not vanish,
and 0 < fn implies v2/R < g or

v <
√
gR. (6.95)

6.3.2 Slingshot

Consider a mass m in a sling moving in a vertical circle of radius R at speed v,
as in Fig. 6.11. At the circle’s top, Newton’s second law

~ft + ~fg = m~a (6.96)
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implies

ft +mg = madown = mainward = +m
v2

R
. (6.97)

Hence the top tension

ft = m
v2

R
−mg = m

(
v2

R
− g
)
. (6.98)

To remain taut, the sling tension must be positive, and 0 < ft implies v2/R > g
or

v >
√
gR. (6.99)

Figure 6.11: A sling moves a mass m in a vertical circle of radius R at speed v.

At the circle’s bottom, Newton’s second law

~Ft + ~fg = m~a (6.100)

implies

+ Ft −mg = maup = mainward = +m
v2

R
. (6.101)

Hence the bottom tension

Ft = m
v2

R
+mg = m

(
v2

R
+ g

)
> mg (6.102)

At the bottom, the sling tension must support the mass and accelerate it in a
circle. Half the difference between the bottom and top tensions is the mass’s
weight,

Ft − ft
2

= mg. (6.103)
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6.3.3 Inertial Frames

Newton’s laws are only valid in non accelerating or inertial reference frames.
Only in such frames do isolated objects move in straight lines, for example.
Newton’s laws are invalid in accelerating or non inertial reference frames, such
as rotating reference frames. However, despite its rotation, Earth’s surface is
an approximate inertial reference frame. Earth’s equator moves at a speed

v =
2πR⊕
T

≈ 25 000 mi

24 hr
≈ 1000

mi

hr
(6.104)

relative to the poles. Hence the circular acceleration at the equator is

a =
v2

R⊕
≈ (1000 mi/hr)2

4000 mi
= 250

mi

hr2
=

250

22× 3600

22 mph

s
≈ 1

300
g � g.

(6.105)

6.4 Work & Impulse

In everyday language, a force is a push or a pull. In mechanics, a force ~f
mediates energy and momentum transfers. A mass m with velocity ~v = d~s/dt
has kinetic energy

K =
1

2
mv2 =

1

2
m~v · ~v, (6.106)

which changes with time at the rate

dK

dt
=

1

2
m
d~v

dt
· ~v +

1

2
m~v · d~v

dt
= m

d~v

dt
· ~v = ~f · ~v = ~f · d~s

dt
. (6.107)

In a small time dt the mass moves a small displacement d~s, and the kinetic
energy changes by

dK = ~f · d~s. (6.108)

In the same time, the momentum changes by

d~p = ~f dt. (6.109)

Sum over space to form the work

W = ∆K =

∫
~f · d~s. (6.110)

and sum over time to form the impulse

J = ∆~p =

∫
~f dt. (6.111)

(Since the symbol I is overused, the next letter in the alphabet J is often used
for impulse.) Force integrated over space is the work done, while force integrated
over time is the impulse given. Kinetic energy change is force integrated over
space, while momentum change is force integrated over time.
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6.4.1 Hockey Puck

As an example, consider a hockey puck of mass m slapped with initial speed v0
that slides a length ` before stopping. The friction coefficient between the puck
and the ice follows from the Eq. 6.110 work energy relation,

0− 1

2
mv20 = ∆K = W =

∫
~ff · d~s = −ff ` = −µfn` = −µmg ` (6.112)

or

µ =
v20
2g`

. (6.113)

6.5 Variable Mass Rockets

A rocket ejects burned fuel rearward to recoil forward, as in Fig. 6.12. The
forward force on the rocket is the reaction to the rearward force on the exhaust.
Because the rocket’s mass is not conserved, analyze the dynamics with the more
general version of Newton’s second law, ~f = d~p/dt.

Figure 6.12: A rocket ejects mass in one direction to recoil in the othe r, even
in the vacuum of empty space. Exhaust velocity is negative relative to the
rocket but may be negative or positive relative to the stars (if the rocket moves
sufficiently slow or fast).

Because no external forces act on the rocket and its exhaust, their momentum
is conserved. If the rocket of mass M moves at velocity Vs > 0 and in time δt > 0
ejects a mass −δM > 0 at velocity vs ≶ 0 relative to the distant stars, then

0 = ∆ps = p′s − ps

=

(
(M + δM)(Vs + δVs) + (−δM)vs

)
−MVs

=���MVs +M δVs + δM Vs + δMδVs − δM vs −���MVs (6.114)

and so

δVs
δM

=
vs − Vs − δVs

M
. (6.115)
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In the limit δt→ 0, both δVs → 0 and δM → 0 such that the rate of change of
the rocket’s velocity with respect to mass

dVs
dM

=
vs − Vs
M

=
vr
M

= − v

M
, (6.116)

where vr = vs − Vs is velocity of the exhaust relative to the rocket, and v =
−vr > 0 is the speed of the exhaust relative to the rocket. Assuming the relative
exhaust speed v is constant, integrate∫ Vf

Vi

dVs = −v
∫ Mf

Mi

dM

M
(6.117)

to find
Vf − Vi = −v(logMf − logMi) (6.118)

which is the rocket equation

∆V = v log

[
Mi

Mf

]
> 0. (6.119)

The ∆V of a rocket is proportional to the relative exhaust speed and the loga-
rithm of the ratio of the initial to final masses. Typical rockets maximize their
∆V by minimizing their payload fraction

Mf

Mi
= e−∆V/v. (6.120)

By Eq. 6.119, from rest an ideal rocket can exceed its exhaust speed ∆V > v
provided its payload fraction Mf/Mi < e ≈ 2.7. Actual rocket payload fractions
are sometimes less than 1% = 0.01� e, as rockets are mainly fuel.
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Problems

1. You ask a mule to pull a plow. The mule resists, explaining that “If I
tug on the plow, Newton’s third law asserts that the plow will tug on me
with an equal but opposite force. Since these forces will cancel each other
out, it is obvious that we’re not going anywhere. Therefore, there is no
point in trying.” Carefully (but gently) explain to the mule the error in
its reasoning and, using appropriate diagrams, explain why it is possible
for the mule to accelerate the plow.

2. A crane hauls a crate of mass m upward at a constant acceleration a.
What is the magnitude of the tension force on the crate by the crane’s
cable?

3. You are standing on a bathroom scale in an elevator moving downward.
If your mass is 60 kg and the scale reads 750 N, what is the magnitude
and direction of the elevator’s acceleration?

4. A box rests on a slab. If the static friction coefficient between the box and
the slab is µ, what is the maximum acceleration of the slab beyond which
the box will slide?

5. You a pilot a spaceship of mass m hauling a cargo of mass M with a cable
with a breaking tension of ft.

(a) What is the maximum acceleration you can give the cargo?

(b) What thrust must your engines exert to provide this acceleration?

6. An ideal cable draped over an ideal pulley ties a box of mass m sliding
horizontally to a box of mass M falling vertically.

(a) Find the boxes’ acceleration a and the cable’s tension ft.

(b) Check that your formulas for acceleration and tension make sense in
the limits M = 0 and m = 0.

7. Solve the Section 6.1.4 incline problem using a coordinate system parallel
and perpendicular to the ground.

8. Find the acceleration and both tensions in an Atwood’s machine with
suspended masses M and m and a massive pulley of rotational inertia
I = 1

2MpR
2.

9. As you drive a car around a curve at a constant speed of 50 mph, an
accelerometer in the car measures its sideways acceleration to be 0.1 g.
What is the radius of the curve?

10. You ride a Ferris wheel that rotates at a constant rate. At the highest
point, the seat exerts a normal force fn on you; at the lowest point, the
seat exerts a normal force of Fn on you. How much do you weigh?
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11. “Rotor” is an amusement park ride that consists of a hollow cylindrical
room that rotates around a central vertical axis. You enter the room
and stand against the curved wall. The room begins to rotate, and when
a certain speed is reached, the floor drops away, revealing a deep pit.
You do not fall, though, because a friction force exerted by your contact
interaction with the wall supports you. Assuming a radius R and a static
friction coefficient µ, derive a formula for the minimum rotation period T
that will pin you to the wall.

12. You drive a car through a hairpin curve of radius R that banks at an angle
θ. If the static friction coefficient between your tires and the road is µ,
what is the maximum speed with which you can go around the curve?
Hint: Sketch the curve both from above and in cross section.

13. An unpowered roller-coaster car starts at rest at the top of a hill of height
H, rolls down the hill, and then goes around a vertical loop of radius R.
How high should the hill be so that the car does not lose contact with the
track? Hint: Combine conservation of energy with Newton’s Laws.

14. A spring of stiffness κ connects two otherwise free masses M and m located
at positions X and x.

(a) Use Newton’s second law and Hooke’s Eq. 2.35 to write two differ-
ential equations for the motion of the masses. Hint: Choose the
algebraic signs of the spring forces carefully.

(b) Show that the center-of-mass xcm = (mx+MX)/(m+M) does not
accelerate. Hint: Add the equations to eliminate the force terms.

(c) Show that the coordinate difference δ = X − x obeys the simple
harmonic oscillator Eq. 4.26. Hint: Linearly combine the equations.

(d) Express the resulting temporal frequency ω as a function of the re-
duced mass mr = mM/(m+M). What happens as M →∞?

15. A wheel of mass m, radius r, and rotational inertia I rolls without slipping
down an incline at an angle ϕ from the horizontal. As the wheel rotates
through an angle θ, its axis translates through a length ` = rθ.

(a) Write the rotational and translational kinetic energies of the wheel.

(b) Write the gravitational potential energy of the wheel.

(c) Construct the Lagrangian in terms of θ and ωθ = dθ/dt.

(d) Substitute into Lagrange’s equations and solve for the linear acceler-
ation a` = rαθ, where αθ = dωθ/dt.

(e) Compute the accelerations of a hoop of rotational inertia I = mr2, a
disk or cylinder of rotational inertia I = 1

2mr
2, and a wheel or box

that slides without friction. In a race, which wins?
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(f) Create a two-column and three-row table listing the fractions of ki-
netic energy in rotation and translation for the hoop, disk, and box.
Which is the best translator?

16. Consider a multi-stage rocket with relative exhaust speed v.

(a) What is the ∆V of the first stage if 80% of the rocket’s mass is the
first stage fuel or wet mass and 10% is the first stage dry mass (with
the remaining 10% being the rest of the rocket)?

(b) What is the total ∆V if the rocket has two additional but similar (and
subsequently smaller) stages, where each stage is discarded after it
exhausts its fuel?

(c) What is the rocket’s payload fraction?



Chapter 7

Gravity

Newton’s laws unite the fall of an apple with the orbit of Luna.

Figure 7.1: Newton’s famous drawing of projectiles shot from a mountain top
with increasing speeds until they beginning falling around Earth; terrestrial falls
and celestial orbits are extremes of the same phenomenon [7].

7.1 Universal Gravity

Isaac Newton realized that the moon is falling – falling towards Earth’s cen-
ter like an apple falling from a tree, but with enough tangential speed to miss
Earth’s surface, as in Fig. 7.1. This insight united the work of Newton’s pre-
decessors in the previous generation, Galileo Galilei and Johannes Kepler, on
terrestrial fall and celestial orbits.

83
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Newton postulated a universal gravitational interaction between any two
masses. In modern language, if a distance r separates two masses m and M ,
then their gravitational potential energy

U = −GMm

r
. (7.1)

By Eq. 2.34, the radial force between them

fr = −dU
dr

= −GMm

r2
, (7.2)

so the vector force

~f = −r̂ GMm

r2
(7.3)

and force magnitude

f = G
Mm

r2
, (7.4)

where the universal gravitational constant

G = 6.67× 10−11
N m2

kg2
= 66.7

pN m2

kg2
, (7.5)

so that two 1 kg masses separated by 1 m attract each other with the minus-
cule force of 66.7 pN. If the masses floated in the vacuum of deep space, the
resulting feeble accelerations would require just over a day to collide them. The
gravitational force is so weak that unless Earth is one of the masses, the force is
typically overwhelmed by frictional forces (which are ultimately electromagnetic
in origin).

The inverse-square nature of the gravitational force reflects the three dimen-
sional nature of space: at a distance r for a point mass, the force is “diluted”
over a spherical surface of radius r and area 4πr2. The radial nature of the
gravitational force reflects the isotropy of space: since a non-radial component
point can’t point in one direction without pointing in the other, it doesn’t exist.

7.2 Newton’s Shell Theorems

If the Eq. 7.2 gravitational force applied to only point masses, it would be of
limited utility. However, Newton proved a couple of “superb” theorems (num-
bers XXX and XXXI of Book I of the Principia), which implies that the same
force law applies both to hollow and solid spheres. This is tremendously useful
in astronomy and astrophysics, as most stars and planets are well approximated
as spheres.

Geometry and the idea of integrals as “ultimate sums” are all that is needed
to prove the superb theorems. The geometry includes planar angles and solid
angles, which are reviewed in Appendix B.
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7.2.1 Interior Shell Theorem

Consider a point mass m inside a spherical shell of mass M and radius r , as in
Fig. 7.2.

spherical shell

Figure 7.2: Opposing small areas δa and δA of a spherical shell equally attract
an interior point mass m.

At a distance r subtending a small solid angle δΩ and at an angle θ, the
small area element

δa =
r2δΩ

cos θ
(7.6)

of mass

δm = M
δa

4πr 2 (7.7)

attracts the interior point mass with a small force magnitude

δf =
Gmδm

r2
=
Gm

r2
M

δa

4πr 2 =
GmM

��r
2

1

4πr 2
��r
2 δΩ

cos θ
=
GmM

r 2
δΩ

4π cos θ
. (7.8)

The inverse square nature of the force is essential to the cancellation of the
distance r. The shared planar and solid angles θ and δΩ ensure that the force
magnitude δF on the opposite area element δA is the same. Thus δF = δf and
δ ~F = −δ ~f , and these force pairs cancel. Divide the rest of the spherical shell
into similar pairs to show that the net force on any interior point mass vanishes.

7.2.2 Exterior Shell Theorem

Consider a source shell of mass M concentric with an observation shell of radius
r, as in Fig. 7.3.
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source sphere

observation sphere

Figure 7.3: Source element mass δM causes gravitational acceleration δ~g at
observation element area δa.

Let δm be a small mass element of the source sphere, and let

δa =
`2δΩ

cos θ
, (7.9)

be a small area element at a distance ` and an angle θ subtending a solid angle
δΩ on the observation shell, where the point mass causes a radial gravitational
acceleration

δgr = −δg cos θ = −GδM
`2

cos θ, (7.10)

which averaged over the observing sphere is

〈δgr〉 =

∫
o
δgr δa∫
o
δa

=

(
−GδMXXXcos θ/��̀2

)(
��̀2HH4π/XXXcos θ

)
HH4πr2

= −GδM
r2

, (7.11)

as
∫
δΩ = 4π. By spherical symmetry, the total radial acceleration, due to all

mass elements, is the same everywhere on the shell, and so

gr = 〈gr〉 =

∫
s

〈δgr〉 = −GM
r2

, (7.12)

as
∫
δM = M . For an external point mass m, the force

fr = mgr = −GMm

r2
, (7.13)

which is the same as the force between two point masses [17]. Apply the above
argument to the point mass to generalize to the force between to two shells.
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Decompose solid spheres into concentric shells to generalize to two solid spheres,
even if the density varies with radius.

However, the force between two non-spheres is different. For example, in
the slashdot (/.) body problem [18], a point of mass m is displaced ~r from the

center of a line of mass M , length `, and orientation ˆ̀. If the directions from
the point mass to the line segment’s ends are r̂±, then the force on the point
mass is

~f = −GMm
(r̂+ − r̂−)

|~̀× ~r |
× n̂, (7.14)

where the unit vector n̂ = ~̀×~r / |~̀×~r | is normal to the plane of the motion. The
slashdot force reduces to the Eq. 7.2 gravitational force for two point masses in
the limit `→ 0.

7.3 Trans Earth Tunnel

Consider a straight tunnel through Earth, as in Fig. 7.4. Drop a mass m in one
end. How long before it reaches the other end, and how long before it returns?
Assume the tunnel is evacuated and ignore Earth’s rotation.

Figure 7.4: Due to gravity, a point mass m oscillates sinusoidally inside a trans
Earth tunnel.

If the mass m is at a distance r from Earth’s center, then by the interior
shell theorem, the exterior mass doesn’t contribute a force, and by the exterior
shell theorem, the interior mass

Mr = M⊕

4
3πr

3

4
3πR

3
⊕

= M⊕
r3

R3
⊕

(7.15)
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contributes a force as if all of it where at the sphere’s center. Hence, if the
mass is a distance s from the tunnel’s center, which is a distance d from Earth’s
center, then Newton’s second law

~fn + ~fg = m~a, (7.16)

implies

0− GMr��m

r2
sin θ =��mas =��m

d2s

dt2
, (7.17)

where sin θ = s/d. Hence,

− GM⊕

��r
2

��r
3

R3
⊕

s

�r
=
d2s

dt2
(7.18)

or
d2s

dt2
+
GM⊕
R3
⊕
s = 0. (7.19)

This simple harmonic oscillator differential equation, like Eq. 4.26, has the si-
nusoidal solution

s[t] = A cos[ωt+ δ], (7.20)

where the amplitude A and the phase shift δ depend on the initial conditions,
provided the angular frequency

ω =

√
GM⊕
R3
⊕

=

√
g

R⊕
. (7.21)

The mass m executes sinusoidal motion with period

T =
2π

ω
= 2π

√
R⊕
g
≈ 84 min. (7.22)

Passengers could embark an unpowered vehicle at one end and fall through the
trans Earth tunnel to disembark at the other end about T/2 ≈ 42 min later.
The travel time is independent of the distance d, including d = 0 for the longest
possible trip through Earth’s center to the antipodes!

7.4 Near-Earth Gravity

The Eq. 7.1 gravitational potential energy simplifies for motion in a terrestrial
laboratory. According to the exterior shell theorem, a mass m at a height h
above an Earth of mass M⊕ and radius R⊕ has potential energy

U [R⊕ + h] = −G M⊕m

R⊕ + h
= −GM⊕m

R⊕

(
1 +

h

R⊕

)−1
, (7.23)
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or by the binomial theorem and assuming h� R⊕,

U [R⊕ + h] = −GM⊕m
R⊕

(
1−

(
h

R⊕

)
+

(
h

R⊕

)2

− · · ·

)

≈ −GM⊕m
R⊕

(
1− h

R⊕

)
= −GM⊕m

R⊕
+m

GM⊕
R2
⊕
h

= U [R⊕] +mgh, (7.24)

where the terrestrial gravitational field (or equivalently the free-fall acceleration)

g =
GM⊕
R2
⊕

= 9.8
N

kg
= 9.8

m

s2
. (7.25)

“Big G” is a universal constant, presumably the same everywhere in the visible
universe, but “small g” is the local gravitational field, which varies with altitude
on Earth and is different on Luna or Mars. The first term on the right side of
the Eq. 7.24 potential energy merely shifts the energy by a constant, as in
Fig. 7.5, which does not affect either Lagrange’s equations or the force, and
may be omitted. The combination mgh is a very useful linear approximation
to the gravitational potential energy near Earth.

Figure 7.5: Newtonian gravitational potential energy (left) and linear approxi-
mation (right). In both cases, the potential energy increases with altitude.

7.5 Kepler’s Laws

In the early 1600s, while Galileo was describing terrestrial fall, Kepler was de-
scribing planetary motion. Using data of Tycho Brahe, Kepler inferred three
laws of planetary motion: planet’s orbit Sol in ellipses with Sol at one focus
(not at the center); a line joining a planet to Sol sweeps out equal areas in equal
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times; the square of a planet’s orbital period is proportional to the cube of its
larger orbital radius. The first law illustrates spontaneous symmetry breaking,
because initial conditions can select an orbit that is not circularly symmetrical
even though Newton’s law of gravity is spherically symmetric. The second and
third laws reflect the weakening of the gravitational force with distance, because
the planets move slower when they are further from Sol.

Like Galileo’s laws of fall, Kepler’s laws of planetary motion follow from
Newton’s laws. Rapidly derive these laws for the special case of circular motion,
where a small mass m orbits a large mass M � m, so that the recoil of the
large mass is negligible, as in Fig. 7.6.

Figure 7.6: A mass m orbits a much larger mass M � m in a circle centered
on the larger mass.

Newton’s second law implies

~fg = m~a (7.26)

implies
GM��m

R2
=��main =��m

v2

R
, (7.27)

so that the orbital speed

2πR

T
= v =

√
GM

R
(7.28)

and the period squared

T 2 =
4π2

GM
R3, (7.29)

which is a special case of Kepler’s third law of periods. Substitute T = 2π/ω to
produce the “1-2-3” form

GM1 = ω2R3. (7.30)
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For our solar system, a period of T = 1 yr corresponds to an orbital radius of
R ≈ 1 AU ≈ 150× 106 km, so that(

T

yr

)2

=

(
R

AU

)3

. (7.31)

Furthermore, from Fig. 7.6, the area δA swept out by the motion of the
planet in a time δt is

δA =
δθ

2π
A =

1

2π
(ω δθ)

(
πR2

)
=

1

2Zπ

(
L

m��R2
δt

)(
Zπ��R

2
)

=
L

2m
δt. (7.32)

where L = Iω = mR2ω is the constant orbital angular momentum. In the limit
δt→ 0, δA→ 0 such that

dA

dt
=

L

2m
, (7.33)

which is constant in agreement with Kepler’s second law of areas. The circular
motion itself is a special case of Kepler’s first law of orbits, as a circle is a special
case of an ellipse.

7.6 Binary Orbits

Newton’s laws generalize Kepler’s laws to systems like the Fig. 7.7 binary, where
two comparable masses M & m orbit their common center of mass at distances
R . r.

Figure 7.7: Two comparable masses orbit their common center of mass, like
Pluto and Charon.

If the center of mass is the coordinate origin, then

~0 = ~rcm =
M ~R+m~r

M +m
(7.34)
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so that
M ~R = −m~r (7.35)

and by differentiation
M~V = −m~v. (7.36)

Thus the orbital radii and speeds are inverse to the masses, MR = mr and
MV = mv. Newton’s second law

~fg = m~a (7.37)

implies
G��mM

(r +R)2
=��main =��m

v2

r
, (7.38)

so that the orbital frequency squared(
2π

t

)2

= ω2 =
(v
r

)2
=

G

(r +R)2
M

r

(
1 +m/M

1 +R/r

)
=
G(M +m)

(r +R)3
, (7.39)

as R/r = m/M . Hence, the period squared

t2 =
4π2

G(M +m)
(R+ r)3 =

4π2

G(m+M)
(r +R)3 = T 2. (7.40)
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Problems

1. Two spheres of radius r and mass m are touching each other. What is the
gravitational force between them?

2. Black hole Schwarzschild radius.

(a) Use energy conservation to find the minimum speed v to escape from
the surface of a planet of radius R and mass M .

(b) For a given mass M , what is the radius Rs such that the escape speed
is light speed c?

(c) Compute the Schwarzschild radius Rs for Earth M = M⊕ in cen-
timeters. If Earth were compressed to this radius, it would become
a black hole.

3. Circular orbits.

(a) Use Newton’s laws to find the period T of a satellite orbiting a planet
of mass M in a circular orbit of radius r.

(b) Compute the period of an Earth grazing orbit of radius r = R⊕ in
minutes. Neglect air drag.

(c) Compute the radius of Clarke orbit [19], where geosynchronous satel-
lites orbit Earth once a day and appear to hover motionless above
the surface, as a fraction of the distance between Earth and Luna.

4. Two 1 kg masses float in the vacuum of deep space separated by 1 m.
How many days before their gravitational attraction brings them together?
Hint: An exact solution requires numerical integration of the initial value
problem. For an approximate solution, assume the masses’ acceleration
is constant at their initial values. Will the approximate solution be an
overestimate or an underestimate?

5. Two equal but opposite masses m > 0 and −m < 0 float near each other
in space.

(a) Assuming Newton’s laws of motion and gravity still apply, describe
the subsequent motion of the masses.

(b) Compute the momentum and kinetic energy of the system for all
times. Are they conserved?

6. You stand on a roughly spherical asteroid of density ρ and radius R.

(a) Derive a formula for the minimum orbital speed around the asteroid.

(b) If R = 22 km and ρ = 7.9 g/cm3, can you run fast enough to enter
orbit?
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7. You plan to launch a satellite, called “Monday’s Star”, in a circular orbit
so that it appears on the eastern horizon every Monday morning (at 6 AM)
and never at any other time. How far to Luna should the satellite orbit?
Hint: Use a version of the Eq. 7.31 form of Kepler’s third law, but based
on month and lunar distance rather than year and solar distance.

8. You observe a circular binary star system and measure its period T and
the orbital radii r and R of its two components. What are their masses?



Chapter 8

Kinetic Theory

Newton’s laws elucidate air of twenty-four million trillion particles per milliliter.

Figure 8.1: Atoms in a solid (left) vibrate about fixed positions in a lattice,
atoms in a liquid (right) slip and slide past each other, and atoms in a gas
(right) move freely in all directions. While solids maintain their shapes, liquids
and gases flow or diffuse to conform to their bounding volumes.

8.1 Ideal Gas Law

Near the start of his famous Lectures on Physics [4], Richard Feynman proposes
that if all our scientific knowledge were destroyed except for one sentence, that
sentence should be,

... all things are made of atoms – little particles that move around
in perpetual motion, attracting each other when they are a little
distance apart, but repelling upon being squeezed into one another.

Kinetic theory treats solids, liquid, and gases as collections of very many, very
tiny atoms or molecules, envisioned as spherical masses in rapid motion, as
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in Fig. 8.1. Classical mechanics applied to gas molecules predicts pressures
and temperatures of macroscopic volumes. Macroscopic effective laws thereby
emerge from microscopic fundamental laws.

The absolute temperature T > 0 of a gas is proportional to the average
kinetic energy of its molecules, while heat is proportional to the total kinetic
energy. For a monatomic gas, without rotational and vibrational degrees of
freedom, and including a conventional factor of 3/2,

〈K〉 =

〈
1

2
mv2

〉
=

3

2
kBT, (8.1)

where the Boltzmann constant

kB = 1.38× 10−23
J

K
= 13.8

fJ

GK
, (8.2)

so that a rise in temperature of one gigakelvin increases the average kinetic
energy by about 20 femtojoules. Earth’s surface can get as hot as about
330 K (= 56.7◦C = 134◦F), while Pluto’s surface can get as cold as about
33 K (= −240◦C = −400◦F). The classically allowable but quantumly unattain-
able absolute zero, T = 0 K, would correspond to the complete absence of
motion. Figure 8.2 compares four common temperature scales.

Figure 8.2: Temperatures T versus mean molecular kinetic energy 〈K〉 in zep-
tojoules for two proportional (or absolute) temperature scales and two linear
non-proportional temperature scales.

The pressure P of a gas is the force F it exerts an area A,

P =
F

A
. (8.3)
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The pressure of Earth’s atmosphere at its surface is

P⊕ = 1.01× 105 Pa = 1.01× 105
N

m2
= 10.1

N

cm2
= 14.7 psi, (8.4)

so a one square-centimeter air column, from sea level to infinity, weighs about
ten newtons (and a one square-inch column weighs about fifteen pounds). Use
“big” upper case P for pressure and “small” lower case p for momentum.

Figure 8.3: Molecules in a gas confined to a volume V at at temperature T
collide elastically with a piston to create a pressure P . The vector ~A = x̂Ax
encodes the magnitude and orientation of the piston’s cross sectional area.

Consider a gas confined by a piston moving in a cylinder, as in Fig. 8.3.
Assume the piston moves in the x direction, and encode its cross sectional area
and orientation in the magnitude and direction of the vector ~A = x̂Ax. Each
molecule of mass m and velocity ~v collides elastically with the cylinder upon
delivering the impulse

Jx = Fx∆t = ∆px = 2mvx. (8.5)

If all the molecules move with the same speed toward the cylinder, then in a
short time δt, all molecules within vxδt of the area Ax, and hence within the
small volume δV = vx δtAx, collide with the cylinder. If the gas number density

n =
N

V
=
δN

δV
, (8.6)

then
δN = n δV (8.7)

implies a collision rate
δN

δt
= n

δV

δt
= nvxAx. (8.8)
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Hence the total force

fx =
δpx
δt

=
δN∆px
δt

= (nvxA)(2mvx) (8.9)

and resulting pressure
fx
Ax

= 2nmv2x. (8.10)

However, if only half the molecules move toward the piston, and not all move
at the same speed, the actual force is half the average, and the pressure

P =
Fx
Ax

=
1
2 〈fx〉
Ax

=
1

�2

(
�2nm

〈
v2x
〉)

= nm
〈
v2x
〉
. (8.11)

If the gas is isotropic, then the averages〈
v2x
〉

=
〈
v2y
〉

=
〈
v2z
〉

(8.12)

and so 〈
v2
〉

=
〈
v2x + v2y + v2z

〉
=
〈
v2x
〉

+
〈
v2y
〉

+
〈
v2z
〉

= 3
〈
v2x
〉
. (8.13)

Hence the pressure

P = nm
1

3

〈
v2
〉

= n
2

3

〈
1

2
mv2

〉
= n
�
��2

3

(
�
��3

2
kBT

)
= nkBT (8.14)

by the Eq. 8.1 temperature definition. Alternately,

PV = NkBT, (8.15)

which is the ideal gas law.
It follows that N = PV/kBT , and equal volumes of different gases at the

same pressure and temperature have the same number of molecules. At room
temperature and pressure, a cubic centimeter contains about twenty-four million
trillion molecules. Hence,(

P

105 Pa

)(
V

1 cm3

)
≈
(

N

2.4× 1019

)(
T

300 K

)
. (8.16)

The product NkB = (N/NA)(NAkB) = NR, where NA = 6.02 × 1023 is Avo-
gadro’s constant, N is the mole number, and R is the gas constant. One mole
of hydrogen atoms masses one gram.

8.2 Mean Free Path

The average distance a molecule moves between collisions is its mean free path
`. To compute it, first consider the mean molecular speed. From the Eq. 8.1
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temperature definition, the most useful measure of speed in kinetic theory is the
root-mean-square speed

vrms =
√
〈v2〉 =

√
3kBT

m
. (8.17)

Also relevant is the relative mean speed squared〈
δv2
〉

= 〈(~v − ~v ′) · (~v − ~v ′)〉 =
〈
v2
〉
− 2���

�:0
〈~v · ~v ′〉 +

〈
v′2
〉

= 2
〈
v2
〉
, (8.18)

as the velocities ~v and ~v ′ are uncorrelated but share the same mean. Hence,
the relative root-mean-square speed

δvrms =
√

2 vrms (8.19)

is about 41% larger than the root-mean-square speed.
Two identical spheres will collide if they come within one diameter (or two

radii) of each other. Thus, a sphere of diameter d has interaction cross section
σ = πd2. More generally, cross section describes interaction probability in
nuclear and elementary particle physics.

Figure 8.4: Graphical model of an ideal gas at room temperature with diameters,
mean separations, and mean free path (red arrow) to scale.

If all but one molecules of a gas are at rest, in a time t, a molecule of
diameter d and cross section σ = πd2 moving a distance D = vrmst sweeps out a
cylindrical interaction volume Vi = σ(vrmst) and interacts with Nc = nVi other
molecules. Its mean free path is the distance travelled divided by the number
of collisions,

D

Nc
=

D

nVi
=

���vrmst

n (σ���vrmst)
=

1

nσ
, (8.20)

which is independent of the mean speed. However, if all the molecules are
moving, then the interaction volume V ′i = σ(δvrmst) depends on the relative
speed, and the mean free path

` =
D

N ′c
=

D

nV ′i
=

���vrmst

n
(
σ
√

2���vrmst
) =

1

nσ
√

2
(8.21)
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decreases by about 29%. Substituting the Eq. 8.14 number density implies

` =
kBT

Pπd2
√

2
. (8.22)

At room temperature and pressure, air molecules with three hundred picometer
diameters have about hundred nanometer mean free paths, as in Fig. 8.4. Hence,(

`

100 nm

)
≈
(

T

300 K

)(
105 Pa

P

)(
0.3 nm

d

)
. (8.23)

8.3 Compression & Expansion

A gas can be compressed or expanded isothermally at constant temperature or
adiabatically without heat exchange. If the temperature is constant, the Eq. 8.15
ideal gas implies that the product of pressure and volume PV is constant, both
initially and finally, so

PiVi = PfVf , (8.24)

and the pressure is inverse to the volume. Isothermal compression decreases
the volume and increases the pressure, while isothermal expansion increases the
volume and decreases the pressure.

Figure 8.5: Two isotherms (red) and one adiabat (blue). Bounded area is the
work done during the compression and expansion of the gas.

If no heat is added or removed, a compression or expansion can change the
temperature by increasing or decreasing the energy of the gas. Combine the
Eq. 8.1 temperature definition with the Eq. 8.15 ideal gas law to write

PV = NkBT = N
2

3
〈K〉 =

2

3
E, (8.25)
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where E = N〈K〉 is the total energy of the monatomic gas. Solve for the energy

E =
3

2
PV =

PV

γ − 1
, (8.26)

where γ − 1 = 2/3 and the adiabatic index γ = 5/3 for monatomic gases but is
larger for diatomic and more complicated gases that can store energy in rotations
and vibrations. Energy changes

δE =
δP V + PδV

γ − 1
(8.27)

arise from pressure or volume changes.
From the Eq. 6.110 work-energy relation, the positive work done on the gas

of initial pressure P by the Fig. 8.3 piston during a small δV < 0 compression
increases its energy by

δE = N〈δK〉 = Fxδx = PAxδx = −PδV > 0 (8.28)

(with the same result to first order in small quantities using the final pressure
P + δP ). Hence,

− PδV =
δP V + PδV

γ − 1
. (8.29)

Cross multiply
− γPδV +���PδV = δP V +���PδV , (8.30)

and separate variables to find

− γ δV
V

=
δP

P
. (8.31)

Integrate both sides

− γ
∫ Vf

Vi

dV

V
=

∫ Pf

Pi

dP

P
(8.32)

to get

− γ log
Vf
Vi

= log
Pf
Pi
. (8.33)

Exponentiate both sides to show(
Vi
Vf

)γ
=

(
Vf
Vi

)−γ
=
Pf
Pi

(8.34)

or
PiV

γ
i = PfV

γ
f , (8.35)

as in Fig. 8.5. Adiabatic compression increases the pressure faster than isother-
mal compression, while adiabatic expansion decreases the pressure faster than
isothermal expansion.
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8.4 Sound Speed

8.4.1 General Sound Speed

Sound waves are longitudinal waves of compression and expansion. Consider
a pulse of elevated pressure and density moving at speed v through a gas (or
other elastic medium) of pressure P and mass density ρ. In a coordinate system
moving with the pulse, entry and exit pressure differences first decelerate and
then accelerate packets of air, as in Fig. 8.6.

Figure 8.6: When moving with a compression wave, entry (yellow) pressure
differences decelerate a packet of air, (gray).

Flow continuity requires that any mass that approaches entry must actually
enter. If A is the flow’s cross sectional area, then

δm

δt
=
δm

δx

δx

δt
=

δm

Aδx
A
δx

δt
= ρAv (8.36)

is constant everywhere, so
ρ@Av = ρ′@Av

′, (8.37)

which is the continuity equation. Hence,

��ρv = (ρ+ δρ)(v + δv)

=��ρv + ρ δv + δρ (v + δv) (8.38)

and
− ρ δv = δρ (v + δv) ≈ δρ v, (8.39)

assuming the speed perturbation is small, δv � v. Thus, the fractional change
in speed is opposite to the fractional change in density,

δv

v
= −δρ

ρ
. (8.40)
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If a small mass δm moves the small distance δx in a small time δt, then
Newton’s second law at entry implies

δfx = δmax (8.41)

or

(−δP @A ) = (ρ δx@A )

(
δv

δt

)
, (8.42)

where δv < 0 and ax < 0. Hence the pressure difference

δP = −ρ δv δx
δt
≈ −(−δρ v)v = δρ v2, (8.43)

by Eq. 8.40. In the limit δt→ 0, the sound speed is the square root of the rate
of change of pressure with density,

cs = v =

√
dP

dρ
. (8.44)

This result is proposition XLIX of Book II of Newton’s Principia. The symbol
cs for sound speed is in analogy with the symbol c for the constant light speed.
Sound speed depends on the gas’s equation of state, which is its pressure as a
function of its density P [ρ].

8.4.2 Isothermal Sound Speed

Newton assumed that sound waves propagate isothermally. The Eq. 8.14 ideal
gas law for molecules of mass m,

P = nkBT =
ρ

m
kBT, (8.45)

implies the linear equation of state

P = Ciρ, (8.46)

where Ci = kBT/m is constant. Since dP/dρ = Ci = P/ρ, the Eq. 8.44 sound
speed

cs =

√
dP

dρ
=

√
P

ρ
, (8.47)

which is about 15% low for normal temperature and pressure.

8.4.3 Adiabatic Sound Speed

A generation later, Pierre-Simon Laplace improved Newton’s estimate by ar-
guing that sound waves propagate adiabatically rather than isothermally. In
practice, the rapidity of sound fluctuations leaves insufficient time for energy
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flow to equalize temperatures. The Eq. 8.35 adiabatic gas law for molecules of
mass m = M/N ,

PV γ = P0V
γ
0 , (8.48)

implies the nonlinear equation of state

P = P0

(
V0
V

)γ
=
P0V

γ
0

Mγ

Mγ

V γ
= Caρ

γ (8.49)

where Ca is constant. Since dP/dρ = γCaρ
γ−1 = γP/ρ, the Eq. 8.44 sound

speed

cs =

√
dP

dρ
=

√
γP

ρ
. (8.50)

Insert the Eq. 8.14 ideal gas law and the Eq. 8.1 temperature definition to find

cs =

√
γ
�n kBT

�nm
=

√
γ

2
3

〈
1
2��mv2

〉
��m

=

√
γ

3
vrms / vrms, (8.51)

as γ = 5/3 for monatomic gasses and γ ≈ 1.4 for the mix of gasses in air.
Thus, sound speed is comparable to the root-mean-square speed of atoms or
molecules in air. Under normal temperature and pressure, the cs = 340 m/s =
1200 kph sound speed is faster than driving but much slower than the c =
1 100 000 000 kph light speed.
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Problems

1. Assume an ideal gas at room temperature and pressure.

(a) Compute the number of molecules in a cubic millimeter.

(b) Compute the average distance between molecules as a multiple of
their diameters, which are about 0.3 nm.

(c) Compute the average distance a molecule travels between collisions
as a multiple of its diameter.

2. Adiabatically compressing a gas increases its temperature. By how much
does the speed of a molecule in a cylinder increase in a direct “head-on”
collision with a piston moving inward with speed vp? Hint: Boost to the
frame of reference of the moving piston, reflect the molecule, and boost
back.



Chapter 8. Kinetic Theory 106



Appendix A

Notation

Table A.1 summarizes the symbols of this text. Some symbols are more universal
then others.

Standard mathematics notation suffers from a serious ambiguity involving
parentheses. In particular, parentheses can be used to denote multiplication, as
in a(b + c) = ab + ac and f(g) = fg, or they can be used to denote functions
evaluated at arguments, as in f(t) and g(b+c). It can be a struggle to determine
the intended meaning from context.

To avoid ambiguity, this text always uses round parentheses (•) to group
for multiplication and square brackets [•] to list function arguments. Thus,
a(b) = ab denotes the product of two factors a and b, while f [x] denotes a
function f evaluated at an argument x. Mathematica [15] employs the same
convention.
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Table A.1: Symbols used in this text.
Quantity Symbol Alternates Units
total energy E ET , U J = kg m2/s2

kinetic energy K T , EK J
potential energy U V , EP J
Lagrangian L L J
Action A S, I, A J s = J/Hz
space or position s x m
time t τ s
velocity v V m/s
acceleration a A m/s2 = N/kg
mass m, M µ kg
momentum p π kg m/s
force f , F ϕ N = kg m/s2

rotational inertia I kg m2

angular momentum L J kg m2/s = J s
torque τ M kg m2/s2 = N m
work W w kg m2/s2 = J
impulse J I kg m/s
basis vectors x̂, ŷ, ẑ x̂1, x̂2, x̂3
pseudoscalar I = x̂ŷẑ i
spring stiffness κ k N/m
length ` l, L m
friction coefficient µ µs, µk
wavelength λ Λ m
period T τ , P s
frequency f ν Hz = 1/s
angular frequency ω Ω rad/s = 1/s
spatial frequency k κ 1/m
temperature T τ K
pressure P p Pa = N/m2

volume V v m3

number N n
number density n N 1/m3

mass density ρ D kg/m3

cross section σ a m2

mean free path ` λ m



Appendix B

Measure & Angles

Figure B.1 summarizes geometric measures of a sphere, and Table B.1 compares
planar and solid angles.

Figure B.1: Similar but distinct formulas for the CAVS – circumference C,
equatorial area A, volume V , and surface area S – of a sphere of radius R.
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Table B.1: Planar and solid angles in popular notation.
Angles Solid Angles

0 ≤ ` ≤ 2πr 0 ≤ A ≤ 4πr2

0 ≤ θ =
`

r
≤ 2π 0 ≤ Ω =

A

r2
≤ 4π

radians steradians

1 rad =
180

π
deg 1 sr =

(
180

π

)2

deg2
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