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Chapter 1

Foreword

For its charge and spin, the magnetic field of an electron is twice as large as
classical physics predicts. Paul Dirac resolved this mystery by combining the
twin pillars of modern physics, the theories of relativity and quantum mechanics,
into a single beautiful equation.

Dirac’s achievement is like Shakespeare’s Hamlet or Beethoven’s 9th Sym-
phony. Indeed, when Dirac moved to Florida State University near the end of
his career, the chair of physics defended hiring such a senior physicist by ar-
guing, “The Physics Department hiring Dirac is like the English Department
hiring Shakespeare”.

But who gets to appreciate Dirac’s great achievement? Not many people, as
it requires a year of calculus and a year of classical physics just to get started.
But you have those prerequisites and are ready for a challenging journey into
the heart of modern physics culminating in the Dirac equation, which is com-
memorated by the Fig. 1.1 marker.

Figure 1.1: Paul Dirac’s commemorative marker at Westminster Abbey includes
his relativistic wave equation. (Creative Commons credit: Stanislav Kozlovskiy,
2014.)
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Our journey involves the following milestones. Chapter 2 describes the clas-
sical electron using a multipole expansion of its electric and magnetic fields,
relates charge, spin, and angular momentum, and formally states the electron
g = 2 puzzle. Chapter 3 reduces the classical Hamilton-Jacobi equation for
the action, which associates rays and wavefronts with classical particle motion,
to the non-relativistic quantum-mechanical Schrodinger equation, when the
classical action is small compared to the action quantum 7. Chapter 4 applies
general symmetry principles to the observations of uniformly moving observers
to derive the Lorentz-Einstein transformations and the invariant speed ¢
without reference to light. Chapter 5 introduces mechanical and field momen-
tum in the context of the “hidden” relativistic effect of a line charge on a parallel
solenoid. Chapter 6 boldy introduces an abstract algebra of non-commuting
numbers to devise a relativistic quantum-mechanical Dirac equation, gener-
alizes it to a magnetic field, and solves the g = 2 electron puzzle. Chapter 7 is
a teaser for the quantum electrodynamics sequel.



Chapter 2

Classical Electron

If an electron is a spinning ball of charge, it should create electric and mag-
netic fields, with the latter proportional to its angular momentum. Why is the
electron’s magnetic field twice as large as expected?

/dg ‘ OA)\/IA
rdd adr
T ~
¢

N\¢

I

Figure 2.1: Multipole geometry (left), polar coordinate line and area element
(center), dipole moment p and projections (right).

2.1 Monopole and Dipole

The electric and magnetic fields of any charge distribution can be expanded
in a series multipole terms. Decompose an arbitrary charge distribution into
infinitesimal charges dgq at positions 7' = r'#', as in Fig. 2.1. At a field point
7 = rf, the relative displacement Z = 7 — 7' (pronounced “script r vector”),
with square

2 2 — 2 2 LAY "\ ?
e =rt=2r-r4+rt=r(1=-21—)Fr-7+|— . (2.1)
r r

3
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By the generalized binomial theorem
(1+6)" ~1+ e (2.2)

for e < 1, and so the reciprocal

1 1 P A2\ P
o= 12(>f~f’+() ~(1+ ) (2.3)
r T T T T

for ' < r. Thus, the electric potential

V=
0 / 4z
/ / dq7 - 7
4mr 4mr?
7
— | da7
= 4 7+ 4mr? / ar

-4 B (2.4)

dnr  4Amr?’

q= /dq (2.5)

is the monopole moment or total charge of the distribution, and

[j:/qu':/F/dq (2.6)

is the dipole moment (with quadrupole, octupole, and higher order mo-
ments neglected). The monopole term decays slowly like 1/r, but the dipole
term decays quickly like 1/r2. If the dipole moment y is at an angle ¢ from the
field point, then the Eq. 2.4 potential

where

oV = 2

. 2.7
dr  4Anr? cos ¢ (2.7)

The corresponding electric field is the negative gradient of the electric
potential (so positive charges move “downhill”). In polar coordinates {r, ¢},
where nearby points are separated by

dl = dr# + rdo (2.8)

as in Fig. 2.1, the total differential

dg—kdqbai—df:ﬁﬂdf:ﬁf-(drf+'rd¢¢3)7 (2.9)
and so the gradient of of
- _10f -
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Figure 2.2: Potential contour plots (top) and field vector plots (bottom) for
a spherically symmetric monopole (left) and a cylindrically symmetric dipole
(right).

where the 1/r scale factor also makes sense dimensionally. For the Eq. 2.7
potential,

= = 9 .. M N N
€€ = —¢VV = y—il + 53 cos T+ P sin ¢ ¢ (2.11)
or
eog[r qﬁ]zif'—i— a <2cos¢f+sin¢<2))
’ Arr2’  Aprd
_ 4 2 fiL
4mr? 43
q ., 3(f-7P)P—Q
= 2.12
et A3 ’ (2.12)
where fi — ji; = i = (i - #)7. On the dipole axis ¢ = 0, and the electric field
c0&:]z,0] = 2 K (2.13)

T d4w2? | 2718
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For emphasis, sometimes write the electric field

ge ke
6()5 [Z 0] 471'2:2 + 27‘(2:3. (214)

Similarly, the magnetic field

-1 qB mB mB
B.[z,0] = = , 2.15
Ho [2,0] 422 + 2mz3 2723 ( )

except gg = 0, as magnetic monopoles have never been observed. Figure 2.2
visualizes planar sections of monopole and dipole potentials and fields.

2.2 Dipole and Angular Momentum

A rotating charged ring generates a distant dipole magnetic field proportional
to its angular moment. Consider the magnetic field B at a distance z on the axis
of a rotating ring of mass m and charge ¢ generating a current loop vdq = Id{
of radius R, as in Fig. 2.3.

A XU [

vdq = Idl

Figure 2.3: A rotating charged ring forms a current loop (left) and the geometry
of the Biot-Savart triangle rotated into the plane of the page (right).

For slow speed v < ¢ Biot-Savart’s law implies

d[)_;N [L()G()"l_)) X dgN [L()g X (216)

4o ?

and

2
B. —/dB —/dBcosa—/z(J/qubm[ﬂ/ ]cosa. (2.17)

dme?



Chapter 2. Classical Electron 7

Since the separation 2 and the angle « is constant around the ring,

,'B Y /d CoS o v_ B _ vk
1 = = —Qq— =
Ko 4e? ¢ 4722%% T 4neB

_vw_ R
4 (22 + R2)3/2°
Far from the ring R < z and

R R 2\ —3/2
-1 vq
z = 1 —
Ho B 47T2’3< +<z>>
3
2

(2.18)

~-L _ (2.19)

where the Eq. 2.15 magnetic dipole moment
- q 7
i = 2mL (2.20)
is proportional to the ring’s L = mv R angular momentum, and this relationship
is generally true.
Equivalently, shrinking the ring radius R and growing the charge q, construe
a point dipole as the double limit

. quR
BB = ng% R (2.21)
Q*}OO

or interpret the rotating charged loop as a circular current
_dq _Adl  ARd$

q v qu
= = =" = )MRw=-—"+-R—-=—"—, 2.22
at — dt  dt “T2RR_ 2R (2.22)
so the Eq. 2.21 dipole moment becomes
12

up = lim ﬂ =limI7R?* = lim TA. (2.23)

R—0 A—0

q—00 I—o0

When necessary, distinguish ¢ = g¢ from ¢3.

2.3 Dipole Force and Torque

External fields force and torque dipoles. Imagine two point charges ¢ separated
by a length ¢, as in Fig. 2.4. Far from the dipole along the axis ¢ < z and

-2
q q q ¢
= - - 1-=) -1
& dn(z —£)2  4Amz? 4Awz? (( z) )

q 4 q¢ fie
~ 14+2-)—-1) = = 2.24
Amrz2 <( * z) ) 2mz3  2m23’ (2:24)
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where by comparing with Eq. 2.14, the electric dipole moment

pe = lim qgf. (2.25)
£—0
q—o0

Call separated monopoles with pu ~ ¢g¢ Gilbert dipoles and current loops with
u~ IA Ampere dipoles.

............ RIS v

Figure 2.4: Dipole as separation of charge (left), torque due to uniform field
(center), force due to nonuniform field (right).

A uniform electric field € causes a torque

T= gqc‘,’ + gqé’ =ql€& (2.26)
or B
T=pgxE. (2.27)
The corresponding potential energy
U:/dqbrz/dqﬁugsinqb:—ué’cosqS:—[i-g (2.28)

A nonuniform electric field causes a force

F = q€[F + tl] — ¢€[F]

ES[FJrEE] — E[7]

14
~pl VE = (ﬁﬁ) g (2.29)
Analogous formulas .
T=[igxB (2.30)
and . R

hold for magnetic dipoles in magnetic fields. When necessary, distinguish p = ug
from pp.
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2.4 Electron Puzzle

Experimentally, the electron has electric monopole moment

ge = —160 zC, (2.32)
magnetic dipole moment
e = —9.28 UA - nm?, (2.33)
mass
me = 0.000911 yg, (2.34)
and spin angular momentum
h
Se = 5 = 52.7 zJ - fs. (2.35)

Thus, like Eq. 2.20, the electron’s magnetic moment

Ge
2me

fe =g (2.36)
is proportional to its angular momentum but with dimensionless correction fac-

tor
~ 2mepe  2(0.000911 yg)(9.28 pA - nm?)

gS (160 zC)(52.7 zJ - fs)

Why is the electron g-factor 2?7 Why is it twice the expected classical value?
g # 1 implies that a ball of spinning charge is at best a crude model of the
electron. Combine quantum mechanics and relativity, the twin pillars of
modern physics, into relativistic quantum mechanics to naturally derive
this surprising result.

= 2.00. (2.37)
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Problems
1. Use the generalized binomial theorem to simplify the following assuming
Tz L a.
(a) 1/(1+x/a)
(b) 1/va? + x2
(C) (a4 + 334)_3/2

2. Derive the following gradient identities.

3. Use Mathematica to visualize the potentials and fields of an monopoles
and dipole in 3D. (Create a 3D version of Fig. 2.2.)



Chapter 3

Schrodinger

William Rowan Hamilton anticipated wave-particle duality and quantum me-
chanics by nearly a century in formulating a version of classical mechanics in
analogy with the dual descriptions of geometrical optics as light rays and
wave fronts. The resulting Hamilton-Jacobi equation connects classical and
quantum mechanics.

3.1 Classical Wave-Particle Duality

Consider a particle moving in the x-direction. Its velocity can vary directly with
time and indirectly with position like

dx

il [t,x[t]]. (3.1)
Its acceleration a, is proportional to the total applied force F, and inversely
proportional to its mass m. Assume the applied force is minus the gradient of
a potential energy U, so the mass tends to “roll downhill”. Newton’s equations
and the derivative chain rule imply

oUu duy ov,  Ov, Ox
—— =F, =ma, = = — . 3.2
o M = Mg m<8t+8x 8t> (32)
For simple systems, the momentum p, = muv, is mass times velocity, so
ou - Ops apxlﬁ - Ope 19, (3.3)

T 9r ot " dxm ot @ 2moitT

is a partial differential equation that controls the flow of momentum p, under
the potential U. If streams of constant momentum don’t intersect (in shock
fronts, for example), the momentum

98

Pz =5 (3.4)

11
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is the gradient of a scalar function or field, the action S[t,z]. In higher dimen-
sions and rectangular coordinates,

f=4VS =Go 4 o + 5. 3.5
p=+ B g i (3.5)

With the action Eq. 3.4, the momentum flow Eq. 3.3 rearranges to

90s 1 8(8S)2 U

aa“r%% % “r%—oa (3.6)

and assuming the action’s second order derivatives exist and are continuous (so
its partial derivatives commute),

o (8S 1 [8S\°
Integrate over x to get a constant with respect to z,
s 1 [0S\’
8t+2m(5‘:ﬂ> +U =/, (3.8)

which is possibly a function of time f[t]. To eliminate it, shift the action by the
time integral S — S + [ dt f so the derivative shifts by the function 95/9t —
05/0t + f. The Hamilton-Jacob equation becomes

as 1 (aS\?
or )
oS 1 [0S p?
ot 2m (ax) U 2m+U U (8.10)
In higher dimensions,
08 1l =, =
e AV . A1
5 QmVS VS+U (3.11)

3.2 Hamiltonian-Jacobi Examples

The Hamilton-Jacobi equation associates surfaces of constant action S to the
momentum p = VS like geometric optics associates wave-fronts to rays, a du-
ality between wave-fronts and trajectories. For simple systems, the velocity is
proportional to the momentum and the path is tangent to the momenta and
perpendicular to the wave-fronts.

For the motion of a U = 0 free particle, the action

2
. L.
S[Ft] =p 7 — 2t
[Ft]=p-7 5

pi+p§+p3t

o (3.12)

= PzT +pyy +p.z—
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To check, the derivatives

- S -
VS=—==p-0 3.13
57 =P (3.13)
and o5 5
p
—=0-— 3.14
ot 2m ( )
imply
oS 1 = 2 1 -, =
2 = . 1
% = 2 (VS) 2mVS VS+0 (3.15)
as expected by the Hamilton-Jacobi Eq. 3.11. Constant momentum rays
7= 7o+ Lt (3.16)
m
pierce plane wave-fronts like
S0 =p-7, (3.17)
as in Fig. 3.1.
1' m{
z ‘
n
|

Figure 3.1: A free particle moves in a straight line at constant speed. The
Hamilton-Jacobi equation associates planes of constant action S to the particle’s
constant momentum p’ = VS like geometric optics associates wave-fronts to rays
in a vacuum.

Next consider a ball thrown under gravity U = mgz. If the initial momentum
Po = {Pows Doy, Doz}, then the action

3/2 Poa + Doy + PG

t, (3.18
2m » ( )

1 2 2
Silz,y, z,t] = p01x+p0yyi% (p5. — 2m?gz)
where the positive root is for upward motion and the negative root for downward
motion. Gravity breaks the symmetry in the z-direction, and variable momen-
tum rays pierce curved wave-fronts, as in Fig. 3.2. The curved trajectory is
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like a light ray bent upwards by desert heat in creating the inferior mirage of
a watery oasis or like light curving through variable index-of-refraction bifocal
eye glasses.

=

Figure 3.2: A ball thrown horizontally falls under gravity. The Hamilton-Jacobi
equation associates curved surfaces of constant action S to the ball’s curved
trajectory p = VS like geometric optics associates wave-fronts to rays in a
medium with a variable refraction index (such as air heated by asphalt producing
a mirage).

m{

HEI

3.3 Schrodinger Equation

To transition from geometric optics and mechanics to wave optics and quantum
mechanics, imagine that surfaces of constant action S are indeed wavefronts of
constant phase for the plane wave

¥ = Ae"/" = Aexp [zs} = Acos {S] + 2Asin {S] , (3.19)
h h h
where the constant 7 (pronounced “h-bar”) has the dimensions of S to enforce
the dimensionlessness of the function arguments. Small 7 means small changes
in S make large changes in the wave’s phase, corresponding to a high frequency,
geometric optics limit. Seek a partial differential equation for the wave function
¥ in this limit using the Hamilton-Jacobi equation.
First invert to solve for the action

S = —ihlog [fl] = —ihlogW¥ — ihlog A. (3.20)

Compute the derivatives
as . 5 1 0w

E = —1 1,557 (321)
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and

as 10w
— = —th——. 3.22
ox ' B ( )
Substitute these action derivatives into the Hamilton-Jacobi Eq. 3.10 to get
10w nro1 o fow\?
h——=——— | — U 3.23
T v ot 2m ¥ (&E) * (323)
or )
ov n? [ ow
W = ——  — w2 24
BT 2m <8x> U (3:24)

Unfortunately, this is a nonlinear partial differential equation (doubling ¥ quadru-
ples each term), and nonlinear equations are difficult to solve. Instead, solve
Eq. 3.22 for

ovr i _0S
e 2
Ox h 0Ox’ (3.25)
and compute the second derivative
o _iowos i, o
0x2  hoxdr h Ox2
1 (9S\? i 88
= —ﬁw (833) + EW@. (3.26)

In the high frequency limit when 7 is small, 1/h is large and 1/h? is very large,
so neglect the right-side second term relative to the first term to obtain the

asymptotic relation
2w 1 (9S\?
~ =0 (=], 3.27

0x2 nyo 2 (896) (327)

2 2
<8S> = lea v (3.28)

and solve for

oz o
Finally, substitute the Eq. 3.21 and Eq. 3.28 action derivatives into the Hamilton-
Jacobi Eq. 3.10 to get

10w 12 10%W

TG = amwone U0 (3.29)
or 2 a2
ov h® 0°w
h—— = —— —— v, .
ihr = =2 +U (3.30)

This is a linear equation (doubling ¥ doubles each term), which was first dis-
covered by Erwin Schrédinger [7] in 1926. In higher dimensions,

ih— = ———V2W + UV | (3.31)
m
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Just as the square of the electric field in a light beam is proportional to
the intensity of the light, T o &£2, the absolute square of the matter wave
function is proportional to the probability of detecting a particle, P oc |¥|?.
Experimentally, the dimensional reduced Planck constant

h

h=— =663 yJ/TH 3.32
1= oo = 663 yJ/TH, (332)

and the Planck constant
h=2rh =105 zJ - fs. (3.33)

(Both are useful, just as frequency f and angular frequency w = 27 f are both
useful.)

3.4 Operator Formalism

Define the differential operators

E = +ihd, = +ih%, (3.34a)
Po = —ih8, = —ih%, (3.34D)

read “e ring equals plus i h-bar del sub t” and “p sub x ring equals minus i
h-bar del sub x”, and the 1 + 1 dimensional Schrédinger Eq. 3.30 simplifies to

o2
Ew =Ly pw, (3.35)
2m
Traveling wave functions '
¥ = Agtker—wt) (3.36)
are energy and momentum eigenfunctions
EW = +ihdW = +ih(—iw)¥ = hwW¥ = EV, (3.37a)
PoW = —ih0, W = —ih(+ik,)¥ = hk, ¥ = p, V¥, (3.37b)
whose eigenvalues
E = hw, (3.38a)
Pz = hky (3.38Db)

are the Einstein-deBroglie relations. Generalizing to 3 + 1 dimensions, the
Eq. 3.34 operator formalism provides the quick path

p2

=2 .
o+ U. (3.39a)
o ﬁQ
Ev=2wiuw, (3.39D)
2m
//2
ihOW = — 20 + U (3.39¢)
2m

from classical energy to quantum Schrodinger Eq. 3.31.
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Problems

1. Check that the Eq. 3.18 thrown-ball action

(a) satisfies the Hamilton-Jacobi Eq. 3.11
(b) and has the correct Eq. 3.5 gradient.

2. Substitute the wave function Eq. 3.19 into the Schrodinger Eq. 3.31 and
recover the Hamilton-Jacobi Eq. 3.11 in the limit 7 | 0.
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Chapter 4

Relativity

Symmetries imply an invariant speed [5].

4.1 Linear Transformation

Consider two reference frames or observers O and ', say Earth and a
spaceship, in relative motion at velocity ¢ = vz along a common Z axis, as in
Fig. 4.1, where the § and % axes are suppressed for simplicity. Assume they
observe the same event, say a supernova, which O locates at time ¢ and space
x and O’ locates at

[t, ], (4.1a)

=T,
¥ = X,[t, 7], (4.1b

where the functions 7" and X are to be determined.

O O’ "
O, = O (—
—_— S ——
U VO uU=w
O O/ O//
O O 0
U U

Figure 4.1: Observer O” moves at speed u relative to observer @' who moves at
speed v relative to observer 0. All observers carry their own clocks t and rulers
T.

19
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Assume space is homogeneous, so if a ruler at rest in O extends from
to 3, and O’ measures its length

= X, [t,z0] — Xyt 21], (4.2)
translating the ruler a distance h in @ won’t change its length in O,
0= X,[t,za + h] — X,[t, 71 + ). (4.3)
Equate the right sides, shuffle, and divide by h,
Xolt,xo + h] — Xylt,zo + h]  Xy[t,x1 + h] — X, [t, 21 + A

= . 4.4
Assume smoothness and take the limit A — 0 to find
0X, 0X, 0X,
o . o . constan 5 (4.5)

as the first term can depend only on z; and the second only on x5 only if they
are the same constant. Similarly, assume time is homogeneous to show

0X, 0X, 0X,
= = tant = 4.6
o |, ot |, constan ot (4.6)
Thus the coordinate transformation is linear, so write
t' =T,[t,z] = Ayt + B,x + constant, (4.7a)
¥’ =X,[t,x] = Cyt + D,x + constant. (4.7b)

By convention, choose T5,[0,0] = 0 = X,[0, 0], so the observers’ origins coincide
and the constants vanish, so

t' = Ayt + By, (4.8a)
' = Cyt + Dy, (4.8b)

or as the single matrix equation

t A, B, t
x’ C, D, T

4.2 Lorentz Transformation
Assume space is isotropic, so position and velocity invert simultaneously,

T_,[t, —z] = +T,[t, z], (4.10a)
X_o[t,—x] = =X, [t, 2], (4.10b)



Chapter 4. Relativity 21
and
A_,t — B_,x =+A,t+ Byx, (4.11a)
C_,t—D_,z=-Cyt —Vyx. (4.11b)
Compare term-by-term to discover the symmetry and anti-symmetry
A_, = +A,, (4.12a)
B_, = —B,, (4.12b)
Cc_, =-0C,, (4.12¢)
D_, =+D,. (4.12d)
Assume motion is relative, so the inverse transformation
t="T_[t 2], (4.13a)
r=X_,[t', 2] (4.13b)

inverts velocity and swaps primes and unprimes. Concatenate the transforma-

tions and their inverses to form the constraints

t=T_[T[t, x], X,[t, 2],
v =X_,[T,[t, ], X,[t,z]].

or

t=A_,(Ayt+ Byz) + B_(Cyt + Dyx),
x=C_,(Ayt + Byx) + D_,(Cypt + Dyz),

or using the Eq. 4.12 symmetries and anti-symmetries,

t=+A,(A,t + Byx) — B,(Cypt + Dyx),
= —Cy(Ayt + Byz) + D, (Cyt + D,x).
Compare term-by-term to find
A% -~ B,C, =1,
B'U(A'U - Dv) = 07
CU(AU - Dv) =0,
D? - B,C, = 1.

(4.14a)
(4.14b)

(4.15a)
(4.15b)

The middle equations imply either A, = 0 = D,,, in which case the end equations

imply B, =1 = C,, which is trivial, or
A, = D,

and by Eq. 4.17d
D? -1
B, = > ;
Cy

(4.18)

(4.19)
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which is nontrival. Since the observers’ origins coincide at t = 0 = t/, 2’ = 0
implies x = vt, and so Eq. 4.8b implies

C, = —vD,. (4.20)

With these substitutions, the linear Eq. 4.9 transformation becomes

2
t D, 2! t
= =vD. , (4.21)
z’ —vD, D, z

where Dy =1 and D_, = D,,.

Consider a third observer O” in relative motion at velocity @ = uf relative
to @ and at velocity @ = wi relative to O, as in Fig. 4.1. Concatenate the
Eq. 4.21 transformation to find

D2 -1
o _ D T t
.’L'// _wa Dw x
—’LLDU Du _UD’L) D’U x
—(u + ’U)DUDU D,D, + (D121 - 1)% x
(4.22)

Since the two Eq. 4.22 primary diagonal \, elements must be equal, the last
line implies

D uD
2P _(p2 o) 4.23
(D2 - )220 = (D2 1) (4.23)
or , ,
Dz —1 Dz —1 1
= =— = constant = — (4.24)

2D2 22 27
u?D? v2 D2 c

as the first term can depend only on v and the second only on u only if they
are the same constant, here with dimensions of inverse speed squared. Thus,

1
T
V1—v2/c?
is the famous relativistic stretch or “gamma” factor, and

D? -1 1—1/42 v
Bv — v — — - = —y—. 4.26
—oD. vv< gl (4.26)

v? c?

D, = (4.25)
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The Lorentz-Einstein transformation [2] becomes

t —yv/c? t
_| (4.27)
x’ —yv 5 a
or as two separate scalar equations
= (t—vx/c?), (4.28a)
¥ =7 (x—ot). (4.28b)
4.3 Velocity Addition
Also, the Eq. 4.22 top-left elements with Eq. 4.24 must satisfy
vD
Dy = DD, + (D2 —1)—"
+ ( u )UDU
u?D2\ vD
=D,D, —u Y
* ( c? > uD,,
- D,D, (1 + “%’) . (4.29)
c
Square both sides and with Eq. 4.25 write
1 1 /2 2
o (duw/c) . (4.30)
1—w?/c2 (1—u?/c?)(1—v2/c?)
Reciprocate and solve for
Wt (1-w?/)1-v*/c") _ (u+t v)% (4.31)
(1+wuw/c?)? (1+wuv/c?)?
and n
u—+v
= 4- 2
v 14+ uv/c? u®v, (4.32)

which is the velocity addition formula.

The constant ¢ has the dimensions of speed, but speed relative to what? If
observer O” moves with z-velocity u = c relative to observer O’ and observer
O’ moves with z-velocity v = ¢ relative to observer O, then observer @ moves
with z-velocity

c+c
—— =c
1+ce/c?
relative to O. The speed c is invariant, the same for all observers. Rela-
tivity and the very general assumptions of homogeneity, isotropy, smoothness,
inversion, and concatenation imply its remarkable existence. Experimentally,

w=chHc= (4.33)

¢=299792458 m/s = 0.3 m/ns ~ 1 ft/ns ~ 1 billion km/hr. (4.34)

Light and gravitational waves appear to travel at this unique invariant speed.
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Problems

1. Verify that the velocity addition Eq. 4.32 is associative.

(a) (udV)Pw=udVOw) =udvdw
(b) uvd (—u)=v



Chapter 5

Potentials & Momenta

The electric and magnetic fields £ and B are the derivatives of the electric and
magnetic potentials ¥V and A and store energy and momentum U and .

5.1 Electric and Magnetic Potentials

A charge at rest generates an electric field. The electric scalar potential

B dqg pdV
€V = dre // dre’ (5.1)

— T

% d E=-VV

small

Figure 5.1: Minus the gradient of a scalar potential V is the (static) electric
field £. The electric source is a static point charge.

25
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where p[’] is the charge density and Z = #— 7’ connects the source point 7 to
the field point 7. The (static) electric field

= o S dg= (1Y dq .
605—760%— 60VV— /47‘(‘v(i> —/47rz2@, (52)

is minus the gradient of the potential energy, which implies Coulomb’s law.
The electric field £ pierces surfaces of constant potential }V from high to low, as
in Fig. 5.1.

A charge in motion generates a magnetic field. The magnitude and direction
of the motion suggests that the magnetic potential is a vector field. In analogy
with the Eq. 5.1 electric potential, the magnetic vector potential

g [Tda _ fdf_///fdv
Ho A= / dre ) dme e’ (5:3)

where J[7’] is the current density. The vector nature of the magnetic potential
suggests that the magnetic field is the gradient cross product of the potential.
Indeed, the magnetic field

> - o 1 -/1 - JdV x % Idl x 2
-1 -1
=1y V = —V (= dav = =
po B=p5 VxA ///4 (z)XJ /// 1720 /4@2
(5.4)
is the curl of the magnetic potential, which implies Biot-Savart’s law. The

magnetic field B curls around the potential A', as in Fig. 5.2.

—

B:ﬁ){fr |

small

Figure 5.2: The curl of a vector potential A is the magnetic field B. The
magnetic source is a stationary ring current.

5.2 Momentum

Think of the electric potential V as the energy per unit charged stored in the
electric field. Think of the magnetic potential A as the momentum per unit
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charge stored in the magnetic field.

5.2.1 Mechanical & Field Momentum

A cylindrical solenoid of radius R, current I, and n turns per unit length, as
in Fig. 5.3, has a uniform interior magnetic field and zero exterior magnetic
field. Ampere’s law applied to a rectangular contour parallel to the interior
magnetic field and straddling the side

0+0+0+B.4= yfé’-di: I'g = pols = pontl (5.5)

implies

B = ponl:. (5.6)

Stokes’ theorem implies that the magnetic flux

@Bz//é-daz//ﬁxﬁ.da': A-dl = Ay(27s), (5.7)
a a (=0a
so the magnetic vector potential a perpendicular separation s > R from the
solenoid axis 5
A=24 5.8
5rs? (5.8)
is nonzero, where {s, ¢, z} are cylindrical coordinates .
Next add a line charge A = dq/d¢ parallel to the solenoid at a distance © > R
from its axis [4], as in Fig. 5.3. Gauss’s law applied to a cylinder of radius x
concentric with the line charge

0+EQ2rz)l+0= #5~da’:q§E =, Q=¢,'M (5.9)

implies
€€y = ——. (5.10)

at the solenoid’s axis.

Finally, deactivate the solenoid (slowly enough to neglect radiation), and
the line charge receives an impulse, as in Fig. 5.3. Qualitatively, a changing
magnetic field induces a circulating electric field that forces the line charge to
move. Quantitatively, Faraday’s law implies

ddg

where the total magnetic flux &5 = BA = BrR2. The circulating electric field

1 dop
Ep=———">0 5.12
¢ 2ws dt > Y ( )



Chapter 5. Potentials & Momenta 28

and a length ¢ of charge ¢ = Al experiences a force

dpy _

q d@g
dt ¢ = dce

- . 5.13
2ws dt ( )

Assume the charge does not move far during the magnetic field decay, and
integrate

Do q 0
dpy = ——— do 5.14
p¢ 27TS by B ( )
to find the final momentum
q
= —&p = 0. 5.15
Po = 5 b5 = qAs > (5.15)

On the solenoid axis, the momentum density

py M BA A

Al 2mp AL amabr 0GB (5.16)
In general,
a5, + =
d"’/ =€ xB. (5.17)

Like an electromagnetic wave storing momentum in its crossed electric and
magnetic fields (to enable sunlight to shape a comet’s dust tail, for example),
the charge and solenoid store momentum in the crossed electric £ and magnetic
B fields inside the latter. But how does this momentum transfer from the
solenoid to the charge, especially with no magnetic field outside the solenoid?
The momentum s stored at the charge potentially as q.,éf and actualized when
the changing magnetic field induces a circulating electric field that forces the
charge, as in Fig. 5.4.

Generally, total or canonical momentum

P=j+q¢A (5.18)

is the sum of the familiar mechanical or kinetic momentum p = ymv ~ muv,
v < ¢, and the potential or field momentum ¢A. Sometimes write the
mechanical momentum

— —

I=P—gA=7p. (5.19)
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P {s, 0,2}

{z,y, 2}

Figure 5.3: A solenoid has outward magnetic field B and circulating magnetic
potential A. A distant line charge A\ = dq/d¢ alternately accelerates and deceler-
ates the solenoid’s circulating surface charges. The electromagnetic momentum
pe stored in the solenoid’s crossed electric and magnetic fields balances the hid-
den momentum pj, stored in the asymmetric currents.

Figure 5.4: Decreasing the magnetic field B induces a circulating electric field
£ , which pushes the line charge \ as it transfers field momentum qff to mechan-
ical momentum p. Sum of electromagnetic, hidden, solenoid, and line charge
momenta is always zero, p. + i, + Ps + pr = 0. Finally, the line charge recoils
leftward and the solenoid recoils rightward.
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5.2.2 Hidden Momentum

The line charge electric field accelerates solenoid charges as they move away
from it and decelerates them as they move toward it, so charges on the far
side move fast and are far apart, while charges on the near side move slow and
are close together. At constant current, the momenta would balance, but the
nonlinear relativistic stretch v = 1/4/1 — v2?/c? makes fast faster.
The constant current
[ dQ d(Nq)d¢  dNdl

- a4t Tgra = qn[g]v[d], (5.20)

where n[¢] and v[¢] are the angle-dependent charge density and speed. In an
infinitesimal arc length d¢ = Rd¢, the infinitesimal momentum

dp = ydMv =~

d(]c\l;m)ﬁ = ynmdl v, (5.21)

so the total £ momentum

Do = %dpx = ygvnm dlv, = /027r ynm (Rd¢) (—vsin ¢)

I 27
-2 [ dofo)sin (5.22)

which vanishes in the non-relativistic v = 1 limit. Meanwhile, as the solenoid
charges move from near to far, as in Fig. 5.3, the line charge electric field does
work that change their energies by

7r

gER(1 +sing) = fd=W = AE =~ [2

} me? — vy[g]mc?, (5.23)

so the product

o [7(15}2 . 7q€R.2
(@] sin ¢ = (fy [2] m(’?) sin ¢ oz Sin 0. (5.24)
Substitute Eq. 5.24 into Eq. 5.22 to get
mIR gER 1
Pz = _T <0 - me2 7'(') = (7 (I7TR2) &= —6(),LI,()MZ(€y, (525)

since the integrals over a period of sin ¢ and sin? ¢ are 0 and 7. More generally,
the momentum hidden in the relativistic movement of the solenoid charges

= —copofi X € = —P (5.26)

exactly balances electromagnetic momenta stored in the crossed electric and

magnetic fields
Pn + pe = 0. (5.27)
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Problems

1. Compute the hidden momentum of a solenoid of rectangular cross section
¢ x w. (Hint: Similar but simpler than the Section 5.2.2 circular case, as
the integrals become sums and differences.)
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Chapter 6

Dirac Equation

In 1928, Paul Dirac [1] discovered a relativistic wave equation 1710, = HW that

naturally predicts g = 2 when coupled to an electromagnetic field.

6.1 Free Electron

Recall that applying the nonrelativistic energy-momentum relation

1 v _ PP
E=-m?=2 ="2_@g
2" T om T 2m
with the Eq. 3.34 operator substitutions
E — E = +ihd,,

P p=—ihV
to a wave function ¥[t, 7]

I Vi

hOW = —
1hoy 5

(6.1)

(6.3)

generates the free-particle Schrodinger wave equation. The corresponding rela-

tivistic energy-momentum relation

B2 = (pe)? + (mc)? = H?

(6.4)

makes similarly generating a relativistic wave equation tricky. To include time
and space symmetrically as first-order derivatives, boldly represent the square

root of Eq. 6.4 as a linear function of the momentum
H = \/(pc)2 + (mc2)2 = a - pe + fmc.

33

(6.5)
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Equate the squares of both sides and expand without assuming oy, ay, o, 8
commute to get

H? = (pe)? + (mc?)? = (@ - pe + Bmc?)?
= (- pc)® + (@ - pe) (Bmc?)
+ (Bme?) (@ pe) + B2m2et (6.6)
Comparing first terms
o2
p*= (@ p) (6.7)
or
P2+ Py + 12 = (Qapas + aypy + azp:)?
= O‘ipi + Qe QyPL Py + QP2
+ QypPyPr + aip?, + Qy Py
+ 0 gD Pr + QL QyP.Dy + Ozgpi (68)
implies
aizal%:az:l (6.9)
and
Qpy = —Qy 0Ly, (6.10a)
QO = — 000, (6.10b)
Qo0 = —QpQy. (6.10c)

Comparing cross terms implies

ap = —pa (6.11)
or
azf = =P, (6.12a)
ayf = —Paoy, (6.12b)
o =—Pa,. (6.12¢)
Comparing last terms implies
B?=1. (6.13)

Thus, ag, ay, @, f are not complex numbers but realize an abstract alge-
bra of anti-commuting unit squares. Represent this algebra most simply by
the 2 x 2 block matrices

0 0

a= ! (6.14a)
o
1 0

B = ) (6.14b)
0 I
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where the elements themselves are the 2 x 2 matrices

1 0
I= \ (6.15a)
0 1
0 1
Op = \ (6.15b)
1 0
0 —
oy = \ (6.15c¢)
i 0
1 0
0y = \ (6.15d)
0 -1
where “—1 rides high on o,”. The Pauli matrices satisfy the same algebra
o 05 =02 = —io,0,0, = 1. (6.16)

as the quaternions. For example,

9 0 1 0 1 0-0+1-1 1-0+0-1 10 s
O’z: = = =
1 0 1 0 0-1+41-0 1-1+0-0 0 1
(6.17)
and
0 1 0 —2 1 0 7 0 1 0 1 0 .
O-I):'O-yo.Z: = = :’LI.
1 0 i 0 0 -1 0 —2 0 -1 0 2
(6.18)

With the Eq. 6.14 block matrices, the Dirac equation
ihOW = (07 e+ ﬁm(:E) w, (6.19)

where @, p, W = q,(—ihd, (W) = —ihica, 0, ¥, for example. Introduce “Large”
and “Small” components

U4
v w

v=| *|=| F (6.20)
U2 Vs

1)
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and write
' Imc? G- pe v
ing,| - =] M Pedp e (6.21)
!Z’S - ﬁ(l —]mcz ![/S
With the dot product
g- ﬁ: OzPx + OyPy +0.p.
0 1 0 —2 1 0
= P + Dy + Dz
1 0 7 0 0 —1
= b , Pz =y | (6.22)
Dz + 'pr —Pz
fully expand the Dirac equation
'] me> 0 PsC DaC — IPyC 'Z]
) 2% 0 mc? DaC 4 1Py —p,c /2
110, =
U PLC DaC — 1PyC —mc? 0 U
v, PaC + 1PyC —p,c 0 —mc? v,
(6.23)
and as four complex equations
ih0W = mc* Wy + P, Wy + oWy — 1Py ¥y, (6.24a)
ih0yWe = mc Wy + prcWs + ip, W3 — P, Wy, (6.24Db)
1hOWs = p,cW + PpcWs — 1Py W — mc’ws, (6.24c)
thOWs = PprpcWh + 1Py W1 — DWW — mcwy, (6.24d)
and with explicit spatial derivatives
howWy, = mcWy — ihed,Ws — ihed, Wy + 1hcOyWa, (6.25a)
thowWs =  mc*Wy — ihicd,Ws — 1hedyWs + 1hcd, Wy, (6.25b)
thOWs = —ihc0, W1 — thcOyWs + thedyWs — mc’ s, (6.25¢)
1hoWy = —ihcOg¥y — thedyW + thed,Wo — mc’Wy. (6.25d)

In the rest frame, the four components can represent a spin “up” or spin “down”
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electron or anti-electron; informally,

te”
V= *i : (6.26)
e

Let

6.2 Interacting Electron

6.2.1 Pauli Equation

In an electromagnetic field, the free-particle Schrodinger equation

%2
ihow = Ho = 2w (6.27)
2m
becomes i
]3'2
thoW = —W 4+ qV V¥, (6.28)
2m

where the Eq. 5.19 mechanical momentum
p=P—qA=—inV — ¢A, (6.29)

and V and A are the electric and magnetic potentials. Similarly, the free-particle
Dirac equation

ihOW = HY = (& e+ ﬂm(,c2> w (6.30)
becomes )
1hOW = (62 - pe 4+ Bmc® + qV) v. (6.31)

Assume no electric field, so V = 0, and seek stationary solutions of constant
energy

W[, 1] = p[F]e " E" (6.32)
to get
Ep = (a - pe+ 5m(:2) b (6.33)

Introduce “large” and “small” time-independent two-component spinors, as in
Eq. 6.21, to write

Imc? & - pe
B o] I pe | v | (6.34)

Pg &-pc —Imc? g
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Move the spinors to the left side

IE 0 Ime®> & pe 0
YL | : P‘ vy, _ (6.35)
0 IFE g -pc —Imc? s 0

and consolidate

I(E — mc? —& - pe 0
( o ) P ( vr | _ (6.36)
- - pc I(E 4+ mc?) e 0
to get the two complex equations
(E—mc*)pp — - peibs =0, (6.37a)
(E +mc?) s — & - peabr, = 0. (6.37D)
In the non-relativistic limit,
E+mc® = E—mc® +2me® = Ex + 2mc” ~ 2mc?, (6.38)

where the non-relativistic energy that appears in the Schrédinger equation
Ex < mc?. Assume the state

wL ~ N@iﬁ‘F/h — Neimf)"’r_"/ﬁ, (639)
has a typical momentum
Fior = —ihVYL ~ miYL. (6.40)

Hence, the bottom Eq. 6.37b implies the small component

g- ﬁ(* muc 1 (U)
— : ~——ahy == = 6.41
Vs E + mc? VL 2mc? VL 2 \c VL <YL ( )

is much smaller than the large component, and so the top Eq. 6.37a implies
. . o 2
e R ()

E = (F — : =g-pc - /N 7 ~ 7 )

NoL = ( me?) =G - peibs B me L o YL
(6.42)
In 1927, Wolfgang Pauli [6] first formulated the corresponding time-dependent
equation

L o\?
ihOw = Q‘Q'Tnp)u'x (6.43)

as an ad hoc explanation for electron spin and magnetic moment.
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6.2.2 Two Famous Identities

For constant vectors ¢ and ¢, the Eq. 6.16 Pauli algebra implies the algebraic
identity

(G- 1) (6 0) = (ug0y + Uyoy + Uz0,) (V304 + Vyoy + v,02)

2
= Ug VO + UgVyOg Oy + UgV, 020
2
+ UyVp Oy Oy + Uy Uy 0y, + Uyv, 040,
2
F U V0,05 + U VYO0 + UV, 0,
= TUypVp + MULVy 0, — ULV, 0y

— MUy V20, + LUy vy + TUyV, 0y

F UL VO — ULVYO, + Tu v,
= I (UgVg + Uyvy + uz0;)
+ ’L( (uyvs — uvy) 0y

+ (U5 — ugv,) 0oy

+ (uzvy — uyvy) UZ)

=i T+il XT3 (6.44)

For mechanical momentum ﬁ =P - qff and for any wave function [7],
careful application of a vector derivative product rule implies the differential
identity

DX P = (—ihﬁ — q/f) X (—ihﬁ — q.%f)z/)
(—ihV — qA) x (—ihVip — g AY)
¥ X Vi + ihgV X (A’w) tihgA x Vb + h2q2 A x Ay

6+z‘nq((ﬁ xﬁ)w+ (Wz) xA') FihgAx Vi +0

- +z'nq(w w A— Ax W) +iligh x Vo

= ihgV x A

ihqBy (6.45)

and so

P x p=ihgh. (6.46)
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6.2.3 Electron Magnetic Moment
The Section 6.2.2 identities imply
N2 e e o e .
(5:7) =pp+id pxi=p*—qid-B (6.47)

so the time-independent “large” Eq. 6.42 becomes
2 —qhé- B
— YL

E =
NYL o
22
VS U
N 2m¢L om’ Byr

]%»2
=Py vu, (6.48)
m
with the corresponding time-dependent equation
5'2
1hoWr, = —Vr + Uvyy, (6.49)
2m
where the potential energy
I q h
U=—ji-B=-2—-5-B 6.50
a om2’ (6.50)
and the magnetic moment
fi=95-5, (6.51)
and the spin angular momentum
= h
S = 575, (6.52)

(6.53)

and
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Problems

1. Verify all of the Eq. 6.16 Pauli identities by explicit matrix multiplication.

2. Verify all of the Eq. 6.45 vector derivative expansion of V x ,11/) by
working in rectangular coordinates. (Hint: Without loss of generality,
rotate the coordinates so that the vector points along the z-axis.)

3. Using the block matrices

1 0 0 Oz 0 oy 0 O
{7%7%771/772} = s 5 )
0 -1 —o, 0 —o, 0 -0, O
(6.54)

and the Feynman slash notation

¢ = Yrar + Yoz + Vyay + V202, (6.55)

write the Dirac Eq. 6.19 in natural 7 = ¢ = 1 units as in the Fig. 1.1
memorial marker,

iU = mw. (6.56)
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Chapter 7

Afterword

In 1948, in a short letter to the Physical Review at the dawn of quantum elec-
trodynamics (QED), Julian Schwinger [8] claimed that, actually, the electron
magnetic dipole moment

g=2<1+3+---)=2.0023..., (7.1)
2
where the fine structure constant

g\ A 1
= L = ¢ = . 2 ~ — 1 2
«a (qp> Ineohic 0.0072973 137 < (7.2)

and the Planck charge gp ~ 1.8755 aC, which was subsequently verified ex-
perimentally. Schwinger’s triumph is commemorated in his Fig. 7.1 tombstone.

Figure 7.1: Julian Schwinger’s tombstone includes his first-order correction to
g = 2. (Creative Commons credit: Jacob Bourjaily, 2013.)

43
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In 1949, while “bringing QED to the masses”, Richard Feynman [3] repre-
sented the electron anomalous magnetic moment by the diagram



Appendix A

Used Math

Briefly review the mathematics used in this text

A.1 Calculus in Higher Dimensions

A.1.1 Partial Derivatives

In one-dimension, the function

flx] =322 +1
has the derivative
df
— =62 +0 = 6x.
dx

In two dimensions, the function
fl,y) = 3xy® + 22 4+ 3y + 2

has the partial derivatives

3}

= =3y +2+0+0=3y*+2,
Ox

3}

a—f=6my+0—|—3+2:6acy+5,
Y

(A.4a)

(A.4b)

which are just like ordinary derivatives, but with other variables held constant.

A.1.2 Vector Derivatives
In three dimensions, the gradient of a scalar function

VA S S
V'[_x8m+y8y+zaz

45
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is the direction and rate of fastest increase of the function, where & is a unit
vector in the direction of increasing x, and so on. In analogy with the Greek
letters 6 and A, pronounce the pseudo-letters 9 and V “del” and “big del” (and
enter them as “partial” and “nabla” in TEX).

The two complementary kinds of vector products imply two complementary
kinds of vector derivatives. In rectangular coordinates, the divergence

-

V- U=(20;+90,+20,) (v, +guv, +Zv.)

>

T O0pVy + T - YO0vy + T - 20,0,

<>

T OyUy + G- YOyvy + 7§ - Z0yv.
cE 00, + 2900y + 2 20,0,

N>

Jr
+
=0,v, +0+0
+0+8yv,+0
+0+0+ 0,v.

= BI’U.T, + 3y’vy + aZ’UZ (A6)
is a scalar function, and the curl
VXT= (20 +§0y+20,) x (Bv, + v, +20.)
=T X 2O0pUy + & X GOpvy + T X 20,0,
+ 9 X TOyv, + 7 X YOyvy + 9 X 20yv.
+2X 20, +2Xgov, + 2 X 20,0,

— 20yv, + 0+ 2 Oyv-

+ 90,0, — 0,0, + 0

=2 (0yvs — 0,0y) + § (0,vp — Opvz) + 2 (00 — Oyvs) (A7)
is a vector function. Be especially careful not to confuse the gradient and the
divergence.
A.1.3 Integrals of Derivatives

In one-dimensional calculus, the integral of the derivative of a function is the
function. In three-dimensional calculus, three different derivatives imply three
analogous results, all special cases of Stokes’ theorem. The integral of the
gradient of a scalar function along a path

/Eﬁﬂdﬁzf

=f—h (A.8)
oe

is the difference of the function at the path’s boundary points, where the un-
adorned 0 is the boundary operator. The integral of the curl of a vector
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//ﬁxﬁ.dazyfﬁ-cw (A.9)
a {=0a

is the closed path integral of the function over the area’s boundary. The integral
of the divergence of a vector function over a volume

/// ﬁ-adV:# 7-da (A.10)
\4 a=0V

is the closed surface integral of the function over the volume’s boundary.

function over an area

A.1.4 Product Rules

In one-dimensional calculus, the product rule for differentiation is

d df dg

— = — —=. A1l
()= Lg+ L (a11)
In three-dimensional calculus, different kinds of products and derivatives result-
ing in six different product rules exist. Derive these by carefully employing the

mixed “box” product
A (BxC)=C-(AxB)=B-(Cx4), (A.12)
the vector double product
Ax (BxC)=B(4.0)-c(4-B) (A.13)

or

§<E~5>:Ex(§xé)+é(ﬁ'-§), (A.14)
and the linearity of the derivative
V=V4+Vs. (A.15)
The gradient of the product of two scalar fields is
ﬁ(fg) - (W) g+ f (ﬁg). (A.16)
The gradient of the scalar product of two vector fields is

ﬁ(/i’.é) =V (/T-E)JrﬁB (E-é)

S5 (S A) (B $a) A4 A (F5 0 B) 1 (4-95) B
:Ex(ﬁx[f)—&-(ﬁ V) A+ qx(VxB)+(E-ﬁ)§ (A.17)
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The divergence of the product of a scalar field and a vector field is
ﬁ-(ﬂ@::(ﬁf)u1+f<ﬁ-ﬂ>. (A.18)
The divergence of the vector product of two vector fields is
V(A% B)=Va- (AxB)+Vp- (4xB)
:ﬁA-(Zx§>—§B-(§xﬁ)
5 (Vax A) - A (Fa x B)
B (VxA) -4 (x5) (A.19)
The curl of the product of a scalar field and a vector field is
Vx (£A) = (Vf) x A+ 1 (V x 4).
The curl of the vector product of two vector fields is

):§‘4x(ﬁ'x1§>+63x(/¥x§)
)

(A.20)

—

ﬁx([l’xB

A.2 Complex Numbers

Complex numbers complete real numbers. The algebraic equation 22 +1 = 0
has no real solutions. Imagine that it has solutions £7. By successive multipli-
cation, the imaginary number i satisfies 12 = —1, i® = —i, * = +1, 4% = +1,
i = —1, and so on in a 4-cycle. Hence the absolutely convergent Taylor
expansions of common functions dramatically reorganize when evaluated at
imaginary numbers. For example, the exponential

ir)?  (ix)®  (ix)*  (iz)®  (iz)®  (iz)7  (iz)®

(2!) +(3!) +(4!) +(5!) +(6!) +(7!) +(8!) e

. 2 ,CCS :L‘4 ,:L‘5 ) ) e ; .8
TR R TR E T N TR

_ (4 2 ozt 26 a8 e 3 b a7
S T T TR A A T

= cosx + isinz, (A.22)

e =1+1iz+

becomes a linear superposition of sinusoids known as Euler’s identity. The
choice © = 7 generates the famously beautiful special case

e +1=0, (A.23)
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which relates the five most important mathematical constants e,z,7,1,0 in a
simple formula.
A general complex number is the linear combination

z=zp+zri =z + 1y ={x,y}, (A.24)

where the real and imaginary components © = zg and y = z; are real numbers.
The sum of two complex numbers

24N =z +iy+ N +iy) =+ " +i(y+ NY) (A.25)
and the product of two complex numbers
22" = (v +wy) (2" + i) = z2' —yy' +i(yx’ + ) (A.26)
are also complex numbers. A complex number’s conjugate
Zr=z=x—1y (A.27)
negates the imaginary part, so the norm
2] = Vzzr = /a2 + 42 (A.28)

is the square root of the product with the conjugate.

A.3 DMatrices

Matrices, arrays, or tableaux of numbers have been used to solve math problems
for thousands of years. Consider the linear transformation

' = ax + by, (A.29a)
y' = cx + dy. (A.29b)

In box notation, collect the variables in column matrices

x
7= , (A.30a)
Y
xl
— , (A.30b)
y/
and collect the coefficients in the square matrix
a b
M = , (A.31)
c d
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and form the equivalent matrix equation

z a b x

- : (A.32)
y' c d ||y

where the color guides the eye in checking the matrix multiplication, and where
rows are dot-producted with columns. In bracket notation, write

x! a b T
= , (A.33)
y' c d y
and represent matrix equations symbolically as
7= MF. (A.34)
The identity matrix
1 0 1 1
1= % (A.35)
0 1 1 1

has 1s on the primary \, diagonal and Os on the secondary , diagonal.
Concatenate a second linear transformation to the first to get

2 =d2 + by =d(ax+by) +V(cx +dy) = (d’a+bc)r+ (a'b+b'd)y,
y'=dd +dy = (ax +by) + d'(cx + dy) = (ca+d'c)x + ('b+ d'd)y,

(A.36)
or in matrix notation
xl/ a/ b/ x/
y// - C/ d/ y/
- a v a b x
d d c d Yy
aa+bec a'b+bd T
- . (A.37)
da+dc db+dd Yy
Thus the product of two matrices
a b a b aa’' +bc ab + bd’
= , (A.38)
c d cd d ca' +dc b + dd’
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and like vectors (or complex numbers), the sum of two matrices
a b a v a+Xa b+ N
+ A (A.39)
c d d d c+ A d+ M

and similarly for higher dimensions.
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Appendix B

Coordinate Systems

Multiple coordinate systems are useful to solve problems of different symmetries,
including rectangular, spherical, and cylindrical.

B.1 Curvilinear Coordinates

Consider a general curvilinear coordinate system {u1,us,u3} whose axes are
orthogonal at point. An infinitesimally small cube with edges parallel to the
local curvilinear coordinate directions has edges of lengths hydu;, hodus, and
hodus, as in Fig. B.1.

h3dU3

hldul thUg

Figure B.1: Generic coordinate system {uj,us,u3} and infinitesimal volume
element of size hiduy by hodus by hsdus.

The square of the distance across opposite corners of the cube is
ds® = (hiduy)? + (hodug)? + (hsdus)? = h3du? + hidu + hidu3.  (B.1)
The volume of the cube is

dV = (hldul)(hgdUQ)(hgdU3) = h1h2h3 duldu2du?,. (BZ)
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A component of the gradient of a scalar field S[r] is the change of the scalar
field along one edge of the infinitesimal cube divided by the length of that edge.

Hence,

. 1095 185 _ 105

The divergence of a vector field ¥'[F] is the flux of the vector field through the
faces of the infinitesimal cube divided by the volume of the cube. Hence,

— 1 0 0 0
V- 7= 7h1h2h3 <8u1(h2hd ’Ul) + %(hdhl 'UQ) + Tw(hth ’05)) . (B4)

The Laplacian of a vector field is the divergence of the gradient, so
1 0 [ hahs 05 0 (hshy 05 0 ([ hihgy 0S
V25 — O P2ty 05\ O (hsin 05 O (Tahe 05 1
hlhghg 8u1 hl 8u1 81@ hg 8u2 8u3 hg E)U3
(B.5)
A component of the curl of a vector field is the circulation of the vector field

around a face of the the infinitesimal cube divided by the area of that face.
Hence,

h2h3 8U2
.1 0
o (8u3 (hyvy) — 8ul(h3?}3)) +
L1 0 0
U3m <8u1 (hQ’UQ) — %(hlvl)) (B 6)

B.2 Polar Spherical Coordinates
Define spherical coordinates {u1,us,us} = {r,0, ¢} by

x = rsinf cos ¢,
y = rsinfsin ¢,
z=rcosb, (B.7)

where 6 is the co-latitude and ¢ is the longitude, as in Fig. B.2. By inspection,
the scale factors

hy =1,
h2 =T,
hs = rsinf. (B.8)

Hence, the diagonal square distance

ds* = dr? + (rdf)* + (rsin@ de)* = dr® + r*d6* + r*sin® 0 d¢?, (B.9)
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z

X

Figure B.2: Polar spherical coordinate system {r, 6, ¢} and infinitesimal volume
element of size dr by rdf by rsin @ d¢.

and the elemental volume
dV = (dr)(r df)(rsin 0 dp) = r*sin 6 dr df d¢. (B.10)
The spherical gradient
085 108 - 1 08

VS = e + 0= = B.11
v Tar+ r89+¢rsin96¢ ( )
The spherical divergence
-, 1 8 2 1 8 . 1 8U¢
s_ 10 9 Pe B.12
v r2 8r(r vr) + rsin 6 80(511191)9)—1— rsinf O¢ ( )
The spherical Laplacian

g LD (WDSY, 1 0 (. 0S\ 1 o (05
VS_T287’ " or +r2sin080 5m989 +rzsin208¢> 0 - (B.13)

The spherical curl

=

=3 S 1 8 . . 8vg
VXU— T'Sine(ae(slnal}qﬁ) 8¢>+

A 1 Ov, 0
~1 /0 v,

In the § = 7/2 equatorial plane, polar spherical coordinates become polar
coordinates {r, ¢}.
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B.3 Cylindrical Coordinates

Define cylindrical coordinates {uy,uq,us} = {s, ¢, 2z} by

T = 5C0S P,
Yy = ssin ¢,
z =z, (B.15)

where s = r is the perpendicular distance form the axis and ¢ is the longitude,
as in Fig. B.3. By inspection, the scale factors

hy =1,
h2 =S,
hs = 1. (B.16)

Hence, the diagonal square distance
ds® = dr® + (sd¢)? + d2* = dr® + s*d¢* + d2* (B.17)

and the elemental volume

dV = (ds)(sd¢)(dz) = sdsdo dz. (B.18)
z
S
z

\y

X

Figure B.3: Cylindrical coordinate system {s, ¢, 2} and infinitesimal volume
element of size ds by sd¢ by dz.

The cylindrical gradient

-1
o g108 08 @15

VS=8as v T an
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The C y 11ndr1cal dl V ergence
1 () ()
Vo (0 ( )

The cylindrical Laplacian
9 10 oS 1 0 [0S 0 (08
=——(s— —— | = —=]. B.21
Vs 505\ 9s + s20¢ \ 0¢ + 0z \ 0z ( )

The cylindrical curl

B
(55(8“‘7’) ~ ‘%s) , (B.22)
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Appendix C

Notation

Table C.1 summarizes the symbols of this text. Some symbols are more universal
than others.

Standard mathematics notation suffers from a serious ambiguity involving
parentheses. In particular, parentheses can be used to denote multiplication, as
in a(b+ ¢) = ab+ ac and f(g) = fg, or they can be used to denote functions
evaluated at arguments, as in f(t) and g(b+c¢). It can be a struggle to determine
the intended meaning from context.

To avoid ambiguity, this text always uses round parentheses (e) to group for
multiplication and square brackets [e] to list function arguments. Thus, a(b) =
ab denotes the product of two factors a and b, while f[z] denotes a function f
evaluated at an argument z. Mathematica employs the same convention.

Advanced physics texts often write integrals

I:/abf[x}das:/ubd:vf[:v], (C.1)

with the integration variable indicator dz near the integral sign [, like summa-
tions

b
S=>"f (C.2)

n=a

with the summation variable n near the summation symbol .

99
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Table C.1: Symbols used in this text.

Quantity

Symbol

Alternates

vector
unit vector

matrix symbol

matrix

functions

M

a b

c d
fla], Al ]

complex numbers z=x+ 1y ={z,y} T+ iy
derivatives &,dx/dt,0f /0y, 0y f ' (t), fy
(differential) operators [ = +ihd,, p=—ilVv  E, Eop
Pauli (spin) matrices 04y 0y, 0 01,092,03
position 7={x,y,z2} T = {1,292, 23}
fields EB E,B,D,H
potentials V, A p, A
sources q,Q,1,1 e

densities p=dq/dV,J = dI/da J

dipole moments TN P, 1, P, m
electron charge e <0 —e <0
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