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Chapter 1

Foreword

For its charge and spin, the magnetic field of an electron is twice as large as
classical physics predicts. Paul Dirac resolved this mystery by combining the
twin pillars of modern physics, the theories of relativity and quantum mechanics,
into a single beautiful equation.

Dirac’s achievement is like Shakespeare’s Hamlet or Beethoven’s 9th Sym-
phony. Indeed, when Dirac moved to Florida State University near the end of
his career, the chair of physics defended hiring such a senior physicist by ar-
guing, “The Physics Department hiring Dirac is like the English Department
hiring Shakespeare”.

But who gets to appreciate Dirac’s great achievement? Not many people, as
it requires a year of calculus and a year of classical physics just to get started.
But you have those prerequisites and are ready for a challenging journey into
the heart of modern physics culminating in the Dirac equation, which is com-
memorated by the Fig. 1.1 marker.

Figure 1.1: Paul Dirac’s commemorative marker at Westminster Abbey includes
his relativistic wave equation. (Creative Commons credit: Stanislav Kozlovskiy,
2014.)
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Chapter 1. Foreword 2

Our journey involves the following milestones. Chapter 2 describes the clas-
sical electron using a multipole expansion of its electric and magnetic fields,
relates charge, spin, and angular momentum, and formally states the electron
g = 2 puzzle. Chapter 3 reduces the classical Hamilton-Jacobi equation for
the action, which associates rays and wavefronts with classical particle motion,
to the non-relativistic quantum-mechanical Schrödinger equation, when the
classical action is small compared to the action quantum ~. Chapter 4 applies
general symmetry principles to the observations of uniformly moving observers
to derive the Lorentz-Einstein transformations and the invariant speed c
without reference to light. Chapter 5 introduces mechanical and field momen-
tum in the context of the “hidden” relativistic effect of a line charge on a parallel
solenoid. Chapter 6 boldy introduces an abstract algebra of non-commuting
numbers to devise a relativistic quantum-mechanical Dirac equation, gener-
alizes it to a magnetic field, and solves the g = 2 electron puzzle. Chapter 7 is
a teaser for the quantum electrodynamics sequel.



Chapter 2

Classical Electron

If an electron is a spinning ball of charge, it should create electric and mag-
netic fields, with the latter proportional to its angular momentum. Why is the
electron’s magnetic field twice as large as expected?

Figure 2.1: Multipole geometry (left), polar coordinate line and area element
(center), dipole moment µ and projections (right).

2.1 Monopole and Dipole

The electric and magnetic fields of any charge distribution can be expanded
in a series multipole terms. Decompose an arbitrary charge distribution into
infinitesimal charges dq at positions ~r ′ = r′r̂′, as in Fig. 2.1. At a field point
~r = rr̂, the relative displacement ~r = ~r − ~r ′ (pronounced “script r vector”),
with square

r 2 = r2 − 2~r · ~r ′ + r′2 = r2

(
1− 2

(
r′

r

)
r̂ · r̂′ +

(
r′

r

)2
)
. (2.1)

3



Chapter 2. Classical Electron 4

By the generalized binomial theorem

(1 + ε)
α ∼ 1 + αε (2.2)

for ε� 1, and so the reciprocal

1

r =
1

r

(
1− 2

(
r′

r

)
r̂ · r̂′ +

(
r′

r

)2
)−1/2

∼ 1

r

(
1 +

r̂ · ~r ′

r

)
(2.3)

for r′ � r. Thus, the electric potential

ε0V =

ˆ
dq

4πr
∼
ˆ

dq

4πr
+

ˆ
dq r̂ · ~r ′

4πr2

=
1

4πr

ˆ
dq +

r̂

4πr2
·
ˆ
dq ~r ′

=
q

4πr
+
r̂ · ~µ
4πr2

, (2.4)

where

q =

ˆ
dq (2.5)

is the monopole moment or total charge of the distribution, and

~µ =

ˆ
dq ~r ′ =

ˆ
~r ′dq (2.6)

is the dipole moment (with quadrupole, octupole, and higher order mo-
ments neglected). The monopole term decays slowly like 1/r, but the dipole
term decays quickly like 1/r2. If the dipole moment µ is at an angle φ from the
field point, then the Eq. 2.4 potential

ε0V =
q

4πr
+

µ

4πr2
cosφ. (2.7)

The corresponding electric field is the negative gradient of the electric
potential (so positive charges move “downhill”). In polar coordinates {r, φ},
where nearby points are separated by

d~̀= dr r̂ + rdφ φ̂, (2.8)

as in Fig. 2.1, the total differential

dr
∂f

∂r
+ dφ

∂f

∂φ
= df = ~∇f · d~̀= ~∇f ·

(
dr r̂ + rdφ φ̂

)
, (2.9)

and so the gradient

~∇f =
∂f

∂r
r̂ +

1

r

∂f

∂φ
φ̂, (2.10)
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Figure 2.2: Potential contour plots (top) and field vector plots (bottom) for
a spherically symmetric monopole (left) and a cylindrically symmetric dipole
(right).

where the 1/r scale factor also makes sense dimensionally. For the Eq. 2.7
potential,

ε0~E = −ε0~∇V =
q

4πr2
r̂ +

µ

2πr3
cosφ r̂ +

1

r

µ

4πr2
sinφ φ̂ (2.11)

or

ε0~E [r, φ] =
q

4πr2
r̂ +

µ

4πr3

(
2 cosφ r̂ + sinφ φ̂

)
=

q

4πr2
r̂ +

2~µ‖ − ~µ⊥
4πr3

=
q

4πr2
r̂ +

3 (~µ · r̂) r̂ − ~µ
4πr3

, (2.12)

where ~µ− ~µ⊥ = ~µ‖ = (~µ · r̂)r̂. On the dipole axis φ = 0, and the electric field

ε0Ez[z, 0] =
q

4πz2
+

µ

2πz3
. (2.13)



Chapter 2. Classical Electron 6

For emphasis, sometimes write the electric field

ε0Ez[z, 0] =
qE

4πz2
+

µE
2πz3

. (2.14)

Similarly, the magnetic field

µ−10 Bz[z, 0] =
qB

4πz2
+

µB
2πz3

=
µB

2πz3
, (2.15)

except qB = 0, as magnetic monopoles have never been observed. Figure 2.2
visualizes planar sections of monopole and dipole potentials and fields.

2.2 Dipole and Angular Momentum

A rotating charged ring generates a distant dipole magnetic field proportional
to its angular moment. Consider the magnetic field ~B at a distance z on the axis
of a rotating ring of mass m and charge q generating a current loop vdq = Id`
of radius R, as in Fig. 2.3.

Figure 2.3: A rotating charged ring forms a current loop (left) and the geometry
of the Biot-Savart triangle rotated into the plane of the page (right).

For slow speed v � c Biot-Savart’s law implies

d ~B ∼ µ0ε0~v × d~E ∼ µ0~v ×
dq

4πr 2r̂ (2.16)

and

Bz =

ˆ
dBz =

ˆ
dB cosα = µ0

ˆ
vdq sin[π/2]

4πr 2 cosα. (2.17)
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Since the separation r and the angle α is constant around the ring,

µ−10 Bz =
v

4πr 2
(ˆ

dq

)
cosα =

v

4πr 2 q
R

r =
vqR

4πr 3

=
vq

4π

R

(z2 +R2)3/2
, (2.18)

Far from the ring R� z and

µ−10 Bz =
vqR

4πz3

(
1 +

(
R

z

)2
)−3/2

∼ q

2m

mvR

2πz3

(
1− 3

2

(
R

z

)2
)

∼ q

2m

L

2πz3
=

µB
2πz3

(2.19)

where the Eq. 2.15 magnetic dipole moment

~µB =
q

2m
~L (2.20)

is proportional to the ring’s L = mvR angular momentum, and this relationship
is generally true.

Equivalently, shrinking the ring radius R and growing the charge q, construe
a point dipole as the double limit

µB = lim
R→0
q→∞

qvR

2
, (2.21)

or interpret the rotating charged loop as a circular current

I =
dq

dt
=
λd`

dt
=
λRdφ

dt
= λRω =

q

2πR
R
v

R
=

qv

2πR
, (2.22)

so the Eq. 2.21 dipole moment becomes

µB = lim
R→0
q→∞

(I2πR)R

2
= lim IπR2 = lim

A→0
I→∞

IA. (2.23)

When necessary, distinguish q = qE from qB.

2.3 Dipole Force and Torque

External fields force and torque dipoles. Imagine two point charges q separated
by a length `, as in Fig. 2.4. Far from the dipole along the axis `� z and

Ez =
q

4π(z − `)2
− q

4πz2
=

q

4πz2

((
1− `

z

)−2
− 1

)

∼ q

4πz2

((
1 + 2

`

z

)
− 1

)
=

q`

2πz3
=

µE
2πz3

, (2.24)
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where by comparing with Eq. 2.14, the electric dipole moment

µE = lim
`→0
q→∞

q`. (2.25)

Call separated monopoles with µ ∼ q` Gilbert dipoles and current loops with
µ ∼ IA Ampère dipoles.

Figure 2.4: Dipole as separation of charge (left), torque due to uniform field
(center), force due to nonuniform field (right).

A uniform electric field ~E causes a torque

τ =
`

2
qE +

`

2
qE = q` E (2.26)

or
~τ = ~µ× ~E . (2.27)

The corresponding potential energy

U =

ˆ
dφ τ =

ˆ
dφµE sinφ = −µE cosφ = −~µ · ~E (2.28)

A nonuniform electric field causes a force

~F = q~E [~r + `ˆ̀]− q~E [~r ]

= q`
~E [~r + `ˆ̀]− ~E [~r ]

`

∼ µ ˆ̀· ~∇~E =
(
~µ · ~∇

)
~E . (2.29)

Analogous formulas
~τ = ~µB × ~B (2.30)

and
~F =

(
~µB · ~∇

)
~B (2.31)

hold for magnetic dipoles in magnetic fields. When necessary, distinguish µ = µE
from µB.
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2.4 Electron Puzzle

Experimentally, the electron has electric monopole moment

qe = −160 zC, (2.32)

magnetic dipole moment

µe = −9.28 µA · nm2, (2.33)

mass
me = 0.000911 yg, (2.34)

and spin angular momentum

Se =
~
2

= 52.7 zJ · fs. (2.35)

Thus, like Eq. 2.20, the electron’s magnetic moment

µe = g
qe

2me
S (2.36)

is proportional to its angular momentum but with dimensionless correction fac-
tor

g =
2meµe
qeS

=
2(0.000911 yg)(9.28 µA · nm2)

(160 zC)(52.7 zJ · fs)
= 2.00. (2.37)

Why is the electron g-factor 2? Why is it twice the expected classical value?
g 6= 1 implies that a ball of spinning charge is at best a crude model of the
electron. Combine quantum mechanics and relativity, the twin pillars of
modern physics, into relativistic quantum mechanics to naturally derive
this surprising result.
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Problems

1. Use the generalized binomial theorem to simplify the following assuming
x� a.

(a) 1/(1 + x/a)

(b) 1/
√
a2 + x2

(c) (a4 + x4)−3/2

2. Derive the following gradient identities.

(a) ~∇r = r̂

(b) ~∇r2 = 2r̂

(c) ~∇1

r
= − r̂

r2

3. Use Mathematica to visualize the potentials and fields of an monopoles
and dipole in 3D. (Create a 3D version of Fig. 2.2.)



Chapter 3

Schrödinger

William Rowan Hamilton anticipated wave-particle duality and quantum me-
chanics by nearly a century in formulating a version of classical mechanics in
analogy with the dual descriptions of geometrical optics as light rays and
wave fronts. The resulting Hamilton-Jacobi equation connects classical and
quantum mechanics.

3.1 Classical Wave-Particle Duality

Consider a particle moving in the x-direction. Its velocity can vary directly with
time and indirectly with position like

dx

dt
= vx

[
t, x[t]

]
. (3.1)

Its acceleration ax is proportional to the total applied force Fx and inversely
proportional to its mass m. Assume the applied force is minus the gradient of
a potential energy U , so the mass tends to “roll downhill”. Newton’s equations
and the derivative chain rule imply

− ∂U

∂x
= Fx = max = m

dvx
dt

= m

(
∂vx
∂t

+
∂vx
∂x

∂x

∂t

)
. (3.2)

For simple systems, the momentum px = mvx is mass times velocity, so

− ∂U

∂x
=
∂px
∂t

+
∂px
∂x

px
m

=
∂px
∂t

+
1

2m

∂

∂x
p2x. (3.3)

is a partial differential equation that controls the flow of momentum px under
the potential U . If streams of constant momentum don’t intersect (in shock
fronts, for example), the momentum

px =
∂S

∂x
(3.4)

11



Chapter 3. Schrödinger 12

is the gradient of a scalar function or field, the action S[t, x]. In higher dimen-
sions and rectangular coordinates,

~p = +~∇S = x̂
∂S

∂x
+ ŷ

∂S

∂y
+ ẑ

∂S

∂z
. (3.5)

With the action Eq. 3.4, the momentum flow Eq. 3.3 rearranges to

∂

∂t

∂S

∂x
+

1

2m

∂

∂x

(
∂S

∂x

)2

+
∂U

∂x
= 0, (3.6)

and assuming the action’s second order derivatives exist and are continuous (so
its partial derivatives commute),

∂

∂x

(
∂S

∂t
+

1

2m

(
∂S

∂x

)2

+ U

)
= 0. (3.7)

Integrate over x to get a constant with respect to x,

∂S

∂t
+

1

2m

(
∂S

∂x

)2

+ U = f, (3.8)

which is possibly a function of time f [t]. To eliminate it, shift the action by the
time integral S → S +

´
dt f so the derivative shifts by the function ∂S/∂t →

∂S/∂t+ f . The Hamilton-Jacob equation becomes

∂S

∂t
+

1

2m

(
∂S

∂x

)2

+ U = 0. (3.9)

or

− ∂S

∂t
=

1

2m

(
∂S

∂x

)2

+ U =
p2

2m
+ U = K + U = E. (3.10)

In higher dimensions,

−∂S
∂t

=
1

2m
~∇S · ~∇S + U . (3.11)

3.2 Hamiltonian-Jacobi Examples

The Hamilton-Jacobi equation associates surfaces of constant action S to the
momentum ~p = ~∇S like geometric optics associates wave-fronts to rays, a du-
ality between wave-fronts and trajectories. For simple systems, the velocity is
proportional to the momentum and the path is tangent to the momenta and
perpendicular to the wave-fronts.

For the motion of a U = 0 free particle, the action

S[~r, t] = ~p · ~r − p2

2m
t

= pxx+ pyy + pzz −
p2x + p2y + p2z

2m
t. (3.12)
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To check, the derivatives

~∇S =
∂S

∂~r
= ~p−~0 (3.13)

and
∂S

∂t
= 0− p2

2m
(3.14)

imply

− ∂S

∂t
=

1

2m

(
~∇S
)2

=
1

2m
~∇S · ~∇S + 0 (3.15)

as expected by the Hamilton-Jacobi Eq. 3.11. Constant momentum rays

~r = ~r0 +
~p

m
t (3.16)

pierce plane wave-fronts like

S[~r, 0] = ~p · ~r, (3.17)

as in Fig. 3.1.

Figure 3.1: A free particle moves in a straight line at constant speed. The
Hamilton-Jacobi equation associates planes of constant action S to the particle’s
constant momentum ~p = ~∇S like geometric optics associates wave-fronts to rays
in a vacuum.

Next consider a ball thrown under gravity U = mgz. If the initial momentum
~p0 = {p0x, p0y, p0z}, then the action

S±[x, y, z, t] = p0xx+p0yy±
1

3m2g

(
p20z − 2m2gz

)3/2− p20x + p20y + p20z
2m

t, (3.18)

where the positive root is for upward motion and the negative root for downward
motion. Gravity breaks the symmetry in the z-direction, and variable momen-
tum rays pierce curved wave-fronts, as in Fig. 3.2. The curved trajectory is
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like a light ray bent upwards by desert heat in creating the inferior mirage of
a watery oasis or like light curving through variable index-of-refraction bifocal
eye glasses.

Figure 3.2: A ball thrown horizontally falls under gravity. The Hamilton-Jacobi
equation associates curved surfaces of constant action S to the ball’s curved
trajectory ~p = ~∇S like geometric optics associates wave-fronts to rays in a
medium with a variable refraction index (such as air heated by asphalt producing
a mirage).

3.3 Schrödinger Equation

To transition from geometric optics and mechanics to wave optics and quantum
mechanics, imagine that surfaces of constant action S are indeed wavefronts of
constant phase for the plane wave

Ψ = AeiS/~ = A exp

[
i
S

~

]
= A cos

[
S

~

]
+ iA sin

[
S

~

]
, (3.19)

where the constant ~ (pronounced “h-bar”) has the dimensions of S to enforce
the dimensionlessness of the function arguments. Small ~ means small changes
in S make large changes in the wave’s phase, corresponding to a high frequency,
geometric optics limit. Seek a partial differential equation for the wave function
Ψ in this limit using the Hamilton-Jacobi equation.

First invert to solve for the action

S = −i~ log

[
Ψ

A

]
= −i~ logΨ − i~ logA. (3.20)

Compute the derivatives
∂S

∂t
= −i~ 1

Ψ

∂Ψ

∂t
, (3.21)
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and
∂S

∂x
= −i~ 1

Ψ

∂Ψ

∂x
. (3.22)

Substitute these action derivatives into the Hamilton-Jacobi Eq. 3.10 to get

+ i~
1

Ψ

∂Ψ

∂t
= − ~2

2m

1

Ψ2

(
∂Ψ

∂x

)2

+ U (3.23)

or

i~Ψ
∂Ψ

∂t
= − ~2

2m

(
∂Ψ

∂x

)2

+ UΨ2. (3.24)

Unfortunately, this is a nonlinear partial differential equation (doubling Ψ quadru-
ples each term), and nonlinear equations are difficult to solve. Instead, solve
Eq. 3.22 for

∂Ψ

∂x
=

i

~
Ψ
∂S

∂x
, (3.25)

and compute the second derivative

∂2Ψ

∂x2
=

i

~
∂Ψ

∂x

∂S

∂x
+

i

~
Ψ
∂2S

∂x2

= − 1

~2
Ψ

(
∂S

∂x

)2

+
i

~
Ψ
∂2S

∂x2
. (3.26)

In the high frequency limit when ~ is small, 1/~ is large and 1/~2 is very large,
so neglect the right-side second term relative to the first term to obtain the
asymptotic relation

∂2Ψ

∂x2
∼
~↓0
− 1

~2
Ψ

(
∂S

∂x

)2

, (3.27)

and solve for (
∂S

∂x

)2

= −~2 1

Ψ

∂2Ψ

∂x2
. (3.28)

Finally, substitute the Eq. 3.21 and Eq. 3.28 action derivatives into the Hamilton-
Jacobi Eq. 3.10 to get

+ i~
1

Ψ

∂Ψ

∂t
= − ~2

2m

1

Ψ

∂2Ψ

∂x2
+ U = 0 (3.29)

or

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ UΨ. (3.30)

This is a linear equation (doubling Ψ doubles each term), which was first dis-
covered by Erwin Schrödinger [7] in 1926. In higher dimensions,

i~
∂Ψ

∂t
= − ~2

2m
∇2Ψ + UΨ . (3.31)
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Just as the square of the electric field in a light beam is proportional to
the intensity of the light, I ∝ E2, the absolute square of the matter wave
function is proportional to the probability of detecting a particle, P ∝ |Ψ |2.
Experimentally, the dimensional reduced Planck constant

~ =
h

2π
= 663 yJ/THz, (3.32)

and the Planck constant

h = 2π~ = 105 zJ · fs. (3.33)

(Both are useful, just as frequency f and angular frequency ω = 2πf are both
useful.)

3.4 Operator Formalism

Define the differential operators

E̊ = +i~∂t = +i~
∂

∂t
, (3.34a)

p̊x = −i~∂x = −i~ ∂

∂x
, (3.34b)

read “e ring equals plus i h-bar del sub t” and “p sub x ring equals minus i
h-bar del sub x”, and the 1 + 1 dimensional Schrödinger Eq. 3.30 simplifies to

E̊Ψ =
p̊2x
2m

Ψ + UΨ. (3.35)

Traveling wave functions
Ψ = Aei(kxx−ωt), (3.36)

are energy and momentum eigenfunctions

E̊Ψ = +i~∂tΨ = +i~(−iω)Ψ = ~ω Ψ = EΨ, (3.37a)

p̊xΨ = −i~∂xΨ = −i~(+ikx)Ψ = ~kx Ψ = pxΨ, (3.37b)

whose eigenvalues

E = ~ω, (3.38a)

px = ~kx (3.38b)

are the Einstein-deBroglie relations. Generalizing to 3 + 1 dimensions, the
Eq. 3.34 operator formalism provides the quick path

E =
p2

2m
+ U, (3.39a)

E̊Ψ =
p̊2

2m
Ψ + UΨ, (3.39b)

i~ ∂tΨ = − ~2

2m
∇2Ψ + UΨ (3.39c)

from classical energy to quantum Schrödinger Eq. 3.31.
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Problems

1. Check that the Eq. 3.18 thrown-ball action

(a) satisfies the Hamilton-Jacobi Eq. 3.11

(b) and has the correct Eq. 3.5 gradient.

2. Substitute the wave function Eq. 3.19 into the Schrödinger Eq. 3.31 and
recover the Hamilton-Jacobi Eq. 3.11 in the limit ~ ↓ 0.
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Chapter 4

Relativity

Symmetries imply an invariant speed [5].

4.1 Linear Transformation

Consider two reference frames or observers O and O′, say Earth and a
spaceship, in relative motion at velocity ~v = vx̂ along a common x̂ axis, as in
Fig. 4.1, where the ŷ and ẑ axes are suppressed for simplicity. Assume they
observe the same event, say a supernova, which O locates at time t and space
x and O′ locates at

t′ = Tv[t, x], (4.1a)

x′ = Xv[t, x], (4.1b)

where the functions T and X are to be determined.

Figure 4.1: Observer O′′ moves at speed u relative to observer O′ who moves at
speed v relative to observer O. All observers carry their own clocks t and rulers
x.

19
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Assume space is homogeneous, so if a ruler at rest in O extends from x1
to x2, and O′ measures its length

`′ = Xv[t, x2]−Xv[t, x1], (4.2)

translating the ruler a distance h in O won’t change its length in O′,

`′ = Xv[t, x2 + h]−Xv[t, x1 + h]. (4.3)

Equate the right sides, shuffle, and divide by h,

Xv[t, x2 + h]−Xv[t, x2 + h]

h
=
Xv[t, x1 + h]−Xv[t, x1 + h]

h
. (4.4)

Assume smoothness and take the limit h→ 0 to find

∂Xv

∂x

∣∣∣∣
x2

=
∂Xv

∂x

∣∣∣∣
x1

= constant =
∂Xv

∂x
, (4.5)

as the first term can depend only on x1 and the second only on x2 only if they
are the same constant. Similarly, assume time is homogeneous to show

∂Xv

∂t

∣∣∣∣
t2

=
∂Xv

∂t

∣∣∣∣
t1

= constant =
∂Xv

∂t
. (4.6)

Thus the coordinate transformation is linear, so write

t′ = Tv[t, x] = Avt+Bvx+ constant, (4.7a)

x′ =Xv[t, x] = Cvt+Dvx+ constant. (4.7b)

By convention, choose Tv[0, 0] = 0 = Xv[0, 0], so the observers’ origins coincide
and the constants vanish, so

t′ = Avt+Bvx, (4.8a)

x′ = Cvt+Dvx, (4.8b)

or as the single matrix equation

t′

x′
=

Av Bv

Cv Dv

t

x
. (4.9)

4.2 Lorentz Transformation

Assume space is isotropic, so position and velocity invert simultaneously,

T−v[t,−x] = +Tv[t, x], (4.10a)

X−v[t,−x] = −Xv[t, x], (4.10b)



Chapter 4. Relativity 21

and

A−vt−B−vx = +Avt+Bvx, (4.11a)

C−vt−D−vx = −Cvt− Vvx. (4.11b)

Compare term-by-term to discover the symmetry and anti-symmetry

A−v = +Av, (4.12a)

B−v = −Bv, (4.12b)

C−v = −Cv, (4.12c)

D−v = +Dv. (4.12d)

Assume motion is relative, so the inverse transformation

t = T−v[t
′, x′], (4.13a)

x = X−v[t
′, x′] (4.13b)

inverts velocity and swaps primes and unprimes. Concatenate the transforma-
tions and their inverses to form the constraints

t = T−v
[
Tv[t, x], Xv[t, x]

]
, (4.14a)

x = X−v
[
Tv[t, x], Xv[t, x]

]
. (4.14b)

or

t = A−v(Avt+Bvx) +B−v(Cvt+Dvx), (4.15a)

x = C−v(Avt+Bvx) +D−v(Cvt+Dvx), (4.15b)

or using the Eq. 4.12 symmetries and anti-symmetries,

t = +Av(Avt+Bvx)−Bv(Cvt+Dvx), (4.16a)

x = −Cv(Avt+Bvx) +Dv(Cvt+Dvx). (4.16b)

Compare term-by-term to find

A2
v −BvCv = 1, (4.17a)

Bv(Av −Dv) = 0, (4.17b)

Cv(Av −Dv) = 0, (4.17c)

D2
v −BvCv = 1. (4.17d)

The middle equations imply either Av = 0 = Dv, in which case the end equations
imply Bv = 1 = Cv, which is trivial, or

Av = Dv (4.18)

and by Eq. 4.17d

Bv =
D2
v − 1

Cv
, (4.19)
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which is nontrival. Since the observers’ origins coincide at t = 0 = t′, x′ = 0
implies x = vt, and so Eq. 4.8b implies

Cv = −vDv. (4.20)

With these substitutions, the linear Eq. 4.9 transformation becomes

t′

x′
=

Dv
D2
v−1
−vDv

−vDv Dv

t

x
, (4.21)

where D0 = 1 and D−v = Dv.
Consider a third observer O′′ in relative motion at velocity ~u = ux̂ relative

to O′ and at velocity ~w = wx̂ relative to O, as in Fig. 4.1. Concatenate the
Eq. 4.21 transformation to find

t′′

x′′
=

Dw
D2
w−1
−wDw

−wDw Dw

t

x

=
Du

D2
u−1
−uDu

−uDu Du

Dv
D2
v−1
−vDv

−vDv Dv

t

x

=
DuDv + (D2

u − 1) vDvuDu
−(D2

u − 1) Dv
uDu
− (D2

v − 1) DuvDv

−(u+ v)DuDv DuDv + (D2
v − 1)uDuvDv

t

x
.

(4.22)

Since the two Eq. 4.22 primary diagonal ↘ elements must be equal, the last
line implies

(D2
u − 1)

vDv

uDu
= (D2

v − 1)
uDu

vDv
(4.23)

or
D2
u − 1

u2D2
u

=
D2
v − 1

v2D2
v

= constant =
1

c2
, (4.24)

as the first term can depend only on v and the second only on u only if they
are the same constant, here with dimensions of inverse speed squared. Thus,

Dv =
1√

1− v2/c2
= γ (4.25)

is the famous relativistic stretch or “gamma” factor, and

Bv =
D2
v − 1

−vDv
= −γv

(
1− 1/γ2

v2

)
= −γ v

c2
. (4.26)
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The Lorentz-Einstein transformation [2] becomes

t′

x′
=

γ −γv/c2

−γv γ

t

x
(4.27)

or as two separate scalar equations

t′ = γ
(
t− vx/c2

)
, (4.28a)

x′ = γ (x− vt) . (4.28b)

4.3 Velocity Addition

Also, the Eq. 4.22 top-left elements with Eq. 4.24 must satisfy

Dw = DuDv + (D2
u − 1)

vDv

uDu

= DuDv +

(
u2D2

u

c2

)
vDv

uDu

= DuDv

(
1 +

uv

c2

)
. (4.29)

Square both sides and with Eq. 4.25 write

1

1− w2/c2
=

(1 + uv/c2)2

(1− u2/c2)(1− v2/c2)
. (4.30)

Reciprocate and solve for

w2 = c2 − (1− u2/c2)(1− v2/c2)

(1 + uv/c2)2
=

(u+ v)2

(1 + uv/c2)2
(4.31)

and

w =
u+ v

1 + uv/c2
= u⊕ v, (4.32)

which is the velocity addition formula.
The constant c has the dimensions of speed, but speed relative to what? If

observer O′′ moves with x-velocity u = c relative to observer O′ and observer
O′ moves with x-velocity v = c relative to observer O, then observer O′′ moves
with x-velocity

w = c⊕ c =
c+ c

1 + c c/c2
= c (4.33)

relative to O. The speed c is invariant, the same for all observers. Rela-
tivity and the very general assumptions of homogeneity, isotropy, smoothness,
inversion, and concatenation imply its remarkable existence. Experimentally,

c = 299 792 458 m/s = 0.3 m/ns ≈ 1 ft/ns ≈ 1 billion km/hr. (4.34)

Light and gravitational waves appear to travel at this unique invariant speed.
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Problems

1. Verify that the velocity addition Eq. 4.32 is associative.

(a) (u⊕ v)⊕ w = u⊕ (v ⊕ w) = u⊕ v ⊕ w
(b) u⊕ v ⊕ (−u) = v



Chapter 5

Potentials & Momenta

The electric and magnetic fields ~E and ~B are the derivatives of the electric and
magnetic potentials V and ~A and store energy and momentum U and ~p.

5.1 Electric and Magnetic Potentials

A charge at rest generates an electric field. The electric scalar potential

ε0V =

ˆ
dq

4πr =

˚
ρ dV

4πr , (5.1)

Figure 5.1: Minus the gradient of a scalar potential V is the (static) electric

field ~E . The electric source is a static point charge.

25
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where ρ[~r ′] is the charge density and ~r = ~r−~r ′ connects the source point ~r ′ to
the field point ~r. The (static) electric field

ε0~E = −ε0
∂V
∂~r

= −ε0~∇V = −
ˆ

dq

4π
~∇
(

1

r
)

=

ˆ
dq

4πr 2r̂ , (5.2)

is minus the gradient of the potential energy, which implies Coulomb’s law.
The electric field ~E pierces surfaces of constant potential V from high to low, as
in Fig. 5.1.

A charge in motion generates a magnetic field. The magnitude and direction
of the motion suggests that the magnetic potential is a vector field. In analogy
with the Eq. 5.1 electric potential, the magnetic vector potential

µ−10
~A =

ˆ
~v dq

4πr =

ˆ ~Id`

4πr =

˚ ~JdV

4πr , (5.3)

where ~J [~r ′] is the current density. The vector nature of the magnetic potential
suggests that the magnetic field is the gradient cross product of the potential.
Indeed, the magnetic field

µ−10
~B = µ−10

~∇× ~A =

˚
1

4π
~∇
(

1

r
)
× ~J dV =

˚ ~JdV × r̂
4πr 2 =

ˆ ~Id`× r̂
4πr 2

(5.4)
is the curl of the magnetic potential, which implies Biot-Savart’s law. The
magnetic field ~B curls around the potential ~A, as in Fig. 5.2.

Figure 5.2: The curl of a vector potential ~A is the magnetic field ~B. The
magnetic source is a stationary ring current.

5.2 Momentum

Think of the electric potential V as the energy per unit charged stored in the
electric field. Think of the magnetic potential ~A as the momentum per unit



Chapter 5. Potentials & Momenta 27

charge stored in the magnetic field.

5.2.1 Mechanical & Field Momentum

A cylindrical solenoid of radius R, current I, and n turns per unit length, as
in Fig. 5.3, has a uniform interior magnetic field and zero exterior magnetic
field. Ampère’s law applied to a rectangular contour parallel to the interior
magnetic field and straddling the side

0 + 0 + 0 + Bz` =

˛
~B · d~̀= ΓB = µ0IΣ = µ0n`I (5.5)

implies
~B = µ0nIẑ. (5.6)

Stokes’ theorem implies that the magnetic flux

ΦB =

¨
a

~B · d~a =

¨
a

~∇× ~A · d~a =

˛
`=∂a

~A · d~̀= Aφ(2πs), (5.7)

so the magnetic vector potential a perpendicular separation s > R from the
solenoid axis

~A =
ΦB
2πs

φ̂ (5.8)

is nonzero, where {s, φ, z} are cylindrical coordinates .
Next add a line charge λ = dq/d` parallel to the solenoid at a distance x > R

from its axis [4], as in Fig. 5.3. Gauss’s law applied to a cylinder of radius x
concentric with the line charge

0 + E(2πx)`+ 0 =

‹
~E · d~a = ΦE = ε−10 Q = ε−10 λ` (5.9)

implies

ε0Ex = − λ

2πx
. (5.10)

at the solenoid’s axis.
Finally, deactivate the solenoid (slowly enough to neglect radiation), and

the line charge receives an impulse, as in Fig. 5.3. Qualitatively, a changing
magnetic field induces a circulating electric field that forces the line charge to
move. Quantitatively, Faraday’s law implies

Eφ(2πs) =

˛
~E · d~̀= ΓE = −dΦB

dt
, (5.11)

where the total magnetic flux ΦB = BA = B πR2. The circulating electric field

Eφ = − 1

2πs

dΦB
dt

> 0, (5.12)
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and a length ` of charge q = λ` experiences a force

dpφ
dt

= Fφ = qEφ = − q

2πs

dΦB
dt

. (5.13)

Assume the charge does not move far during the magnetic field decay, and
integrate ˆ pφ

0

dpφ = − q

2πs

ˆ 0

ΦB

dΦB (5.14)

to find the final momentum

pφ =
q

2πs
ΦB = qAφ > 0. (5.15)

On the solenoid axis, the momentum density

py
A`

=
λ`

2πx

BA
A`

=
λ

2πx
Bz = −ε0ExBz. (5.16)

In general,
d~pe
dV

= ε0~E × ~B. (5.17)

Like an electromagnetic wave storing momentum in its crossed electric and
magnetic fields (to enable sunlight to shape a comet’s dust tail, for example),

the charge and solenoid store momentum in the crossed electric ~E and magnetic
~B fields inside the latter. But how does this momentum transfer from the
solenoid to the charge, especially with no magnetic field outside the solenoid?
The momentum is stored at the charge potentially as q ~A and actualized when
the changing magnetic field induces a circulating electric field that forces the
charge, as in Fig. 5.4.

Generally, total or canonical momentum

~P = ~p+ q ~A (5.18)

is the sum of the familiar mechanical or kinetic momentum ~p = γm~v ∼ m~v,
v � c, and the potential or field momentum q ~A. Sometimes write the
mechanical momentum

~Π = ~P − q ~A = ~p. (5.19)
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Figure 5.3: A solenoid has outward magnetic field ~B and circulating magnetic
potential ~A. A distant line charge λ = dq/d` alternately accelerates and deceler-
ates the solenoid’s circulating surface charges. The electromagnetic momentum
~pe stored in the solenoid’s crossed electric and magnetic fields balances the hid-
den momentum ~ph stored in the asymmetric currents.

Figure 5.4: Decreasing the magnetic field ~B induces a circulating electric field
~E , which pushes the line charge λ as it transfers field momentum q ~A to mechan-
ical momentum ~pλ. Sum of electromagnetic, hidden, solenoid, and line charge
momenta is always zero, ~pe + ~ph + ~ps + ~pλ = ~0. Finally, the line charge recoils
leftward and the solenoid recoils rightward.
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5.2.2 Hidden Momentum

The line charge electric field accelerates solenoid charges as they move away
from it and decelerates them as they move toward it, so charges on the far
side move fast and are far apart, while charges on the near side move slow and
are close together. At constant current, the momenta would balance, but the
nonlinear relativistic stretch γ = 1/

√
1− v2/c2 makes fast faster.

The constant current

I =
dQ

dt
=
d(Nq)

d`

d`

dt
= q

dN

d`

d`

dt
= qnv = qn[φ]v[φ], (5.20)

where n[φ] and v[φ] are the angle-dependent charge density and speed. In an
infinitesimal arc length d` = Rdφ, the infinitesimal momentum

d~p = γdM~v = γ
d(Nm)

d`
~v = γnmd`~v, (5.21)

so the total x momentum

px =

˛
dpx =

˛
γnmd` vx =

ˆ 2π

0

γnm (Rdφ) (−v sinφ)

= −mIR
q

ˆ 2π

0

dφ γ[φ] sinφ, (5.22)

which vanishes in the non-relativistic γ = 1 limit. Meanwhile, as the solenoid
charges move from near to far, as in Fig. 5.3, the line charge electric field does
work that change their energies by

qER(1 + sinφ) = fd = W = ∆E = γ
[π

2

]
mc2 − γ[φ]mc2, (5.23)

so the product

γ[φ] sinφ =

(
γ
[π

2

]
− qER
mc2

)
sinφ− qER

mc2
sin2 φ. (5.24)

Substitute Eq. 5.24 into Eq. 5.22 to get

px = −mIR
q

(
0− qER

mc2
π

)
=

1

c2
(
IπR2

)
E = −ε0µ0µzEy, (5.25)

since the integrals over a period of sinφ and sin2 φ are 0 and π. More generally,
the momentum hidden in the relativistic movement of the solenoid charges

~ph = −ε0µ0~µ× ~E = −~pe (5.26)

exactly balances electromagnetic momenta stored in the crossed electric and
magnetic fields

~ph + ~pe = ~0. (5.27)
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Problems

1. Compute the hidden momentum of a solenoid of rectangular cross section
`× w. (Hint: Similar but simpler than the Section 5.2.2 circular case, as
the integrals become sums and differences.)



Chapter 5. Potentials & Momenta 32



Chapter 6

Dirac Equation

In 1928, Paul Dirac [1] discovered a relativistic wave equation i~∂tΨ = HΨ that
naturally predicts g = 2 when coupled to an electromagnetic field.

6.1 Free Electron

Recall that applying the nonrelativistic energy-momentum relation

E =
1

2
mv2 =

p2

2m
=
~p · ~p
2m

= H (6.1)

with the Eq. 3.34 operator substitutions

E → E̊ = +i~∂t, (6.2a)

~p→ ~̊p = −i~~∇ (6.2b)

to a wave function Ψ [t, ~r]

i~∂tΨ = − ~2

2m
∇2Ψ (6.3)

generates the free-particle Schrödinger wave equation. The corresponding rela-
tivistic energy-momentum relation

E2 = (pc)2 + (mc2)2 = H2 (6.4)

makes similarly generating a relativistic wave equation tricky. To include time
and space symmetrically as first-order derivatives, boldly represent the square
root of Eq. 6.4 as a linear function of the momentum

H =
√

(pc)2 + (mc2)2 = ~α · ~pc+ βmc2. (6.5)
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Equate the squares of both sides and expand without assuming αx, αy, αz, β
commute to get

H2 = (pc)2 + (mc2)2 = (~α · ~pc+ βmc2)2

= (~α · ~pc)2 + (~α · ~pc)
(
βmc2

)
+
(
βmc2

)
(~α · ~pc) + β2m2c4. (6.6)

Comparing first terms
p2 = (~α · ~p )

2
(6.7)

or

p2x + p2y + p2z = (αxpx + αypy + αzpz)
2

= α2
xp

2
x + αxαypxpy + αxαzpxpz

+ αyαxpypx + α2
yp

2
y + αyαzpypz

+ αzαxpzpx + αzαypzpy + α2
zp

2
z (6.8)

implies
α2
x = α2

y = α2
z = 1 (6.9)

and

αxαy = −αyαx, (6.10a)

αyαz = −αzαy, (6.10b)

αzαx = −αxαz. (6.10c)

Comparing cross terms implies

~αβ = −β~α (6.11)

or

αxβ = −βαx, (6.12a)

αyβ = −βαy, (6.12b)

αzβ = −βαz. (6.12c)

Comparing last terms implies
β2 = 1. (6.13)

Thus, αx, αy, αz, β are not complex numbers but realize an abstract alge-
bra of anti-commuting unit squares. Represent this algebra most simply by
the 2× 2 block matrices

~α =
0 ~σ

~σ 0
, (6.14a)

β =
I 0

0 I
, (6.14b)
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where the elements themselves are the 2× 2 matrices

I =
1 0

0 1
, (6.15a)

σx =
0 1

1 0
, (6.15b)

σy =
0 −i

i 0
, (6.15c)

σz =
1 0

0 −1
, (6.15d)

where “−i rides high on σy”. The Pauli matrices satisfy the same algebra

σ2
x = σ2

y = σ2
z = −iσxσyσz = I. (6.16)

as the quaternions. For example,

σ2
x =

0 1

1 0

0 1

1 0
=

0 · 0 + 1 · 1 1 · 0 + 0 · 1

0 · 1 + 1 · 0 1 · 1 + 0 · 0
=

1 0

0 1
= I

(6.17)
and

σxσyσz =
0 1

1 0

0 −i

i 0

1 0

0 −1
=

i 0

0 −i

1 0

0 −1
=

i 0

0 i
= iI.

(6.18)

With the Eq. 6.14 block matrices, the Dirac equation

i~∂tΨ =
(
~α · ~̊pc+ βmc2

)
Ψ, (6.19)

where αxpxcΨ = αx(−i~∂x(cΨ)) = −i~cαx∂xΨ , for example. Introduce “Large”
and “Small” components

Ψ =

Ψ1

Ψ2

Ψ1

Ψ2

=
ΨL

ΨS
(6.20)
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and write

i~∂t
ΨL

ΨS
=

Imc2 ~σ · ~̊pc

~σ · ~̊pc −Imc2
ΨL

ΨS
. (6.21)

With the dot product

~σ · ~p = σxpx + σypy + σzpz

=
0 1

1 0
px +

0 −i

i 0
py +

1 0

0 −1
pz

=
pz px − ipy

px + ipy −pz
, (6.22)

fully expand the Dirac equation

i~∂t

Ψ1

Ψ2

Ψ3

Ψ4

=

mc2 0 p̊zc p̊xc− ip̊yc

0 mc2 p̊xc+ ip̊yc −p̊zc

p̊zc p̊xc− ip̊yc −mc2 0

p̊xc+ ip̊yc −p̊zc 0 −mc2

Ψ1

Ψ2

Ψ3

Ψ4

(6.23)
and as four complex equations

i~∂tΨ1 = mc2Ψ1 + p̊zcΨ3 + p̊xcΨ4 − ip̊ycΨ4, (6.24a)

i~∂tΨ2 = mc2Ψ2 + p̊xcΨ3 + ip̊ycΨ3 − p̊zcΨ4, (6.24b)

i~∂tΨ3 = p̊zcΨ1 + p̊xcΨ2 − ip̊ycΨ2 −mc2Ψ3, (6.24c)

i~∂tΨ4 = p̊xcΨ1 + ip̊ycΨ1 − p̊zcΨ2 −mc2Ψ4, (6.24d)

and with explicit spatial derivatives

i~∂tΨ1 = mc2Ψ1 − i~c∂zΨ3 − i~c∂xΨ4 + i~c∂yΨ4, (6.25a)

i~∂tΨ2 = mc2Ψ2 − i~c∂xΨ3 − i~c∂yΨ3 + i~c∂zΨ4, (6.25b)

i~∂tΨ3 = −i~c∂zΨ1 − i~c∂xΨ2 + i~c∂yΨ2 −mc2Ψ3, (6.25c)

i~∂tΨ4 = −i~c∂xΨ1 − i~c∂yΨ1 + i~c∂zΨ2 −mc2Ψ4. (6.25d)

In the rest frame, the four components can represent a spin “up” or spin “down”
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electron or anti-electron; informally,

Ψ =

↑ e−

↓ e−

↑ e+

↓ e+

. (6.26)

6.2 Interacting Electron

6.2.1 Pauli Equation

In an electromagnetic field, the free-particle Schrödinger equation

i~∂tΨ = H̊Ψ =
~̊p 2

2m
Ψ (6.27)

becomes

i~∂tΨ =
~̊p 2

2m
Ψ + qV Ψ, (6.28)

where the Eq. 5.19 mechanical momentum

~̊p = ~̊P − q ~A = −i~~∇− q ~A, (6.29)

and V and ~A are the electric and magnetic potentials. Similarly, the free-particle
Dirac equation

i~∂tΨ = H̊Ψ =
(
~α · ~̊pc+ βmc2

)
Ψ (6.30)

becomes

i~∂tΨ =
(
~α · ~̊pc+ βmc2 + qV

)
Ψ. (6.31)

Assume no electric field, so V = 0, and seek stationary solutions of constant
energy

Ψ [~r, t] = ψ[~r ]e−iEt/~ (6.32)

to get

Eψ =
(
~α · ~̊pc+ βmc2

)
ψ. (6.33)

Introduce “large” and “small” time-independent two-component spinors, as in
Eq. 6.21, to write

E
ψL

ψS
=

Imc2 ~σ · ~̊pc

~σ · ~̊pc −Imc2
ψL

ψS
. (6.34)
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Move the spinors to the left side

IE 0

0 IE

ψL

ψS
−

Imc2 ~σ · ~̊pc

~σ · ~̊pc −Imc2
ψL

ψS
=

0

0
(6.35)

and consolidate

I(E −mc2) −~σ · ~̊pc

−~σ · ~̊pc I(E +mc2)

ψL

ψS
=

0

0
(6.36)

to get the two complex equations(
E −mc2

)
ψL − ~σ · ~̊pc ψS = 0, (6.37a)(

E +mc2
)
ψS − ~σ · ~̊pc ψL = 0. (6.37b)

In the non-relativistic limit,

E +mc2 = E −mc2 + 2mc2 = EN + 2mc2 ∼ 2mc2, (6.38)

where the non-relativistic energy that appears in the Schrödinger equation
EN � mc2. Assume the state

ψL ∼ Nei~p·~r/~ = Neim~v·~r/~ (6.39)

has a typical momentum

~̊p ψL = −i~~∇ψL ∼ m~v ψL. (6.40)

Hence, the bottom Eq. 6.37b implies the small component

ψS =
~σ · ~̊pc

E +mc2
ψL ∼

mvc

2mc2
ψL =

1

2

(v
c

)
ψL � ψL (6.41)

is much smaller than the large component, and so the top Eq. 6.37a implies

ENψL =
(
E −mc2

)
ψL = ~σ · ~̊pc ψS =

(
~σ · ~̊pc

)(
~σ · ~̊pc

)
E +mc2

ψL ∼

(
~σ · ~̊p

)2
2m

ψL.

(6.42)
In 1927, Wolfgang Pauli [6] first formulated the corresponding time-dependent
equation

i~∂tΨ =

(
~σ · ~̊p

)2
2m

Ψ (6.43)

as an ad hoc explanation for electron spin and magnetic moment.
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6.2.2 Two Famous Identities

For constant vectors ~u and ~v, the Eq. 6.16 Pauli algebra implies the algebraic
identity

(~σ · ~u) (~σ · ~v) = (uxσx + uyσy + uzσz) (vxσx + vyσy + vzσz)

= uxvxσ
2
x + uxvyσxσy + uxvzσxσz

+ uyvxσyσx + uyvyσ
2
y + uyvzσyσz

+ uzvxσzσx + uzvyσzσy + uzvzσ
2
z

= Iuxvx + iuxvyσz − iuxvzσy

− iuyvxσz + Iuyvy + iuyvzσx

+ iuzvxσy − iuzvyσx + Iuzvz

= I (uxvx + uyvy + uzvz)

+ i
(

(uyvz − uzvy)σx

+ (uzvx − uxvz)σy
+ (uxvy − uyvx)σz

)
= I~u · ~v + i~u× ~v · ~σ. (6.44)

For mechanical momentum ~̊p = ~̊P − q ~A and for any wave function ψ[~r ],
careful application of a vector derivative product rule implies the differential
identity

~̊p× ~̊p ψ = (−i~~∇− q ~A)× (−i~~∇− q ~A)ψ

= (−i~~∇− q ~A)× (−i~~∇ψ − q ~Aψ)

= −~∇× ~∇ψ + i~q~∇×
(
~Aψ
)

+ i~q ~A× ~∇ψ + ~2q2 ~A× ~Aψ

= ~0 + i~q
((
~∇× ~A

)
ψ +

(
~∇ψ
)
× ~A

)
+ i~q ~A× ~∇ψ +~0

= +i~q
(
ψ~∇× ~A− ~A× ~∇ψ

)
+ i~q ~A× ~∇ψ

= i~q~∇× ~Aψ

= i~q ~Bψ (6.45)

and so

~̊p× ~̊p = i~q ~B. (6.46)
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6.2.3 Electron Magnetic Moment

The Section 6.2.2 identities imply(
~σ · ~̊p

)2
= ~̊p · ~̊p+ i~σ · ~̊p× ~̊p = ~̊p 2 − q~~σ · ~B (6.47)

so the time-independent “large” Eq. 6.42 becomes

ENψL =
~̊p 2 − q~~σ · ~B

2m
ψL

=
~̊p 2

2m
ψL −

q~
2m

~σ · ~BψL

=
~̊p 2

2m
ψL + UψL, (6.48)

with the corresponding time-dependent equation

i~∂tΨL =
~̊p 2

2m
ΨL + UΨL, (6.49)

where the potential energy

U = −~µ · ~B = −2
q

2m

~
2
~σ · ~B, (6.50)

and the magnetic moment

~µ = g
q

2m
~S, (6.51)

and the spin angular momentum

~S =
~
2
~σ, (6.52)

and
g = 2. (6.53)
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Problems

1. Verify all of the Eq. 6.16 Pauli identities by explicit matrix multiplication.

2. Verify all of the Eq. 6.45 vector derivative expansion of ~∇×
(
~Aψ
)

by
working in rectangular coordinates. (Hint: Without loss of generality,
rotate the coordinates so that the vector points along the x-axis.)

3. Using the block matrices

{γt, γx, γy, γz} =

 1 0

0 −1
,

0 σx

−σx 0
,

0 σy

−σy 0
,

0 σz

−σz 0


(6.54)

and the Feynman slash notation

/a = γtat + γxax + γyay + γzaz, (6.55)

write the Dirac Eq. 6.19 in natural ~ = c = 1 units as in the Fig. 1.1
memorial marker,

i/∂Ψ = mΨ. (6.56)
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Chapter 7

Afterword

In 1948, in a short letter to the Physical Review at the dawn of quantum elec-
trodynamics (QED), Julian Schwinger [8] claimed that, actually, the electron
magnetic dipole moment

g = 2
(

1 +
α

2π
+ · · ·

)
= 2.0023 . . . , (7.1)

where the fine structure constant

α =

(
qe
qP

)2

=
q2e

4πε0~c
≈ 0.0072973 ≈ 1

137
� 1 (7.2)

and the Planck charge qP ≈ 1.8755 aC, which was subsequently verified ex-
perimentally. Schwinger’s triumph is commemorated in his Fig. 7.1 tombstone.

Figure 7.1: Julian Schwinger’s tombstone includes his first-order correction to
g = 2. (Creative Commons credit: Jacob Bourjaily, 2013.)

43
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In 1949, while “bringing QED to the masses”, Richard Feynman [3] repre-
sented the electron anomalous magnetic moment by the diagram



Appendix A

Used Math

Briefly review the mathematics used in this text

A.1 Calculus in Higher Dimensions

A.1.1 Partial Derivatives

In one-dimension, the function

f [x] = 3x2 + 1 (A.1)

has the derivative
df

dx
= 6x+ 0 = 6x. (A.2)

In two dimensions, the function

f [x, y] = 3xy2 + 2x+ 3y + 2 (A.3)

has the partial derivatives

∂f

∂x
= 3y2 + 2 + 0 + 0 = 3y2 + 2, (A.4a)

∂f

∂y
= 6xy + 0 + 3 + 2 = 6xy + 5, (A.4b)

which are just like ordinary derivatives, but with other variables held constant.

A.1.2 Vector Derivatives

In three dimensions, the gradient of a scalar function

~∇f = x̂
∂f

∂x
+ ŷ

∂f

∂y
+ ẑ

∂f

∂z

= x̂ ∂xf + ŷ ∂yf + ẑ ∂zf (A.5)
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is the direction and rate of fastest increase of the function, where x̂ is a unit
vector in the direction of increasing x, and so on. In analogy with the Greek
letters δ and ∆, pronounce the pseudo-letters ∂ and ∇ “del” and “big del” (and
enter them as “partial” and “nabla” in LATEX).

The two complementary kinds of vector products imply two complementary
kinds of vector derivatives. In rectangular coordinates, the divergence

~∇ · ~v = (x̂ ∂x + ŷ ∂y + ẑ ∂z) · (x̂ vx + ŷ vy + ẑ vz)

= x̂ · x̂ ∂xvx + x̂ · ŷ ∂xvy + x̂ · ẑ ∂xvz
+ ŷ · x̂ ∂yvx + ŷ · ŷ ∂yvy + ŷ · ẑ ∂yvz
+ ẑ · x̂ ∂zvx + ẑ · ŷ ∂zvy + ẑ · ẑ ∂zvz

= ∂xvx + 0 + 0

+ 0 + ∂yvy + 0

+ 0 + 0 + ∂zvz

= ∂xvx + ∂yvy + ∂zvz (A.6)

is a scalar function, and the curl

~∇× ~v = (x̂ ∂x + ŷ ∂y + ẑ ∂z)× (x̂ vx + ŷ vy + ẑ vz)

= x̂× x̂ ∂xvx + x̂× ŷ ∂xvy + x̂× ẑ ∂xvz
+ ŷ × x̂ ∂yvx + ŷ × ŷ ∂yvy + ŷ × ẑ ∂yvz
+ ẑ × x̂ ∂zvx + ẑ × ŷ ∂zvy + ẑ × ẑ ∂zvz

= +~0 + ẑ ∂xvy − ŷ ∂xvz
− ẑ ∂yvx +~0 + x̂ ∂yvz

+ ŷ ∂zvx − x̂ ∂zvy +~0

= x̂ (∂yvz − ∂zvy) + ŷ (∂zvx − ∂xvz) + ẑ (∂xvy − ∂yvx) (A.7)

is a vector function. Be especially careful not to confuse the gradient and the
divergence.

A.1.3 Integrals of Derivatives

In one-dimensional calculus, the integral of the derivative of a function is the
function. In three-dimensional calculus, three different derivatives imply three
analogous results, all special cases of Stokes’ theorem. The integral of the
gradient of a scalar function along a path

ˆ
`

~∇f · d` = f

∣∣∣∣
∂`

= f2 − f1 (A.8)

is the difference of the function at the path’s boundary points, where the un-
adorned ∂ is the boundary operator. The integral of the curl of a vector
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function over an area ¨
a

~∇× ~v · d~a =

˛
`=∂a

~v · d` (A.9)

is the closed path integral of the function over the area’s boundary. The integral
of the divergence of a vector function over a volume

˚
V

~∇ · ~v dV =

‹
a=∂V

~v · d~a (A.10)

is the closed surface integral of the function over the volume’s boundary.

A.1.4 Product Rules

In one-dimensional calculus, the product rule for differentiation is

d

dx
(fg) =

df

dx
g + f

dg

dx
. (A.11)

In three-dimensional calculus, different kinds of products and derivatives result-
ing in six different product rules exist. Derive these by carefully employing the
mixed “box” product

~A ·
(
~B × ~C

)
= ~C ·

(
~A× ~B

)
= ~B ·

(
~C × ~A

)
, (A.12)

the vector double product

~A×
(
~B × ~C

)
= ~B

(
~A · ~C

)
− ~C

(
~A · ~B

)
(A.13)

or
~B
(
~A · ~C

)
= ~A×

(
~B × ~C

)
+ ~C

(
~A · ~B

)
, (A.14)

and the linearity of the derivative

~∇ = ~∇A + ~∇B . (A.15)

The gradient of the product of two scalar fields is

~∇
(
fg
)

=
(
~∇f
)
g + f

(
~∇g
)
. (A.16)

The gradient of the scalar product of two vector fields is

~∇
(
~A · ~B

)
=~∇A

(
~A · ~B

)
+ ~∇B

(
~A · ~B

)
=~∇A

(
~A · ~B

)
+ ~∇B

(
~B · ~A

)
= ~B ×

(
~∇A × ~A

)
+
(
~B · ~∇A

)
~A+ ~A×

(
~∇B × ~B

)
+
(
~A · ~∇B

)
~B

= ~B ×
(
~∇× ~A

)
+
(
~B · ~∇

)
~A+ ~A×

(
~∇× ~B

)
+
(
~A · ~∇

)
~B (A.17)
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The divergence of the product of a scalar field and a vector field is

~∇ ·
(
f ~A
)

=
(
~∇f
)
· ~A+ f

(
~∇ · ~A

)
. (A.18)

The divergence of the vector product of two vector fields is

~∇ ·
(
~A× ~B

)
= ~∇A ·

(
~A× ~B

)
+ ~∇B ·

(
~A× ~B

)
= ~∇A ·

(
~A× ~B

)
− ~∇B ·

(
~B × ~A

)
= ~B ·

(
~∇A × ~A

)
− ~A ·

(
~∇B × ~B

)
= ~B ·

(
~∇× ~A

)
− ~A ·

(
~∇× ~B

)
(A.19)

The curl of the product of a scalar field and a vector field is

~∇×
(
f ~A
)

=
(
~∇f
)
× ~A+ f

(
~∇× ~A

)
. (A.20)

The curl of the vector product of two vector fields is

~∇×
(
~A× ~B

)
= ~∇A ×

(
~A× ~B

)
+ ~∇B ×

(
~A× ~B

)
= ~∇A ×

(
~A× ~B

)
+ ~∇B ×

(
~A× ~B

)
=
(
~B · ~∇A

)
~A− ~B

(
~∇A · ~A

)
+ ~A

(
~∇B · ~B

)
−
(
~A · ~∇B

)
~B

=
(
~B · ~∇

)
~A− ~B

(
~∇ · ~A

)
+ ~A

(
~∇ · ~B

)
−
(
~A · ~∇

)
~B (A.21)

A.2 Complex Numbers

Complex numbers complete real numbers. The algebraic equation x2 + 1 = 0
has no real solutions. Imagine that it has solutions ±i. By successive multipli-
cation, the imaginary number i satisfies i2 = −1, i3 = −i, i4 = +1, i5 = +i,
i6 = −1, and so on in a 4-cycle. Hence the absolutely convergent Taylor
expansions of common functions dramatically reorganize when evaluated at
imaginary numbers. For example, the exponential

eix = 1 + ix+
(ix)2

2!
+

(ix)3

3!
+

(ix)4

4!
+

(ix)5

5!
+

(ix)6

6!
+

(ix)7

7!
+

(ix)8

8!
+ · · ·

= 1 + ix− x2

2!
− i

x3

3!
+
x4

4!
+ i

x5

5!
− x6

6!
− i

x7

7!
+
x8

8!
+ · · ·

=

(
1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
− · · ·

)
+ i

(
x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

)
= cosx+ i sinx, (A.22)

becomes a linear superposition of sinusoids known as Euler’s identity. The
choice x = π generates the famously beautiful special case

eiπ + 1 = 0, (A.23)
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which relates the five most important mathematical constants e, i, π, 1, 0 in a
simple formula.

A general complex number is the linear combination

z = zR + zIi = x+ iy = {x, y}, (A.24)

where the real and imaginary components x = zR and y = zI are real numbers.
The sum of two complex numbers

z + λz′ = x+ iy + λ(x′ + iy′) = x+ λx′ + i(y + λy′) (A.25)

and the product of two complex numbers

zz′ = (x+ iy)(x′ + iy′) = xx′ − yy′ + i(yx′ + xy′) (A.26)

are also complex numbers. A complex number’s conjugate

z∗ = z̄ = x− iy (A.27)

negates the imaginary part, so the norm

|z| =
√
zz∗ =

√
x2 + y2 (A.28)

is the square root of the product with the conjugate.

A.3 Matrices

Matrices, arrays, or tableaux of numbers have been used to solve math problems
for thousands of years. Consider the linear transformation

x′ = ax+ by, (A.29a)

y′ = cx+ dy. (A.29b)

In box notation, collect the variables in column matrices

~r =
x

y
, (A.30a)

~r ′ =
x′

y′
, (A.30b)

and collect the coefficients in the square matrix

M =
a b

c d
, (A.31)
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and form the equivalent matrix equation

x′

y′
=

a b

c d

x

y
, (A.32)

where the color guides the eye in checking the matrix multiplication, and where
rows are dot-producted with columns. In bracket notation, write x′

y′

 =

 a b

c d

 x

y

 , (A.33)

and represent matrix equations symbolically as

~r ′ = M ~r. (A.34)

The identity matrix

I =
1 0

0 1
6=

1 1

1 1
(A.35)

has 1s on the primary ↘ diagonal and 0s on the secondary ↙ diagonal.
Concatenate a second linear transformation to the first to get

x′′ = a′x′ + b′y′ = a′(ax+ by) + b′(cx+ dy) = (a′a+ b′c)x+ (a′b+ b′d)y,

y′′ = c′x′ + d′y′ = c′(ax+ by) + d′(cx+ dy) = (c′a+ d′c)x+ (c′b+ d′d)y,
(A.36)

or in matrix notation

x′′

y′′
=

a′ b′

c′ d′

x′

y′

=
a′ b′

c′ d′

a b

c d

x

y

=
a′a+ b′c a′b+ b′d

c′a+ d′c c′b+ d′d

x

y
. (A.37)

Thus the product of two matrices

a b

c d

a′ b′

c′ d′
=

aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′
, (A.38)
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and like vectors (or complex numbers), the sum of two matrices

a b

c d
+ λ

a′ b′

c′ d′
=

a+ λa′ b+ λb′

c+ λc′ d+ λd′
, (A.39)

and similarly for higher dimensions.
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Appendix B

Coordinate Systems

Multiple coordinate systems are useful to solve problems of different symmetries,
including rectangular, spherical, and cylindrical.

B.1 Curvilinear Coordinates

Consider a general curvilinear coordinate system {u1, u2, u3} whose axes are
orthogonal at point. An infinitesimally small cube with edges parallel to the
local curvilinear coordinate directions has edges of lengths h1du1, h2du2, and
h2du2, as in Fig. B.1.

h1du1 h2du2

h3du3

Figure B.1: Generic coordinate system {u1, u2, u3} and infinitesimal volume
element of size h1du1 by h2du2 by h3du3.

The square of the distance across opposite corners of the cube is

ds2 = (h1du1)2 + (h2du2)2 + (h3du3)2 = h21du
2
1 + h22du

2
2 + h23du

2
3. (B.1)

The volume of the cube is

dV = (h1du1)(h2du2)(h3du3) = h1h2h3 du1du2du3. (B.2)
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A component of the gradient of a scalar field S[~r ] is the change of the scalar
field along one edge of the infinitesimal cube divided by the length of that edge.
Hence,

~∇S = û1
1

h1

∂S

∂u1
+ û2

1

h2

∂S

∂u2
+ û3

1

h3

∂S

∂u3
. (B.3)

The divergence of a vector field ~v [~r ] is the flux of the vector field through the
faces of the infinitesimal cube divided by the volume of the cube. Hence,

~∇ · ~v =
1

h1h2h3

(
∂

∂u1
(h2h3 v1) +

∂

∂u2
(h3h1 v2) +

∂

∂u3
(h1h2 v3)

)
. (B.4)

The Laplacian of a vector field is the divergence of the gradient, so

∇2S =
1

h1h2h3

(
∂

∂u1

(
h2h3
h1

∂S

∂u1

)
+

∂

∂u2

(
h3h1
h2

∂S

∂u2

)
+

∂

∂u3

(
h1h2
h3

∂S

∂u3

))
.

(B.5)
A component of the curl of a vector field is the circulation of the vector field
around a face of the the infinitesimal cube divided by the area of that face.
Hence,

~∇× ~v = û1
1

h2h3

(
∂

∂u2
(h3v3)− ∂

∂u3
(h2v2)

)
+

û2
1

h3h1

(
∂

∂u3
(h1v1)− ∂

∂u1
(h3v3)

)
+

û3
1

h1h2

(
∂

∂u1
(h2v2)− ∂

∂u2
(h1v1)

)
. (B.6)

B.2 Polar Spherical Coordinates

Define spherical coordinates {u1, u2, u3} = {r, θ, φ} by

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ, (B.7)

where θ is the co-latitude and φ is the longitude, as in Fig. B.2. By inspection,
the scale factors

h1 = 1,

h2 = r,

h3 = r sin θ. (B.8)

Hence, the diagonal square distance

ds2 = dr2 + (r dθ)2 + (r sin θ dφ)2 = dr2 + r2dθ2 + r2 sin2 θ dφ2, (B.9)
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φ

θ
r

x

y

z

Figure B.2: Polar spherical coordinate system {r, θ, φ} and infinitesimal volume
element of size dr by r dθ by r sin θ dφ.

and the elemental volume

dV = (dr)(r dθ)(r sin θ dφ) = r2 sin θ dr dθ dφ. (B.10)

The spherical gradient

~∇S = r̂
∂S

∂r
+ θ̂

1

r

∂S

∂θ
+ φ̂

1

r sin θ

∂S

∂φ
. (B.11)

The spherical divergence

~∇ · ~v =
1

r2
∂

∂r
(r2 vr) +

1

r sin θ

∂

∂θ
(sin θ vθ) +

1

r sin θ

∂vφ
∂φ

. (B.12)

The spherical Laplacian

∇2S =
1

r2
∂

∂r

(
r2
∂S

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂S

∂θ

)
+

1

r2 sin2 θ

∂

∂φ

(
∂S

∂φ

)
. (B.13)

The spherical curl

~∇× ~v = r̂
1

r sin θ

(
∂

∂θ
(sin θ vφ)− ∂vθ

∂φ

)
+

θ̂
1

r

(
1

sin θ

∂vr
∂φ
− ∂

∂r
(rvφ)

)
+

φ̂
1

r

(
∂

∂r
(rvθ)−

∂vr
∂θ

)
. (B.14)

In the θ = π/2 equatorial plane, polar spherical coordinates become polar
coordinates {r, φ}.
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B.3 Cylindrical Coordinates

Define cylindrical coordinates {u1, u2, u3} = {s, φ, z} by

x = s cosφ,

y = s sinφ,

z = z, (B.15)

where s = r⊥ is the perpendicular distance form the axis and φ is the longitude,
as in Fig. B.3. By inspection, the scale factors

h1 = 1,

h2 = s,

h3 = 1. (B.16)

Hence, the diagonal square distance

ds2 = dr2 + (s dφ)2 + dz2 = dr2 + s2dφ2 + dz2 (B.17)

and the elemental volume

dV = (ds)(s dφ)(dz) = s dsdφ dz. (B.18)

φ

x

y

z

s

z

Figure B.3: Cylindrical coordinate system {s, φ, z} and infinitesimal volume
element of size ds by s dφ by dz.

The cylindrical gradient

~∇S = ŝ
∂S

∂s
+ φ̂

1

s

∂S

∂θ
+ ẑ

∂S

∂z
. (B.19)
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The cylindrical divergence

~∇ · ~v =
1

s

∂

∂s
(s vs) +

1

s

∂vθ
∂φ

+
∂vz
∂φ

. (B.20)

The cylindrical Laplacian

∇2S =
1

s

∂

∂s

(
s
∂S

∂s

)
+

1

s2
∂

∂φ

(
∂S

∂φ

)
+

∂

∂z

(
∂S

∂z

)
. (B.21)

The cylindrical curl

~∇× ~v = ŝ

(
1

s

∂vz
∂φ
− ∂vφ

∂z

)
+

φ̂

(
∂vs
∂z
− ∂vz

∂s

)
+

ẑ
1

s

(
∂

∂s
(svφ)− ∂vs

∂φ

)
. (B.22)
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Appendix C

Notation

Table C.1 summarizes the symbols of this text. Some symbols are more universal
than others.

Standard mathematics notation suffers from a serious ambiguity involving
parentheses. In particular, parentheses can be used to denote multiplication, as
in a(b + c) = ab + ac and f(g) = fg, or they can be used to denote functions
evaluated at arguments, as in f(t) and g(b+c). It can be a struggle to determine
the intended meaning from context.

To avoid ambiguity, this text always uses round parentheses (•) to group for
multiplication and square brackets [•] to list function arguments. Thus, a(b) =
ab denotes the product of two factors a and b, while f [x] denotes a function f
evaluated at an argument x. Mathematica employs the same convention.

Advanced physics texts often write integrals

I =

ˆ b

a

f [x] dx =

ˆ b

a

dx f [x], (C.1)

with the integration variable indicator dx near the integral sign
´

, like summa-
tions

S =

b∑
n=a

fn, (C.2)

with the summation variable n near the summation symbol
∑

.

59



Appendix C. Notation 60

Table C.1: Symbols used in this text.

Quantity Symbol Alternates

vector ~v v, v, v,⇀v , |v〉

unit vector v̂ = ~v/v = ~v/|~v| u, u, u,~ev

matrix symbol M M,M,M

matrix
a b

c d

 a b

c d

 ,
 a b

c d


functions f [x], ~A[~r, t] f(x), ~A(~r, t)

complex numbers z = x+ iy = {x, y} x+ iy

derivatives ẋ, dx/dt, ∂f/∂y, ∂yf x′(t), fy

(differential) operators E̊ = +i~∂t, ~̊p = −i~~∇ Ê, Eop

Pauli (spin) matrices σx, σy, σz σ1, σ2, σ3

position ~r = {x, y, z} ~x = {x1, x2, x3}

fields ~E , ~B E,B,D,H

potentials V, ~A ϕ,A

sources q,Q, i, I e

densities ρ = dq/dV, ~J = d~I/da J

dipole moments ~µE , ~µB ~p, ~m,p,m

electron charge qe < 0 −e < 0
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