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The purpose of this experiment was to calculate the kinetic friction coefficient µ on a miniature
pool table by analyzing the motion of a pool ball that travelled along and parallel to the miniature
pool table’s surface. By generating position versus time plots for the ball’s motion, relevant data
was extracted that allowed us to calculate µ = 0.288 ± 0.002. This value does meet the provided
regulations for standard pool table cloth friction coefficients.

I. INTRODUCTION

The basic ideas responsible for the modern game
of pool originated in 15th-century England. [1] Pool
is typically categorized under the broader term of
“billiards”, which is commonly assumed to included
any game that involves launching a series of balls into
pockets within a table. The popularity of such billiards
games has persisted throughout the ages, being both
referenced in Shakespearean plays in the year 1600 and
prominently featured in American movies in the latter
half of the 20th century.

Pool is also of interest to a section of the scientific
community, as gameplay requires application of many
principles of physics. [6] Detailed understanding behind
the science of pool is crucial to the development of
corresponding assistive technology. [8] Such technology
can help physically challenged individuals play the game,
consequently providing improvements to their quality of
life. With this potential application in mind, it is useful
to conduct thorough research into any relevant aspects
of pool game dynamics, as heightened understanding
can help refine the development of assistive technology.

The purpose of this experiment is to find the friction
coefficient µ of a miniature pool table, which is located
in room 211 of Taylor Hall at the College of Wooster in
Wooster, Ohio. Although friction itself may change be-
tween miniature and standard pool tables, the processes
used to calculate µ could potentially be useful when an-
alyzing other pool systems.

II. THEORY

Let B be the pool ball used for this experiment and
T be the surface of the pool table on which B travels.
Recall that the kinetic friction coefficient µk is used for
friction acting on a sliding object. The static friction
coefficient µs is used for friction acting on a non-moving
or rolling (without sliding) object, which is usually much
larger than µk. [5] In our case, we only consider our
pool ball rolling without sliding. Therefore, we need to
develop a theoretical model for the motion of B across T

using the static friction coefficient µs.

For the purposes of simplifying our system, we make
the following assumptions:

1. The form of B is a perfect sphere.

2. The mass m of B is uniformly distributed through-
out B.

3. Both B and T are perfectly rigid.

4. The friction of the surface of B has negligible im-
pact on the motion of B.

5. Friction is uniform throughout T.

6. The flatness of T makes T a horizontal plane that
is orthogonal to the direction of gravitational ac-
celeration g.

7. The motion of B forms a straight line parallel to T
and can therefore be modelled in one dimension.

Assumptions 1 to 5 are justified in three ways. First,
necessary system simplifications must be made in order
to make due with available equipment, as alternative ma-
terials were unavailable. Second, due to time constraints,
meaningful experimentation and calculation wouldn’t
have been able to take place without making these
assumptions, as finding means to ensure ideal conditions
was not feasible. Third, individual pool balls and tables
are manufactured to be approximately the same, so any
variance from these assumptions that may occur should
be considered both inevitable and, because the effects
on motion would affect each apparatus approximately
equally, negligible. Assumptions 6 and 7 will be justified
in the Section III of this report.

Regarding Assumption 4, it is noteworthy that prior
studies regarding pool balls have resulted in an equa-
tion to determining the coefficient of kinetic friction (ball
slides without rolling) µk of a standard pool ball/table
system. [6] This value differs from the static friction co-
efficient (ball rolls without sliding) µs, which is primarily
resultant of the pool table surface. In the cases of our
trials, B rolls without sliding across T, so we allow note
that µs is the active source of friction.
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FIG. 1: Free-body diagram describing motion of a rigid sphere
moving along a rigid flat surface. [4] Blue arrows indicate ve-
locities, red arrows indicate forces, and black markings indi-
cate background information, with B drawn on the left and
Cartesian coordinate axes drawn on the right.

When engaged in 1-D motion parallel to T, it is
known that B has a linear velocity v. Note that because
B not only moves along T, but is also in rolling motion,
B possesses angular velocity −→ω as well. This angular
velocity could, in theory, be used to calculate µ. How-
ever, angular interpretations of the motion of B are not
advantageous to us. Our Cartesian coordinate system
can be aligned to make the x-axis parallel both to v
and to friction force f , as shown in Fig. 1. The other
forces acting on B, which are gravitational force G and
normal force N , can be set within the direction of the
y-axis. Because of this, f, G, N, and v can be denoted
as scalar quantities, as their directional components
for their respective axes are equal to their magnitudes.
By contrast, −→ω has both x and y components, which
needlessly makes calculations more complicated. Ad-
ditionally, measuring the linear velocity of a pool ball
in motion is simpler based on our apparatus, which
will be described in the Section III. Finally, because
B is a solid sphere of uniform density, the motion of
B can effectively be analyzed by the center of mass
CM of B, and because that point has an angular ve-
locity of 0, angular velocity becomes an inept metric. [11]

Note that Assumption 7 requires that force F , which
is exactly parallel to T, must be applied to B. Even if
static friction prevented small components of F along
the y- or z-axes from directly affecting linear motion, the
nonzero incident angle (between the direction of F and
the plane T) would cause spin factors that would have
substantial effects on the motion of B. [2] This would
also contribute to some semblance of bounciness of B,
the minimization of which is necessary for Assumption 3.
Consequently, our procedure will describe methods taken

to ensure that F is in the appropriate direction.

We will now analyze the motion of B along the x-axis,
which set as the direction of motion of B, as B has no
net velocity or acceleration in the y-direction due to the
cancellation of N and G. Note that in Fig. 1, the only
force acting on B along the x-axis is f . Because no force
counterbalances f , we know that in the case of v 6= 0
and f 6= 0, it holds that v will change over time t due
to its acceleration a as a result of f . Note the existence
of some initial velocity v0 applied to B by the apparatus
(described later) at time t0. Basic kinematics tells us
that

vτ = v0 + a(t0 − τ) (1)

for velocity vτ at time τ . [5, 6] If we let τ be the exact
time at which the motion of B ceases (vτ = 0), we derive

v0
t0 − τ

= a . (2)

Generally speaking, we know B under non-sliding rolling
motion experiences a friction force of

f = µsG cos θ (3)

on a plane of incline θ from the xz-plane. [5, 6] Given
our force laws f = ma and G = mg, as well as that θ = 0
for T (which is entirely on the xz-plane), we find

a = µsg . (4)

Combining Eqs. (2) and (4) and simplifying yields

µs =
v0

g(t0 − τ)
. (5)

Note that the motion sensor and software we shall uti-
lize (which will be described in the Section III) measures
the position x of B with respect to t. The values for τ
and t0 can be identified by examining an x(t) and identi-
fying where the motion of B begins and ends. The value
of v0, which is not accurately measured by the motion
sensor, is approximated by

v0 ≈
∆x

∆t
(6)

for minimum measurable change in time ∆t that
occurs once motion begins at t0 and the change in
position ∆x that occurs over ∆t. [5]

We let

∆t = t1 − t0 and ∆x = x1 − x0 , (7)
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where t0 is time at which B is launched, t1 is the first
available time measurement after t0, and x0 and x1 are
the position measurements of B at t0 and t1, respectively.
The value of g at Taylor Hall, the location at which this
experiment takes place, is 9.801 m/s2. [9, 12]

We now are able to calculate µ using only measur-
able or known quantities. Note that for the equipment
we shall use (see Section III), we have position measure-
ment uncertainties δx = 0.001 m and time measurement
uncertainties of δt = 0.001 m. To find results from each
trial, Eqs. (5), (7), and (6) combine to calculate each
trial’s friction coefficient

µs,i =
(x1i − x0i)

g (t1i − t0i) (τi − t0i)
(8)

at each trial i. Note that in Eq. (8), each previously
defined variable is indexed by i but unchanged in mean-
ing. The uncertainty of each µs,i measurement is taken
as

δµ =

((
∂µi
∂x0i

δx0i

)2

+

(
∂µi
∂x1i

δx1i

)2

+

(
∂µi
∂t0i

δt0i

)2

+

(
∂µi
∂t1i

δt1i

)2

+

(
∂µi
∂τi

δτi

)2
) 1

2

(9)

given values from Eq. (8). [3] Using these uncertainty
values, we can use IGOR Pro to form a µi vs. i plot.
Adding a linear fit to this plot allows us to find the
weighted average with uncertainty of our µi data, which
we will take to be µ. We also note the standard deviation

σµ =

√√√√ 1

n− 1

n∑
i=1

(µ− µi)2 (10)

of µ. [10] To convey how substantial σµ is relative to
µ, we will also show the error percentage of

P =

∣∣∣∣σµµ
∣∣∣∣(100%) (11)

relative to µ. Usually, only one of two theoretical
friction coefficients act on a ball on a standard pool ta-
ble: the kinetic friction coefficient µk (ball slides without
rolling) or the static friction coefficient µs (ball rolls with-
out sliding). For the cloth on a standard pool table to fit
pool playing regulations, it must hold that µs < 0.30 in
the case of rolling, or µk < 0.03 in the case of sliding. [6]
We observe that B rolls without sliding when launched
on T, so

µ ≤ 0.30 (12)

[1]

[2]

[3]
[4]

FIG. 2: The miniature pool table used for experimentation,
with labels on 4 key areas. [1]: the pool table cloth surface
T. [2]: the cue ball used for experimentation B. [3]: the pool
cue stick with which a handful of pool games were played in
order to get a physical sense of the apparatus. [4]: the pool
balls utilized in the pool games referenced by [3].

if the cloth on T is to fit acceptable non-miniature
pool table regulations. This upper bound may serve as
a guidance, even if we know that there are differences
between standard and miniature pool tables.

Note that our data collection on x and t is limited to
the travel of B over a distance at or under to the length
of T. Due to the high cushioning present on the sides
of pool tables (i.e. on the edges of T), B colliding with
said cushioning would result in a significant transfer of
momentum at the moment of collision. [7] This momen-
tum transfer would compromise our prior equations and
result in inaccurate calculation of µ. Therefore, v0 must
be low enough to ensure that B can travel approximately
the length of T (in order to collect maximum possible
data) without colliding with the side of T.

III. PROCEDURE

For our experiment, we began with a miniature pool
table, shown in Fig. 2. The surface of the pool table
formed a rectangle, with dimensions measured to be
(1.010 ± 0.005) m by (0.490 ± 0.005) m for the inner
surface, plus (0.055 ± 0.005) m of cushioning on each
side. The inner surface (without cushioning) was taken
to be the plane T.
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FIG. 3: The pool table after the levelling process. Observe
the varying-sized stacks of paper towels under each leg of the
pool table.

In order to gain a physical sense of the apparatus,
a few games of pool were played using the miniature
pool table, cue stick, and balls. During these games, it
was consistently observed that most balls went towards
one side of the pool table, with 2 adjacent pockets
containing the vast majority of balls by the end of each
game. Upon observing this phenomenon, we decided to
conduct tests to determine whether or not the table was
level. Upon discovering that the table was not level, a
considerable amount of time was spent placing a varied
number of paper towels under each leg of the pool table
until the pool table was measured to be level throughout
its surface. Making the pool table level ensured that
gravitational acceleration and frictional acceleration
were orthogonal when B was launched across the T,
which was crucial to justify the θ = 0 substitution
for Eq. (3). This levelling process therefore validates
Assumption 6. The levelled pool table is shown in Fig. 3.

Our goal was to launch B across T and analyze how
the position x of B changed over time t. Assump-
tions 6 and 7 required us to give B an initial velocity
v0 exactly parallel to the perfectly flat (orthogonal to
gravitational force) plane T. Therefore, a piece of equip-
ment needed to be constructed that applied a perfectly
horizontal point force to B that allowed the position of
B to be constrained entirely to the x-axis. Additionally,
as discussed in the Section II of this report, v0 had to be
small enough to ensure that B did not have a collision
with the edges of T. In order to design the equipment
to fit our specifications, the mass m of B had to be
measured, and the radius r of B had to be calculated.
Using a standard electronic scientific scale, we measured
m = (51.27 ± 0.01) g. Via indirect measurement of
circumference C = 2πr (we were unaware of calipers
at the time), we calculated r = (0.124 ± 0.001) cm.
The resulting m and r values, along with the desired
equipment specifications, were sent to machinist Tim
Siegenthaler. Siegenthaler constructed and supplied
us with a spring-based launching device to apply the

[1]

[2]

[2]

[3]

[4]

FIG. 4: Launching apparatus developed by Tim Siegenthaler.
By pulling back bolt [1] and placing B in between side shields
[2], spring [3] is compressed. By releasing bolt [1], the spring
[3] decompresses, allowing bolt [4] to apply force F to B in a
direction perpendicular to gravitational force G and parallel
to T.

FIG. 5: PASCO motion sensor. The lens takes data points of
the position and time of objects the sensor focuses on, then
plots that data using PASCO Capstone software.

appropriate point force F to launch B directly along T
such that B did not collide with the edge of T. This
launcher is shown in Fig. 4.

To measure x and t values, a motion sensor with
PASCO Capstone software, shown in Fig. 5, was utilized.
The motion sensor lens created a plane perpendicular to
the direction of v0. For each trial, the motion sensor
and corresponding software generated scatter plots of x
versus t, similar to the one that will be shown in the
Section IV of this report, for the motion of B induced
by applied force F . Data was extracted from these plots
and used to calculate µi.
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FIG. 6: Scatter plot of x versus t for the motion of B.
Note that the approximate locations of t0, t1, τ, x0, and x1
are marked, and that we let xτ be the position of B at t = τ .
The point (t0, x0) is the measurement nearest to the start of
the motion of B. The point (t1, x1) is the first measurement
taken after (t0, x0). The point (τ, xτ ) is the measurement at
which the velocity of B initially hits an approximate value of
0, as determined by the cessation of B’s motion with respect
to its initial direction.
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FIG. 7: Scatter plot of µi versus t for the µi values calculated
in Appendix A. Weighted (by δµi) average from zero-slope
linear fit was calculated to be µ = 0.288 ± 0.002.

IV. RESULTS & ANALYSIS

20 trials were able to be used for our data analysis.
For each trial, scatter plots of x versus t were generated
as B moved directly towards the motion sensor lens.
The plot for an example run is shown in Fig. 6. The
relevant data points t0, t1, τ, x0, and x1 were extracted
from these graphs.

By using the data collected from a series of such
scatter plots for each trial i, calculations were made
using Eq. (8) to calculate each µi value and using Eq. (9)
to calculate each δµi value. Recall for this purpose
that all position measurements had uncertainties of
0.001 m and that all time measurements had an uncer-
tainties of 0.001 s. The µi values by run are shown Fig. 7.

The weighted linear fit from Fig. 7 yielded a weighted
average of µ = 0.288 ± 0.002, which we take as our
final value. The value was chosen to have 3 digits after

the decimal point, as that was the precision of our
instrumentation. The standard deviation of µ, found
via Eq. (10), was found to be σµ = 0.074. Note that by
Eq. (11), it is calculated that σµ is a relative percent
error P = 25.6 % of µ. Because µ < 0.30, the cloth used
on T is concluded to be within standard pool table cloth
regulations under the parameters described in Eq. (12).
However, the validity of this test for miniature pool
tables is still unknown.

Although the relative percent error for µ is not re-
markably high, it is certainly considerable. Most likely,
this error can be contributed to some flaws in our as-
sumptions (described at the beginning of the Section II
of this report). For example, Assumption 4, which states
that the friction coefficient of B is negligible, may be
false, which could have affected the spin motion of B and
caused motion that deviates from our equations of mo-
tion. [6] Similarly, Assumption 3, which states that T
is perfectly rigid, may have made our equations of mo-
tion overly simplified for our system, which would affect
our µ calculation. [4] There might also have been some
issue with our apparatus that would cause B to take a
non-straight path, or a straight path that isn’t exactly
perpendicular to the motion sensor. However, our er-
ror is fairly low considering the number of assumptions
and simplifications made to model this system, so the
range obtained with our µ value should be taken as ap-
proximately accurate. We also observe that although our
standard deviation percent error is high, our actual error
value on µ seems reasonably low, which is likely due to
the high precision of our instrumentation.

V. CONCLUSION

In order to calculate the friction coefficient µ acting on
miniature pool table surface plane T, a pool ball B was
launched along T in motion parallel to the plane of T.
The position x and time t were measured and recorded
by PASCO Capstone motion sensing technology and
software, then put into x versus t scatter plots. Each
trial i of our experiment involved generating one such
scatter plot, then extracting relevant data from it in
order to calculate that trial’s friction coefficient µi and
uncertainty δµi using constant g = 9.801 m/s2 and
Eqs. (8) and (9). The µi plots corresponding to the
extracted data are shown in Fig. 7. Using a weighted
linear fit, the average value with error was calculated
to be µ = 0.288 ± 0.002. Using Eq. (10), the standard
deviation was found to be σµ = 0.074. Using Eq. (11),
the relative percent error of the standard deviation
P = 25.6% was calculated. By Eq. (12), it is concluded
that our calculated µ value would qualify T as having
pool table cloth satisfying standard pool table regula-
tions.

There were several constraints that affected this ex-
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periment, including limited research time, non-standard
pool materials, and motion-sensing software that only
measured time increments as low as 0.05 s. To accom-
modate for these constraints, many assumptions and ap-
proximations had to be made to simplify our system as
much as possible. As a result, our calculated value for
µ may be inaccurate, particularly given that its relative
percent error of standard deviation is over 25%. In order
to find more accurate values for µ, either on this pool ta-
ble or on others, more information regarding specific con-
stants of the corresponding pool table would need either
to be provided or to be calculated within an extended
research project. More precise apparatuses could also be
constructed to ensure that B follows the requisite mo-
tion, which was only approximately the case within our

experiment. Another helpful change to this experiment
would be the utilization of a high-speed motion camera
rather than a standard motion sensor.
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Appendix A: Data Values

This appendix presents all data utilized from each of
our 20 runs for the purposes of verifying our calculations
if necessary. The necessary data is shown in Table I.

TABLE I: The data obtained via analysis of the graphs of
our 20 runs, as well as µi values calculated by Eq. (8) and δµi
values calculated by Eq. (9) at each run using said data and
constant g = 9.801 m/s2.

i t0i (s) t1i (s) τi (s) x0i (m) x1i (m) µi δµi
1 10.800 10.850 12.900 0.825 0.609 0.210 0.006
2 11.000 11.050 12.950 0.828 0.585 0.254 0.007
3 12.250 12.300 14.100 0.838 0.575 0.290 0.008
4 12.000 12.050 14.100 0.844 0.601 0.236 0.007
5 12.900 12.950 14.250 0.841 0.591 0.269 0.008
6 12.200 12.250 14.250 0.841 0.573 0.267 0.008
7 9.750 9.800 12.000 0.836 0.592 0.221 0.006
8 9.800 9.850 11.600 0.834 0.569 0.300 0.009
9 12.000 12.050 14.150 0.851 0.557 0.279 0.008
10 11.100 11.150 13.100 0.846 0.524 0.329 0.010
11 11.600 11.650 13.200 0.859 0.519 0.434 0.013
12 15.500 15.550 17.150 0.866 0.511 0.439 0.013
13 12.100 12.150 13.950 0.855 0.513 0.377 0.011
14 10.000 10.050 11.850 0.869 0.520 0.385 0.011
15 10.950 11.000 12.800 0.860 0.522 0.373 0.011
16 11.250 11.300 13.300 0.857 0.550 0.306 0.009
17 11.050 11.100 13.200 0.857 0.535 0.306 0.009
18 12.400 12.450 14.050 0.857 0.529 0.406 0.012
19 12.150 12.200 14.150 0.849 0.548 0.307 0.009
20 10.550 10.600 12.400 0.872 0.556 0.349 0.010

https://bca-pool.com/page/39
https://geodesy.noaa.gov/cgi-bin/grav_pdx.prl
https://physics.wooster.edu/osaps-aapt-sps2019/
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