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In this lab we examined different properties of a physical pendulum. We tested the effect of a
physical pendulum’s initial displacement on its period, and found that there was a positive rela-
tionship at higher angles. For this reason, using smaller angles to find the period of our physical
pendulum, we determined it to have a value of T = (1.71 ± 0.04) s. Our period and our pendulum’s
moment of inertia were used to find Earth’s gravitational field: g = (7.74 ± 0.04) m/s2. Since the
expected value was g = 9.801 m/s2, we have a percent error of 26.75 % and a percent difference of
23.60 %. Finally, we determined our decay parameter, characteristic time, and damping constant
to be γ = (8.25 ± 3.86) × 10−3 1/s, tc = (1.21 ± 0.01) × 102 s, and b = (2.64 ± 0.19) × 10−3 kg/s,
respectively.

I. INTRODUCTION

The work of Galileo Galilei was revolutionary, and
some argue that his studies of the pendulum are what
earned him the title of the “the father of modern sci-
ence.” In particular, Galileo was interested in discovering
what were fundamental properties of matter. His claim
in 1590 was that a balance could be used to treat “heav-
iness” as a property of all matter. [1] But, what about
pendulums in particular? Between the years of 1603
and 1604, Galileo would work with pendulums to study
another property of matter and motion: acceleration. [1]
In this, he would argue that time itself is a variable in
problems of motion. This unifying theory of matter, a
theory stating that matter can be described by different
properties and equations of motion, is what would later
be used to shift the understanding of the solar system
from geocentric to heliocentric, Galileo himself using
his findings to eventually come out in support of the
Copernican theory. [1]

One of his most important takeaways was that the
period of the pendulum was independent of his am-
plitude. [2] We now know this to be half-true, as the
equations for the period of a physical pendulum apply
much better to smaller angles, where the amplitude is
roughly equal to its sine. [3]

In this lab we will be analyzing the motion of a
physical pendulum, rather than a simple pendulum.
While a simple pendulum can be idealized as a point
mass on a string, the physical pendulum is a little bit
more complicated. Unlike the simple pendulum, the
shape of the physical pendulum must be taken into
account in its equation of motion. [4]

FIG. 1: A physical pendulum oscillating under the restoring
force, gravity, acting on its center of mass (from [4]).

II. THEORY

Just how different is a physical pendulum from a
simple pendulum? It is essential to understand that in
order for a system to exhibit oscillatory motion, it needs
to have a restoring force working to return the system to
its equilibrium position. In the case of both, the simple
pendulum and the physical pendulum, this restoring
force is the force gravity. In a simple pendulum, this
restoring force acts on the center of a spherical bob,
since the mass of the string can be assumed negligible.
However, when it comes to a physical pendulum, the
placement of the object’s center of mass (on which
the restoring force acts) is not nearly as obvious. [4]
A diagram of a physical pendulum can be seen in Fig. 1.

Consider a hanging object that is free to oscillate



2

about a fixed point. We already know that the force
restoring the object back to its equilibrium position
is the force of gravity, so what is actually keeping the
object in motion? Why does gravity have to work
so hard to continuously put the object back in its
equilibrium position? This is because there is a torque
being applied about the object’s center of mass! [4]

The equation for torque ~τ is given by

~τ = ~r × ~F , (1)

with ~r as the radius (the distance between the axis of

rotation and the center of mass) and ~F as the component
of the force tangental to the motion. The torque has a
magnitude |τ | given by

|τ | = rF sin θ , (2)

wherein θ represents the angle of displacement from
equilibrium. In Fig. 1, it is easy to see how the tangential
component of the force is −mg sin θ, with g denoting the
gravitational field 9.801 m/s2. This value g was chosen
using a local gravity calculator. [5]

The small angle theorem states that sin θ ≈ θ, meaning
that at small angles, the sine of an angle is approximately
equal to the angle itself. So, it is for this reason that we
can simplify −mg sin θ into −mgθ. Furthermore, the net
torque τnet is given by

τnet = Iθ̈ , (3)

and

τnet = −mgLθ , (4)

where we have equated the radius r with the length L
between the object’s point of rotation and its center
of mass. θ̈ is the second derivative of the angle θ of
displacement with respect to time. This is simply a
fancier and more convenient way of writing angular
acceleration. I denotes the moment of inertia about a
pendulum’s axis of rotation.

We can rewrite Eqs. (3) and (4) as

d2θ

dt2
= −mgL

I
θ . (5)

We can take note that the second derivative of the angle
θ of displacement is equal to itself times a negative con-
stant, just like the cosine and sine functions. It follows
that the general solution is

θ(t) = θ0 cos (ωt+ φ) . (6)

The angle θ0 represents the amplitude, or the initial
angle from displacement, ω is the angular frequency, and
φ is a phase shift. [4]

Since the angular frequency ω is given by

ω =

√
mgL

I
, (7)

and the period T is given by

T =
2π

ω
, (8)

we can rewrite the period as

T = 2π

√
I

mgL
. (9)

This is why, in a simple pendulum, with I = mL2, the
period simplifies to [4]

T = 2π

√
L

g
. (10)

Unfortunately, the case is not quite as simple for the
physical pendulum. Furthermore, we also have to
take into account other factors such as friction and air
resistance. These are called damping forces.

As one might guess, the introduction of damping forces
makes things a little more complicated, but it is nothing
we cannot handle. When an object is moving through a
resistive fluid, such as air, the resistance is dependent on
the object’s velocity. [6] In our case, we can reasonably

approximate that this force of resistance ~f is proportional
to our velocity ~v. Though, it is important to note that
there are other instances where the resistance force is
instead proportional to v2. [6] Luckily, we are dealing
with the first case. The equation for our resistive force is
given by

~f = −b~v . (11)

An easy way to derive the damped oscillator equa-
tion is by considering another form of oscillatory mo-
tion: spring motion. If we consider an oscillating mass
attached to a spring, the mass is acting under two forces:
the spring force −kx and the resistive force −bẋ. Note
that ẋ is just another way to denote velocity. The equa-
tion of the net force Fnet = mẍ is then

mẍ = −bẋ− kx , (12)

which can be rearranged into the form

mẍ+ bẋ+ kx = 0 . (13)

To get our equation of motion, we can rewrite Eq. (13)
as

ẍ+ 2βẋ+ ω2
0x = 0 , (14)
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with 2β = (b/m) and ω2
0 = (k/m).

Fascinatingly, even though this equation comes from
Hooke’s law, the relationship still holds for other types
of linear, second-order, homogeneous equations. [6]
This means that we are able to apply this equation
to our pendulum! It also means that if we have two
independent solutions x1(t) and x2(t), then any solution
must come in the form of C1x(t) + C2x(t). [6]

I ask that one takes our word for it, that these two in-
dependent solutions are the functions er1t and er2t, with
a general solution of

x(t) = C1er1t + C2er2t , (15)

wherein

r1 = −β +
√
β2 − ω2

0 (16)

and

r2 = −β −
√
β2 − ω2

0 . (17)

.

In this lab, the type of damping we are working with
is weak damping, also called underdamping. In this case,
our decay parameter β is small and therefore less than
ω2

0 . This would mean that our square roots in Eqs. (16)
and (17) become imaginary. It is to our benefit to rename
the square root portions of these equations to

ω1 =
√
ω2

0 − β2 . (18)

We can now write Eq. (15) as

x(t) = e−βt(C1eiω1t + C2e−iω1t) . (19)

Even better, we can write Eq. (19) as

x(t) = Ae−βt cos (ω1t− φ) . (20)

Eq. (20) is a simple harmonic motion equation, but
with an amplitude Ae−βt that decreases exponen-
tially. [6] The frequency is denoted by ω1 and φ is a
phase shift.

We can quantify this rate of decay by finding the char-
acteristic time tc, which is the time it takes for the ampli-
tude to decay to (1/e) of the initial amplitude A. From
Eq. (20), we can see that this characteristic time is going
to occur at

tc =
1

β
. (21)

A visualization of this can be seen in Fig. 2.

FIG. 2: A graph of position versus time of a weakly damped
oscillator, with the dashed lines representing the envelope
function (from [6]).

To apply all of this to our pendulum situation, there is
one final tweak to make. We need to convert this linear
equation to fit our radial situation. Keeping in mind
that mass is linear moment of inertia, Eqs. (14) and (20)
become our newer, radial versions

Iθ̈ + cθ̇ + k sin θ = 0 (22)

and

θ = θ0e−γt cos (w′1t− φ) , (23)

wherein

ω′1 =
√
ω′20 − γ2 (24)

and

ω′0 =

√
k

I
. (25)

Our new constant c has a value bh2 and k has a value of
mgh. Our radial decay parameter is defined as

γ =
c

2I
. (26)

One way we can test the validity of our data is by using
Eq. (9) and rearranging it as

g =
4π2I

T 2mL
. (27)

Once we have arranged Eq. (9) into this form, we can
plug in our experimental values and constants to solve
for the gravitational constant g. We can compare our
result to the actual, accepted value of g = 9.801 m/s2.
However, before we can do this, we must solve for our
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moment of inertia.

For a slab rotating about a perpendicular axis through
its center of mass, the moment of inertia about its center
of mass ICM is given by [7]

ICM =
m(y2 + z2)

12
. (28)

The values y and z are the length and width of the
meter stick, respectively.

Since Eq. (28) gives us the moment of inertia ICM

about the center of mass, we need to use the parallel
axis theorem to find the moment of inertia I|| about the
axis of rotation.

The parallel axis theorem states that

I|| = ICM +mL2 , (29)

with L as the distance between the two axes.

Once we have checked the validity of our results, we can
move on to finding the value of our damping constant
b. The envelope function, which is represented by the
dashed line in Fig. 2, is given by

θ(t) = θ0e
−γt . (30)

If we take the natural logarithm of both sides we get the
following:

ln(θ(t)) = −γt+ ln(θ0) . (31)

Using our collected data, we can plot the natural
logarithms of our pendulum’s maximum and minimum
deviations from equilibrium versus time. [2] This allows
us to quantify our rate of decay γ, as it will be the
negative slope of our semi-log plot from Eq. (31).

The relationship between characteristic time tc and the
linear decay parameter β is outlined in Eq. (21). Simi-
larly, the relationship between the characteristic time tc
and the radial decay rate is

tc =
1

γ
, (32)

as evidenced in Eq.(23).

Finally, by recalling Eq. (26), we can find our damping
constant b tp be

b =
2Iγ

L2
. (33)

III. PROCEDURE

In this lab, we used a rotary motion sensor to measure
the oscillations of a physical pendulum, collecting the

FIG. 3: Our physical pendulum, composed of a meter stick
with a (60.0 ± 0.1) g sliding mass attached at (90.0 ± 0.1) cm.

FIG. 4: Rotary motion sensor with the physical pendulum at-
tached. The physical pendulum is in its equilibrium position
θ = 0 rad.

angle of displacement as a function of time and recording
it on PASCO Capstone, our data-recording software.
The physical pendulum we used in this lab was a meter
stick with a (60.0± 0.1) g sliding mass attached, as
pictured in Fig. 3.

Our rotary motion sensor can be seen in Fig. 4. It
connects to a computer, which collects the recorded
data. The rotary motion sensor has a rotating knob
(the potentiometer shaft) on which an object can be
attached. The attached object is free to rotate clockwise
and counterclockwise on the knob. The rotary motion
sensor sensor tracks it as it does so, recording the
changes in radial displacement from the position it was
in at the start of a recording.

We attached our physical pendulum to the poten-
tiometer shaft through a hole in the meter stick at
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(90.0± 0.1) cm. Before we started each new recording,
we first made sure that the pendulum was resting at its
equilibrium position, θ = 0 rad, in order to get accurate
measurements.

Once the recording started, we raised our physical
pendulum to our desired initial displacement θ0 from
equilibrium and let it go. The PASCO Capstone software
recorded and graphed the displacement θ versus time t.

The number of measurements that our radial motion
sensor took was customizable. When we were finding
values of our period T as a function of different initial
displacements θ0, we had our counts set to 20 Hz.
This means that our radial motion sensor took twenty
measurements for every one second. We manually
recorded the first two peaks in each trial and calculated
the time in between them, obtaining the period T and
enabling us to graph the period as a function of initial
displacement in IgorPro.

Later, when we wanted more data to find the envelope
function of our damped pendulum, we changed the
counts to 50 Hz. During this process, we needed more
than just the first two data peaks. After we lifted
the pendulum to our desired initial displacement and
released it, we would let it run for a minute or two and
manually collected as many peaks as the data provided.
Once we had the values of these different peaks we made
a semi-log plot in IgorPro so that we could quantify the
decay parameter γ outlined in Eq. (31).

The meter stick and the sliding mass had a combined
mass of The meter stick with the sliding mass attached
has a combined mass of (1.563± 0.014)× 10−1 kg. To
find the center of mass, we balanced the meter stick
on a knife-edge and found the spot where it was bal-
anced. The center of mass was found to be located at
(6.590± 0.005)× 10−1 m. This means that the distance
L between the point of rotation and the center of mass
was (5.600± 0.015)× 10−1 m.

IV. RESULTS & ANALYSIS

A. The Effect of Initial Amplitude on Period

Galileo Galilei would have argued that the period of a
pendulum is the same regardless of the initial amplitude.
He would be wrong, of course, but in all fairness he was
from the 1500s. Still, it is a good idea to put this to the
test! What happens if we record different periods for
different initial amplitudes.

We measured the period T as a function of initial
displacement θ0 from the pendulum’s equilibrium posi-
tion, and the results can be seen in Fig. 5. The error
bars in the vertical direction were determined to be
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FIG. 5: Period T vs. initial displacement θ0 from the equilib-
rium position. The slope has a value of (0.135 ± 0.021) s/rad.
This means that the period of a physical pendulum is not
independent of its initial displacement.

0.05 s and the error bars in the horizontal direction were
determined to be 0.005 rad.

Fig. 5 shows that the period T does indeed seem to
change as the initial displacement θ0 from the pendu-
lum’s equilibrium position gets larger. It is also for this
reason that we elected to use only initial displacements
θ0 with a value under (π/9) rad (20◦) to determine
our period T . This is because when the angle of initial
displacement θ0 is small (the sine of the angle is roughly
equal to the angle itself), the period stays relatively
constant. Working with initial displacements in this
small-angle-range is also more relevant to finding the
damping constant b.

The period T of our physical pendulum was deter-
mined to be (1.71± 0.04) s by taking the mean of our
seven measurements. We found the absolute error ∆T
by calculating the standard deviation:

∆T =

√√√√ 1

N − 1

N∑
n−1

(Tn − T̄ )2 . (34)

The value N represents the number of trials and T̄ is
the mean of our different period measurements. This
gives us an absolute error ∆T of 0.04 s.

We can also obtain a value for the relative error, which
is simply the uncertainty of a measurement divided by
said measurement. In our case, our period T has a rela-
tive error (∆T/T ) of 2.16× 10−2.

B. Finding the Gravitational Constant g Using
Moment of Inertia and the Period

In order to try and find a value for Earth’s gravita-
tional field g, we first need a value for our moment of
inertia I about the pendulum’s rotation point. However,
before we can do that, we must first find the moment of
inertia about our pendulum’s center of mass.
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The mass of our physical pendulum was found to be
(1.56± 0.02)× 10−1 kg. The pendulum measured at
(1.00± 0.01) m long and (2.50± 0.10)× 10−2 m wide.
Using Eq. (28), we find that our physical pendulum’s
moment of inertia about its center of mass ICM is
(1.30± 0.13)× 10−3 kg ·m2.

Since all three of our variables have their own respec-
tive uncertainties, in order to find the uncertainty of the
moment of inertia I, we must take into account how all
of those errors propagate, and this gives us our absolute
error ∆ICM. This is given by the equation

∆ICM =

√√√√√∂
(
m(y2+z2)

12

)
∂m

∆m

2

+

∂
(
m(y2+z2)

12

)
∂y

∆y

2

+

∂
(
m(y2+z2)

12

)
∂z

∆z

2

(35)

=

√(
y2 + z2

12
∆m

)2

+
(my

6
∆y
)2

+
(mz

6
∆z
)2

(36)

=
m(y2 + z2)

12

√(
∆m

m

)2

+

(
2y

y2 + z2
∆y

)2

+

(
2z

y2 + z2
∆z

)2

, (37)

which outputs an absolute error of 0.13 × 10−3 km ·m2

and a relative error of 1.02× 10−1.

Once we have a value for the moment of inertia ICM

about the pendulum’s center of mass, we can use the
parallel axis theorem as defined in Eq. (29) to find the
moment of inertia I about our physical pendulum’s axis
of rotation.

Since the moment of inertia ICM about the pendu-

lum’s center of mass is (1.30± 0.13)× 10−3 kg ·m2,
the pendulum has a mass m of (1.56± 0.07)× 10−1 kg,
and the distance L between the axis of rotation
and the center of mass is (5.60± 0.02)× 10−1 m,
Eq. (29) tells us that the moment of inertia I becomes
(5.03± 0.06)× 10−2 kg ·m2 at the pendulum’s axis of
rotation.

The absolute error of this measurement is given by

∆I =

√(
∂ (ICM +mL2)

∂ICM
∆ICM

)2

+

(
∂ (ICM +mL2)

∂m
∆m

)2

+

(
∂ (ICM +mL2)

∂L
∆L

)2

(38)

=

√
(∆Icm)

2
+ (L2∆m)

2
+ (2mL∆L)

2
(39)

= (ICM +mL2)

√(
∆ICM

ICM +mL2

)2

+

(
L2

ICM +mL2
∆m

)2

+

(
2mL

ICM +mL2
∆L

)2

, (40)

and it yields a value of 0.06× 10−2 kg ·m2. Consequen-
tially, the relative error (∆I/I) has a value of 1.15×10−2.

Now that we have a value for our pendulum’s moment
of inertia about its rotation axis, we are finally able
to use Eq. (27) to find a calculated value of Earth’s
gravitational field g and compare it to the accepted
value g = 9.807 m/s2.

Given that our moment of inertia I is
(5.03± 0.06)× 10−2 kg ·m2, our period T is

1.71± 0.04 s, our mass m is (1.56± 0.02)× 10−1 kg, and
our distance L between the center of mass and the axis
of rotation is (5.60± 0.02)× 10−1 m, Eq. (27) outputs
a value of g = 7.74± 0.37 m/s2. This is, of course, a
little off, but there are definitely a few factors that could
explain this. Namely, the fact that the sliding mass
on our physical pendulum was idealized as a point so
that we could still treat its shape as a rectangular slab.
Furthermore, the relationship we tested was ideal, and
had no room to take into account real-world setbacks
such as friction and air resistance.
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We found the absolute error ∆g for our measured value
g to be 0.37 m/s2 with the equation

∆g =

√√√√(∂ ( 4π2I
T 2mL

)
∂I

∆I

)2

+

(
∂
(

4π2I
T 2mL

)
∂T

∆T

)2

+

(
∂
(

4π2I
T 2mL

)
∂m

∆m

)2

+

(
∂
(

4π2I
T 2mL

)
∂L

∆L

)2

(41)

=

√(
4π2

T 2mL
∆I

)2

+

(
− 8π2I

T 3mL
∆T

)2

+

(
− 4π2I

T 2m2L
∆m

)2

+

(
− 4π2I

T 2mL2
∆L

)2

(42)

=
4π2I

T 2mL

√(
∆I

I

)2

+

(
− 2

T
∆T

)2

+

(
−∆m

m

)2

+

(
−∆L

L

)2

. (43)

It follows that we also get a relative error (∆g/g) of 4.71×
10−2.

One of the better ways to get an idea of how far off our
measured value is from the accepted value is to take the
percent error and the percent difference, which are given
by the equations

%error =
xmeasured − xaccepted

xaccepted
× 100% , (44)

and

%difference
|xexp − xtheor|

(xexp+xtheor)
2

× 100% . (45)

Using this method, we get a percent error of 26.75 %
and a percent difference of 23.60 %. While this is not
terrible, and it shows that our results are still within
the same ballpark of the actual, accepted value of g =
9.807 m/s2, percentages in the twenty-percentage area
still indicate plenty of room for improvement. So, while
this value gives us insight into the relationship between
the period of a pendulum T , Earth’s gravitational field g,
the moment of inertia I, the mass m, and the length L of
the pendulum arm, I would not trust anything made by
an engineer who used g = 7.74 m/s2 in her calculations.

C. Finding the Damping Constant b

In order to find the damping constant b, there are a
few steps we must take beforehand. The first order of
business is taking different trials for different small-angle
initial displacements θ0 from the pendulum’s equilibrium
position. In these trials, we collected the different local
maxima of displacement θ from equilibrium versus time
t. We then took the natural logarithm of the local
maxima θ to create a linearized, semi-log plot of these
different trials, which can be seen in Fig. 6.

Fig. 6 shows a plot of Eq. (31) for different starting
displacements θ0. The slopes are the negative decay
parameter γ, which we can use to find the damping
constant b.

The negative slope of the green, top-most, left-most
plot is γgreen = (1.04± 0.02)× 10−2 1/s. The green plot
had an initial displacement of θ0 = (0.56± 0.01) rad.
The negative slope of the purple plot, right below the
previous, is γpurple = (6.29± 0.19)× 10−3 1/s. This plot
had an initial displacement of θ0 = (0.31± 0.01) rad.
The negative slope of the blue plot, which is
directly to the right of the purple plot, was
γblue = (5.50± 0.22)× 10−3 1/s and it had an ini-
tial displacement of θ0 = (0.26± 0.01) rad. Finally, the
pink plot, which is the longest and bottom-most plot,
had a negative slope of γpink = (7.20± 0.22)× 10−3 1/s.
It had an initial displacement of θ0 = (0.09± 0.01) rad.

Since the uncertainty in the time measurement was
determined to be 0.01 s, the error bars in the horizon-
tal direction have that value. As for the error bars in
the vertical direction, these were determined using the
equation

∆ ln(θ) =

√(
d(ln(θ))

dθ
∆θ

)2

, (46)

or, more simply,

∆ ln(θ) =

√(
∆θ

θ

)2

. (47)

The value of our decay parameter γ was found by
taking an average of the different slopes, and it was
determined to be γ = (8.25± 3.86)× 10−3 1/s. Since
the decay parameter γ is the inverse of the charac-
teristic time tc, the characteristic time is therefore
tc = (1.21± 0.01)× 102 s. This means that it would
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FIG. 6: Color coded semi-log plot of maxima in displacment θ vs. time t for different values of initial displacement θ0. The
initial displacements were θ0 = 0.559 rad for the green data set, θ0 = 0.314 rad for the purple data set, θ0 = 0.087 rad for the
pink data set, and θ0 = 0.262 rad for the blue data set.

take approximately 121 s for the physical pendulum’s
amplitude θ to fall to (1/e) of its initial value θ0

The absolute error ∆γ was found by taking the mean
of the decay parameter values γ, in an equation similar
to Eq. (34), so that

∆γ =

√√√√ 1

N − 1

N∑
n−1

(γn − γ̄)2 . (48)

In Eq. (48), γ̄ denotes the mean of the different de-
cay parameters γ. This gives us an absolute error
of ∆γ = 3.86 × 10−3 1/s and a relative error of
(∆γ/γ) = 4.68 × 10−1. This is a little too high for

comfort, and it means that the variation between our
decay parameter γ values is excessive.

Now that we have obtained the value of our decay
parameter γ = (8.25± 3.86)× 10−3 1/s, we have ev-
erything we need to employ Eq. (33). Our moment of
inertia I has a value of (5.03± 0.06)× 10−2 kg ·m2

and the length L between our pendulum’s axis of
rotation and center of mass is (5.60± 0.02)× 10−1 m.
Putting it all together, we get a damping constant of
b = (2.65± 0.19)× 10−3 kg/s.

The absolute error ∆b of our damping constant can be
found as follows:

∆b =

√√√√√∂
(

2Iγ
L2

)
∂I

∆I

2

+

∂
(

2Iγ
L2

)
∂γ

∆γ

2

+

∂
(

2Iγ
L2

)
∂L

∆L

2

(49)

=

√(
2γ

L2
∆I

)2

+

(
2I

L2
∆γ

)2

+

(
−4Iγ

L3
∆L

)2

(50)

=
2Iγ

L2

√(
∆I

I

)2

+

(
∆γ

γ

)2

+

(
− 2

L
∆L

)2

. (51)

This means that the absolute error is ∆b = 0.19 × 10−3

and the relative error is then (∆b/b) = 7.14× 10−2 .
V. CONCLUSION

In this lab, we studied the physical pendulum as a
damped oscillator.
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First, we examined the effect of initial amplitude on
a physical pendulum’s period. In theory, as seen in
Eq. (10), the initial amplitude should have no bearing
on the period. Unfortunately, in practice, this was found
to not be the case. Rather, we found that there was a
positive relationship between the initial amplitude and
the period, and a graph of this relationship is pictured
in Fig. 5. For this reason, when we calculated the
mean value to use as our period T , we used only the
data in which the initial displacement θ0 was less than
(π/9) rad. We found our period to be (1.71± 0.04) s.

After demonstrating the effect of a physical pendu-
lum’s initial amplitude on its period, our next step was
to quantify it. Using Eq. (27), we were able to test how
well the theoretical relationship of Eq. (9) could hold up
experimentally. Using the mean small-angle period of
our physical pendulum and our moment of inertia, which
we calculated to be I = (5.03± 0.06)× 10−2 kg ·m2, we
determined an experimental value of Earth’s gravita-
tional field; g = 7.74± 0.37 m/s2.

This experimental value is less than the actual value
g = 9.807 m/s2 by a factor of about 1.27, regardless
of our efforts to keep our results as close to theoretical
expectations as possible. Despite using only the smallest
seven angles to calculate our mean period, we still had
a percent error of 26.75 % and a percent difference of
23.60 %. While this could be larger than expected for a
number of reasons, the first that comes to mind is the
way in which the sliding mass fastened to the meter stick
was idealized as a point. This assumption was made so
that the physical pendulum’s moment of inertia I could
still be found using the formula for a rectangular plane.

The positive relationship between initial amplitude
and the period of a physical pendulum is contrary to
the theory put forward by physicist Galileo Galilei,
who believed that there was no correlation between the
two. Taking the credit for this discrepancy, the effect
of damping factors, such as friction and air resistance,
must be taken into account in order to properly describe
real-world oscillatory motion. Naturally, it follows that

our final study of the physical pendulum should be to
treat our system as a weakly damped oscillator, and to
quantify the damping constant b.

A semi-log plot of the maximum values of displace-
ment θ vs. time t was plotted, yielding a slope of
(−8.25± 3.86)× 10−3 1/s. This now-linear relationship,
seen in Eq. (31), defines our radial decay parameter γ as
the negative value of the slope. Eq. (32) then defines a
characteristic time of tc = (1.21± 0.01)× 102 s. Finally,
Eq. (33) allowed us to solve for our damping constant,
and we found it to be b = (2.65± 0.19)× 10−3 kg/s.

From this lab, we were able to conclude that the
period of a damped physical pendulum is not indepen-
dent of the initial amplitude, and that the theoretical
relationship outlined in Eq. (9) does not hold up past
a certain threshold. Perhaps a future project could
study this threshold more deeply. At what point is the
angle of the initial amplitude large enough that the
period of a pendulum is no longer consistent with that
of smaller amplitudes? What degree of difference is
there between a damped and undamped oscillator when
it comes to consistency of the period of a pendulum?
These unknowns could also potentially explain the
error in the experimental value of Earth’s gravitational
field g. What might our percent error and percent
difference look like if this same experiment was con-
ducted in a vacuum? Unfortunately, we do not have
access to a vacuum chamber, but it is nice to think about.
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