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In this article, we looked into the motion of a die being dropped to a surface to analyze the
chaotic motion and relate the findings to chaos theory/nonlinear dynamics. We first used a physical
die to understand the motion of the bounces and then we took it to Autodesk 3ds Max, using the
Mass FX plugin to conduct a physics simulation. We used this to construct a mathematical model
to build our own testable simulation in Wolfram Mathematica. The simulation was built as a 2D
system to simplify the math and reproduce the final results in 2D density plots, where a color
scale represented a third variable. It took the angular position in one dimension and height as
initial parameters and returned the time it would take for the die to stop moving. We first tested
these initial parameters to make sure they exerted nonlinear behavior to use in the final simulation.
The outputted graphs reproduced chaotic behavior and nonlinear patterns such as periodicity and
bifurcations. This showed that even a simplified model of a die is a perfect system to study chaos
theory.

I. INTRODUCTION

Chaos theory is considered by many physicists one of
the three biggest scientific revolutions of the twentieth
century along with relativity and quantum mechanics.
Chaos, also known as Nonlinear Dynamics, was
developed by Henri Poincaré [1] at the beginning of
the century, later to be developed by researchers such
as Edward Lorentz [2] or Mitchell Feigenbaum [3]
once computational physics came into existence. It es-
tablishes that most physical systems may appear simple,
but exhibit nonperiodic motion extremely sensitive to
initial conditions which become non-trivial and very
hard to guess. [4]

To test this concept, we were motivated by the concept
of dice to analyze its motion and evaluate this revolution-
ary theory. Dice have been used since the very beginnings
of human civilization. If you have played Monopoly, Dun-
geons and Dragons, or any board game that requires the
user to move a piece in a random number of places, you
have encountered a die (singular of dice) before. Dice
have appeared in numerous mythologies and religious
texts symbolizing a choice made by the divine, where
the output of a die is completely unpredictable and non-
deterministic, and therefore it is the divine that chooses
what the resulting number will be. The oldest precursor
of a die has been found to be knucklebones from different
animals such as sheep or buffalo dating back to prehistory
to the first human civilizations. These bones were cast,
and the resulting ’face’ of the bone that would result on
top would appear to be completely random. [5]

II. THEORY

A. Background research

The standard die consists of a cube-shaped object
marked with a number from 1 to 6 on each face, where

the numbers on opposite sides of the die add up to 7.
As proven, it is a chaotic system that cannot be entirely
deterministic from the naked human eye, as it is very
sensitive to initial conditions [6]. Such sensitivity can be
seen in Fig. 1, where a small angle variation causes the
final result to change, not showing any clear apparent
patterns in the results. This results were done on a com-
puter simulation taking into account the dynamics of the
die and error estimation of its simulation.

B. Physics of a die

To make a simple model, in this paper we looked
at a die where one of its axes is unchanged, which
significantly reduces the mathematics as we look at the
model as if it only had two spatial coordinates. The
reason for this was to reduce the model to a simple set
of equations that allowed 2D representation, and 3D
representation using the third parameter as a color scale
in a 2D density plot. The coordinates established where
x for horizontal displacement, and y for the height of
the die, adding an angular parameter θ to determine the
orientation of the die.

When the die was in free fall, it would experience reg-
ular Newtonian/Hamiltonian motion and energy conser-
vation. For this part of the die’s motion, we derived the
following set of equations:

x = xi + vx ∆t (1a)

y = yi + vy ∆t− 9.8

2
∆t2 (1b)

θ = θi + ω ∆t (1c)

vy = vyi − 9.8 ∆t , (1d)

where ∆t is the time increment, and vxi
,vyi

and ωi

are the initial velocities of x, y and θ respectively at
the start of the iteration. Here we are considering the
perfect acceleration of 9.8 m/s2, without air drag, as
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FIG. 1: Face of die resulting after being released at a height of 20 cm varying the angle at which it is thrown, showing no
apparent pattern in the results. Very small angle in a) and a bigger angle at b). We can see in a) that the simulation is zoomed
in by observing the shape created at dice face number 3, which does not show a clear pattern. Interpreting this results as
chaotic behavior. Image taken from [6].

if the object was released in a void. This assumption
was taken throughout the whole experiment to get a
simplified version of the die’s motion. If the die was a
nonlinear model, it would remain chaotic in any setup. [7]

On to the more complicated motion of the die, which
caused the chaotic behavior. We used Newtonian
mechanics to create a diagram of a die bouncing on a
surface which can be seen in Fig. 2. The die impacts
with an initial velocity vi that will produce the bouncing
velocity v0 in the figure, where we established the rela-
tionship vi = v0β, where β is the bouncing parameter
from 0 to 1, making β → 0 no bounciness at all, and
β → 1 making v0 equal to the incoming velocity as if it
was a frictionless bounce.

Using Fig. 2 as the base model, we noticed that
bounces would mostly occur on one of its corners. This
is because whatever angle the die was rotated, one of
the sides would have to be perfectly parallel to the ta-
ble when bouncing, which was very improbable. So we
assumed bouncing only occurred on the corners. The
equations derived were the following:

vx = v sinφ+ vxi
= v0 sinφ cosφ+ vxi

(2a)

vy = v cosφ = v0 cos2 φ (2b)

ω =
v0 sinφ

r
, (2c)

where r is the distance from the center of the die to any
of its corners. In the simulation, because the corner that

FIG. 2: Diagram of a die bouncing when it interacts with a
surface. The angle from the center of mass to the impacted
point is denoted with φ, and bouncing at a perpendicular ve-
locity v0 to the surface. This velocity can be seen in a) colored
green. It produces a linear velocity v in the direction of the
center of mass of the die (center of die) bouncing in the oppo-
site direction to the contact point of the die and the surface
denoted in color red in b). It also produces a tangential an-
gular velocity ω. The linear velocity can be divided into their
respective coordinate velocities vx and vy.

hits the surface may not be the ones closest to θ = 0 or
θ = π, the angle φ used to calculate the velocities used in
Eqs. (2), will be set to θ adding or subtracting π/2 until
−π/4 ≤ φ ≤ π/4.
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III. PROCEDURE

We used a computer simulation which required us to
analyze the motion of a physical die and understand its
behavior. To do this, we calculated its density and vol-
ume to find its characteristic initial parameters and took
a closer look at the bouncing motion to construct an ac-
curate simulation. We used a scientific scale to find the
mass and a graduated cylinder to measure the volume.

A. Physical setup

We used Open Source Physics’ Tracker [8] to monitor
the height of a released die on a table frame by frame to
find how the y-component of the die changed over time
to look for any linearity or periodicity in its movement.
An Apple iPhone was used to record the videos.

The graphs that Tracker produced were used for the fi-
nal simulation, and helped determining the vary parame-
ters for this experiment. The reason for using a computer
instead of a physical model was the chaotic behavior sys-
tem of the die and the unpredictability of any physical
model. Its initial conditions were so sensitive that repro-
ducing the same physical behavior twice was extremely
improbable. A computer simulation added constraints
that would simplify the model enough to receive data
that could be visualized and analyzed much more easily.

B. Simulation

Using the data gathered from the physical die, we
used Autodesk 3ds Max ’s physics simulation using the
Mass FX plugin to test out Eqs. (1) and (2). We used
a 3D model of a die and released it at different initial
angles and heights ’baking’ the physics simulation to
view the position and rotation of the die at all times for
a closer look if its dynamics.

Because the die appeared to exhibit nonlinear behav-
ior in all its parameters, we chose time as the analyzed
parameter, evaluating the time it took for the die to
stop moving after being dropped to a plain surface on
specific initial conditions. When testing the behavior of
the die, we noticed that the time it would take to stand
still could be a wide range, which was an indication that
the behavior was chaotic, which was what motivated
this experiment to analyze the time parameter in the
model.

To do this, we programmed a simulation of the physics
of a die being released from a determined height (first
initial parameter) positioned at a certain angle (second
initial parameter) in Wolfram Mathematica [9], using
Eqs. (1) and Eqs. (2).

C. Data gathering

To verify that the initial angle and height pushed
the model to produce chaos, we first look over these
parameters to find the sensitivity and how they vary
when the other parameter is constant. This helped
us determine how to evaluate data using both initial
parameters as the axis in a 3D plot.

Afterward, we used Mathematica’s DensityPlot to plot
over different ranges of height and angular position as
initial parameters, using a color scale to find patterns
and shapes in the resulting graph. This final plot would
then be used as a reference to produce more density plots
zooming in on interesting areas of looking for indications
of linearity, periodicity, or even bifurcations.

IV. RESULTS & ANALYSIS

A. Physical Die

We used a Plastic Die to measured its mass and
volume. To calculate its density we used a scientific
scale to find the die’s mass, to be 5.565(1)× 10−3 kg.
We used a graduated cylinder as indicated in Fig. 3,
since the die was not a perfect cube structure due to the
hemispheric holes in each face indicating the number
and the rounded edges. We measured the volume to be
4.5(5)× 10−6 m3. Calculating the density by dividing
mass by volume and finding its error estimation we then
got the total density of the die to be 1.236(1)× 103 kg/m3

Using Tracker, we released a die from a height
10.0(5) cm, recording 20 different videos, using a frame
rate of 60 frames per second. All graphs reproduced no
sign of periodicity or linearity, but instead, they showed
incentives of chaotic behavior in its bounces. The graphs
produced showed no apparent relation between adjacent
bounces.

An example of two experiments can be seen in Fig.4.
The height achieved in a) after each bounce appears to
be reduced subsequently. This could be seen as a linear
behavior where the maximum height decreases over time.
This is not true, since we can see the opposite behavior
in b), where the second bounce was not as strong as the
third one. We noticed that after the second bounce the
height achieved was close to half as much as the height
achieved after the third bounce. This did not only show
that two similar throws produced completely different
data, but also that the bounces are nonlinear and show
no periodicity, making them unpredictable to the human
eye.
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FIG. 3: Measure of the volume of a die using a graduated
cylinder. Where in a) the water height measures 70(1) ml, and
b) once the die goes in the cylinder, the water rises to 74.5(5),
indicating the volume of the die to be 4.5(5) × 10−6 m3

B. 3ds Max

Using Autodesk 3ds Max [11], we created a computer
simulation to compare the physical movement of the die
captured with Tracker and the Physics simulation pro-
duced by the Mass FX plugin. The result was visually
the same, which we used to ’bake’ a simulation and eval-
uate the movement to find if Eqs. (1) and Eqs. (2) suited
the model, which they both did. Because of data gath-
ering limitations, we decided to continue the experiment
with a Wolfram Mathematica simulation, which allowed
better control over the mathematics behind each step in-
tegration and manage the initial parameters better. An-
other reason for the change in software for the experiment
was that 3ds Max was a software made for modeling,
which was useful to understand the volume, dynamics,
and shape of the die; but not for simulating purposes.

C. Simulation

Because the new Mathematica simulation uses time
steps, there is a slight error deviation from every bounce
due to the possibility of the die touching the surface be-
tween time steps. We first ran the simulation with pa-
rameters θ = 0, ∆t = 0.001 s and initial height 20 cm to
find how many bounces occurred. The resulting number
was 50, which multiplied by the time steps gives ± 0.05 s
as error estimation for the time results of the simula-
tion.

FIG. 4: Plots of height vs. time, where in both cases a die
was released at an initial height 10cm, with polynomial curve
fitting to connect the data points and see the bounces of the
die. Data gathered in Tracker, locating the object frame by
frame adding an error estimation of δt = ± 0.2 cm due to the
deformation of the die going at a fast velocity in each picture
(this was the biggest value measured); curve fitting done in
Igor Pro 8 [10]. Both a) and b) where released at the same
height and similar angle.

1. Analysis of initial Parameters

We plotted the two analyzed initial conditions angle
and height to determine how sensitive these conditions
were to the final simulation. The first plot corresponding
to the height can be seen in Fig. 5, where we can
observe the chaotic patterns of the die. The upper
points of the function appear to follow a clear path,
while the lower points appear to be chaotic. In the lower
right corner, we can see a zoomed image of the graph
showing how the time reported by the simulation is
extremely sensitive to the height parameter and exerted
no apparent periodicity.

Likewise, we analyzed the angle parameter by plotting
the angle versus the time reported, to also evaluate the
sensitivity of the initial position of the angle. The result-
ing plot can be seen in Fig. 6. Here we can see at first
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FIG. 5: Time in seconds to stop moving vs. initial height at
which the die was dropped. The die starts at an angle θ = 0.
The error estimation due to the time step of the simulation
is 0.05 s. The integration time step is ∆t = 0.001.

FIG. 6: Time in seconds to stop moving vs. initial angle at
which the die was dropped. The die starts at a height 10 cm.
The error estimation due to the time step of the simulation
is 0.05 s. The integration time step is ∆t = 0.001.

glance the symmetry of the time reported with periodic-
ity from 0 to π/2, repeating the pattern afterward.

We can also observe two horizontal lines at θ → π/4
and θ → 3π/4. This is because the simulation detects the
die ’stopped’ when the resulting velocity after a bounce
is low, and at θ = π/4 and θ = 3π/4 the die bounces
off transferring the maximum linear velocity to angular
velocity, with a small bounce in the y-component and a
high rotation. Making the die rotate fast, but not lifting
the die high enough for the next bounce to be sufficient
to continue the motion of the die.

We can conclude by Figs. 5 and 6 that both initial
conditions of the simulator are extremely sensitive, which
fulfills the principal characteristic of a chaotic system.

axis.PNG

FIG. 7: Density plot of the simulation, where the axes rep-
resent the height at which the die is released and the initial
angle θ at which the die is positioned. The color scale corre-
sponds to the time the die takes to stop moving.

2. 3D Density plots

Varying these parameters in the simulation, we can
finally create 3-dimensional plots to find patterns in the
chaotic behavior. To represent the output of the graph,
we created density plots using a color scale to express
the third dimension in a 2D plot, where the parameters
act as the axis of the graphs. Creating an initial plot to
find the overall shape that is produced, we made Fig. 7,
where we used a uniform color scale from dark blue to
gold to remark the most notable shapes.

We first noticed the horizontal line that is significantly
brighter at θ → π/2, since the die starts with an angle
that will bounce off with a small rotation, due to its
position. At the exact value θ = π/2 we find that the
die bounces perfectly on its corner never adding rotation
and therefore bouncing the most time in the simulation.
No velocity gets transformed into velocity in the x-axis
or angular rotation. This is the highest the die can last
after many bounces. This horizontal line can also be
seen at the top and bottom of the graph due to a π/2
shift of the die, which corresponds to a symmetrical
rotation to another corner.

We also noticed that if the graph was divided at π/2,
both upper and lower parts of the graph seem identical,
indicating periodicity from 0 ≤ θ ≤ π/2, repeating that
pattern. This is because of the symmetry of the die.
Once this symmetry was found, we analyzed only one of
these sections, or what was equivalent, the middle section
of the graph which included the upper and lower golden
shapes of the graph. This new graph can be seen in Fig. 8
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FIG. 8: Zoomed in of Fig. 7 for 0.5 < φ < 2.5. The axes
represent the height at which the die is released and the initial
angle θ at which the die is positioned. The Hue color scale
corresponds to the time the die takes to stop moving.

In this graph, we changed the color scale to Hue to
notice the patterns better by increasing the range of
colors that the graph could output. This graph gave
more detail on the shapes and curves created with the
simulation. We also noticed that the line at θ = π/2
was not a perfect line since the lower bound of the line
appears to curve towards the bottom at the left side
(height between 6 cm and 8 cm. We also observed that
the upper and lower part of the graph did not share
any apparent symmetry, and would each need an indi-
vidual analysis since they do not appear to be connected.

By further zooming into the upper side of the graph,
we reproduced Fig. 9. We noticed an interference
pattern making periodic curves along with the graph.
This pattern can be specially noticed at heights between
8 cm and 10 cm and 1.8 ≤ θ ≤ 2 radians in the color
green. This may be produced by the error estimation
due to the time steps acting on the high sensitivity of
the initial angle parameter, creating a shift in the results.

The most noticeable shape in the graph can be the
biggest ’ring’ that can be seen in the upper part of this
graph at θ > 1.7. We observed that inside this ringed
shape was a smaller curve that appeared to be of similar
form at a height close to 12 cm. This also happened
with a smaller curve inside the small curve at a height
of around 17 cm. The behavior led us to think that
the ring pattern was periodic and that the rings would
continue as the initial height went higher. This curved
shape can also be seen in the lower part of the figure, at
θ < 1.7, finding that periodic behavior with a deformed
geometry. The smaller curve can be seen around a

angle zoom upper.png

FIG. 9: Zoomed in of Fig. 8 for π/2 < φ < 2.1. The axes
represent the height at which the die is released and the initial
angle θ at which the die is positioned. The Hue color scale
corresponds to the time the die takes to stop moving.

height of 12 cm.

As well as the upper side of Fig. 8 was analyzed, we
zoomed into the lower side to find more patterns to
evaluate. This can be seen in Fig. 10. Here we saw
with better detail the horizontal line from the density
plot at θ → π/2 mentioned before with greater detail
colored purple and white at the top of the figure. we
also noticed that it had a bigger size than the portion of
the horizontal line in the upper part of the graph from
Fig. 9. The interference pattern is also visible in this
portion of the plot.

We also observed a bifurcation shape close to
{16 cm, 1.25 rad}, where we saw the same pattern of
curves repeating as the previous graph, showing appar-
ent periodicity, but this time the bifurcation interrupts
the repeating shape. Because of this, the nonlinear
pattern is hard to picture and any higher height than
20 cm becomes unguessable with the current portion
of the graph. This led us to believe that the initial
parameters are so sensitive that a much bigger graph
is required to find periodicity if any at θ < π/2 in the
simulation.

Finally, we noticed that at the bottom of Fig. 9 at
θ < 1.7 a similar shape to the top of Fig. 10 at θ > 1.4,
where we saw the ring-like curves deformed in almost
a mirrored way. This is better visualized in Fig. 8 at
θ = (π/2) ± 0.2, where the closest deformed curves ap-
pear to share a mirrored symmetry. Showing that even if
the top half indicates periodicity and repetition, it shares
a mirrored portion with the lower half that has no ap-
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FIG. 10: Zoomed in of Fig. 8 for 1.1 < φ < π/2.Density
plot of the simulation, where the axes represent the height at
which the die is released and the initial angle θ at which the
die is positioned. The Hue color scale corresponds to the time
the die takes to stop moving.

parent periodicity, and has one bifurcation, proving that
for every initial angle, the state of the system is highly
chaotic.

V. CONCLUSION

In this paper, we created a mathematical model
based on a die free falling and bouncing on a flat
surface to find chaotic behavior. We used a physical
die to evaluate its motion and compare it to a physics
simulation using Autodesk 3ds Max. This software
allowed us to record a simulation and find the kinematic
equations of its motion using Newtonian mechanics.

Using those sets of equations, we constructed a testable
2D simulation in Wolfram Mathematica that allowed us
to gather data and evaluate the system at each integra-
tion time. We analyzed two initial conditions, which
were angular position and height to find that the sys-
tem was highly sensitive to both of these two parameters.

The system evaluated using the time that the die
would take to stop moving after being dropped. We
plotted 2D density plots using time as a color function.
The initial graph used a uniform color scale to find the
most noticeable shapes. By zooming into the parameters
and using a wider color palette as a color scale, we found
nonlinearity, periodicity, and bifurcations in the system.
In the angular parameter, there was repetition since the
die was shaped like a cube, having a 90◦ symmetry in any
rotation along with its faces. Initial height, on the other
hand, did not show any sign of periodicity or symmetry
in its results. This proved that the system did not only
exert chaotic behavior but that the data was not deter-
ministic or trivial. The portions of the graphs we used
exerted such nonlinear characteristics, that they were
not enough for us to imagine what the system could be at
a higher initial height if it followed any kind of repetition.

Using these results, we can then conclude that a die
being dropped is an excellent example to evaluate chaos
theory. Furthermore, the model constructed in this arti-
cle was a simplified version of the physical system.
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