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This experiment aimed to test whether a resistor’s resistance can be derived using only the current
across it and its temperature. The experiment tested four resistors with a range of (2200-22 000) Ω.
It was discovered that for each, a dissipation constant could be derived that would allow its resistance
to be accurately calculated as a function of current and temperature.

I. INTRODUCTION

In 2022, during the Physics 401 course at the College
of Wooster, an experiment was carried out relating the
power radiated by a light bulb to the difference in its
temperature compared to its surroundings. [1] This ex-
periment was built upon prior discoveries by J. Stefan [2]
and L. Boltzmann [3] and the Stefan-Boltzmann law, an
equation which applies only to blackbody surfaces.

Other experiments have used the Stefan-Boltzmann
law, Ohm’s law, and the formula for the resistance
of a material to relate the temperature of a filament
to the electric power across it. [4] In 2004, A. Kesin
and T. Yanar derived a further equation relating the
temperature of a thermistor to the ambient temperature,
the power across it, and its heat dissipation constant. [5]

Using the discoveries and theories in these prior ex-
periments, it is possible to derive a solution for the re-
sistance of a resistor based solely on its temperature, a
pre-measured constant, and either its voltage or current.
This would provide an alternate method to the common
practice of calculating resistance from both current and
voltage.

II. THEORY

The rate of energy loss over time of an object dEloss/dt
is equal to

dEloss

dt
= α(TR − TA) , (1)

where α is the dissipation constant of the object, TR
is the temperature of the object, and TA is the ambient
temperature. The dissipation constant is defined as the
amount of energy required to heat the object 1 ◦C hotter
than its environment.

This change in energy can also be expressed as power
P , which for a resistor is equal to

dE

dt
= P = V I = I2R , (2)

where V is the voltage drop across the resistor, I is
the current across the resistor, and R is the resistance of
the resistor.

Following Ohm’s law, the resistance can also be written
in terms of current and voltage as

R =
V

I
. (3)

Substituting the current-resistance expression of
Eq. (2) into Eq. (1), we can calculate the resistance of
a resistor from just its current and temperature via the
equation

R =
α

I2
(TR − TA) . (4)

In order to use this equation, we would first need to
know the dissipation constant of the resistor. This con-
stant can be measured by solving Eq. (4) for α, with a
result of

α =
I2R

TR − TA
. (5)

But as the goal is to calculate resistance as an end
result, we can substitute the numerator for an equivalent
expression also in Eq. (2), with a result of

α =
V I

TR − TA
. (6)

III. PROCEDURE

A variable voltage source was connected across a
resistor, along with an ammeter connected in series
and a voltmeter connected in parallel. The voltage
source was then set to provide a variety of voltages
in its approximately (1-15) V range, and the circuit
was allowed to reach an equilibrium state where the
power functions in Eq. (1) and Eq. (2) were equal. This
was indicated by the current and resistor temperature
becoming stable after their initial change due to the
changing voltage.
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FIG. 1: The equipment for the experiment, including variable
voltage source [A], resistor [B], ammeter [C], voltmeter [D],
and thermal camera [E].

For each applied voltage, the current and voltage were
recorded from the ammeter and voltmeter, and the differ-
ence between the resistor’s temperature and the ambient
temperature was recorded using an FLIR C5 handheld
thermal camera. The setup is depicted in Fig. 1.

The product of the voltages and currents was then
plotted against the temperature difference according to
Eq. (6), and the slope of the line of best fit was recorded
as α.

This process was performed on a total of four resistors,
shown in Fig. 2. Resistor A had a labelled resistance of
2200 Ω, with a tolerance of ±5%. Resistors B and C had
labelled resistances of 4700 Ω with tolerances of ±5%,
but Resistor B was a different type of resistor. Resistor
D had a labelled resistance of 22 000 Ω, with a tolerance
of ±10%.

For resistor B, the resistance and tolerance were writ-
ten on the resistor, though this is not depicted in its
photo. For resistors A, C, and D, the resistance and tol-
erance were obtained through standard resistor bar color
coding.

IV. RESULTS AND ANALYSIS

A. Data Results

For each of the four resistors tested, I was able to
calculate the dissipation constant. In each case, a line
of best fit using the dissipation constant described the
behavior of the resistor fairly accurately, in accordance
with the expectations from Eq. (6).

Fig. 3 presents the result for the 2200 Ω resistor A, with

FIG. 2: The four resistors used during the experiment, along-
side their letter designations and labelled resistances.
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FIG. 3: Graph of the VI vs. ∆T function of Eq. (6), for
the 2200 Ω resistor A. The slope of the line of best fit is
(9.70 ± 0.42) × 10−3 VA/◦C.

a dissipation constant of (9.70 ± 0.42)× 10−3 VA/◦C.

Fig. 4 presents the result for the 4700 Ω resistor B, with
a dissipation constant of (6.49 ± 0.28)× 10−3 VA/◦C.

Fig. 4 presents the result for the 4700 Ω resistor C, with
a dissipation constant of (12.30 ± 0.56)× 10−3 VA/◦C.

Fig. 5 presents the result for the 22 000 Ω
resistor D, with a dissipation constant of
(12.24 ± 0.27)× 10−3 VA/◦C.
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FIG. 4: Graph of the VI vs. ∆T function of Eq. (6), for the
4700 Ω resistors B (blue) and C (red). The slope of the blue
line of best fit is (6.49 ± 0.28) × 10−3 VA/◦C, and the slope
of the red line of best fit is (12.30 ± 0.56) × 10−3 VA/◦C.
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FIG. 5: Graph of the VI vs. ∆T function of Eq. (6), for
the 22 000 Ω resistor D. The slope of the line of best fit is
(12.24 ± 0.27) × 10−3 VA/◦C.

B. Error Discussion

The measurement error for the ammeter and voltmeter
were relatively small, at ± 0.01 V and ± 0.01 mA.

As shown in Figs.3 to 5, there is notably large error in
the temperature difference measurements. This expected
error is much larger than the proximity between the line
of best fit and the measurement points should suggest.
The large error bars are due to the fact that the thermal
camera has an error of ± 3 ◦C. However, the thermal
camera is capable of taking multiple simultaneous mea-
surements, a function which was used when recording
the temperature difference.

Therefore, for each temperature difference mea-
surement, the error within the ± 3 ◦C range was
approximately equal for the resistor temperature and

ambient temperature, causing the error to almost cancel
itself out. From my own observations while conducting
the experiment, I would estimate the error in tempera-
ture difference at closer to ± 0.3 ◦C.

V. CONCLUSION

For a range of resistors, the connection between
voltage, current, and temperature was measured in order
to derive a constant that could be used to calculate
resistance from only the current and temperature.
This constant, also known as the resistor’s dissipation
constant was successfully determined for four resistors
across the (2200-22 000) Ω range.

As a result, it is clear that for a resistor in a cir-
cuit, it is possible to calculate its resistance using its
temperature and current, or from its temperature and
the voltage across it. While this does require initial
measurements to calculate the dissipation constant of
the resistor, the usefulness of this information comes in
the convenience of measuring resistance later.

Normally to measure resistance, both current and
voltage are needed, and adding an ammeter to a circuit
usually requires modifying the circuit itself. However,
using a voltmeter and a thermal camera requires no
change to the circuit whatsoever, allowing for more
convenient resistance measurements.
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Appendix A: Appendix: Error Propagation

The vertical error δV I in Figs.(3 to 5) is defined as

δV I =

√(
∂(V I)

∂V
δV

)2

+

(
∂(V I)

∂I
δI

)2

, (A1)

Which can be simplified to

δV I = V I

√(
δV

V

)2

+

(
δI

I

)2

. (A2)

Due to the nature of the temperature error as discussed
in Section IV B, Error Discussion, the following substitu-
tion is being used for error propagation:

TR − TA = ∆T . (A3)

The horizontal error δ∆T is defined as

δ∆T =

√(
∂∆T

∂∆TR
δ∆TR

)2

+

(
∂∆T

∂∆TA
δ∆TA

)2

. (A4)

Remembering that

δTR = δTA (A5)

from Section IV B, we can simplify this to

δ∆T =

√
2 δ∆TR
∆T

. (A6)

Using the same method as above final error for the
dissipation constant δα is defined as

δα =
V I

∆T

√(
δV

V

)2

+

(
δI

I

)2

+

√
2 δ∆TR
∆T

. (A7)
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