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We use the box counting method to determine the fractal dimension of the boundary of certain
clouds. The fractal dimension is essentially a measure of roughness of the shape, which will give us
a dimension in between one and two. Being able to determine the fractal dimension of a cloud could
be beneficial to climate modelers, because a concern for modelers includes what is the cloud shaped
like, since using any Euclidian shape is not sufficient for this type of modeling. A Mathematica
code was created to find the fractal dimension of the boundary of cloud images. The code works
by inputting an image of a cloud and the image was overlaid with a grid of squares and scanned
through a loop to determine how many squares covered the boundary of the cloud. This was done
many times, with many different sizes of boxes. With these results, we found the dimension of the
boundary of the cloud. We compared the fractal dimension to two different parameters of clouds:
the thickness of the clouds and the altitude placement of the cloud in the sky. Results show that the
thickness of the cloud does not depend on the fractal dimension, but when examining clouds higher
and higher up in the sky, the fractal dimension of the cloud increases. This means the roughness of
the cloud is lower for higher clouds compared to lower clouds in the sky. Further analysis must be
done to confirm these results of cloud classification.

INTRODUCTION

As our earth continues to warm, scientists are working
more and more to create realistic and successful climate
models. These models include oceanic, atmospheric, and
land processes such as melting glaciers and ocean circu-
lation. They are generated from mathematical equations
that are created from data recorded that simulate trans-
fers of energy and water. In Fig. 1, we can see the increase
in surface temperature from 1990 to what it is predicted
to look like from climate models in 2098. From this im-
age we can see that the earth is indeed warming, and has
harmful effects to our planet. For example, natural dis-
asters such as hurricanes and drought are becoming more
frequent and intense. These events can destroy habitats
for animals and cities for people. Some scientists are try-
ing to understand and predict what will happen by using
physical system models [1].

Clouds prove to be the greatest uncertainty in climate
models. This is due to many aspects of the cloud itself.
First, the composition of the cloud can differ, the type of
aerosols making up the cloud itself, along with the size
and alignment of these particles. Not only does the com-
position create mystery, but also the type of cloud, its
shape, height, and placement in the sky matters as well
[2]. Clouds can trap heat and contribute to the heat-
ing of our planet, but also can reflect the sunlight and
decrease the heating of the planet [3]. It is unknown if
the net contribution of clouds to global warming is posi-
tive or negative. Researchers are trying to describe these
complex systems currently [4].

When investigating this problem, something else to ex-
plore is the fractal-like shape of these clouds. Fractals
are another type of geometry, different than typical Eu-

clidean geometry. Euclidian geometry characterizes reg-
ular objects, while fractal geometry studies the irregular
objects. Fractals are rough shapes that can be separated
into parts, where each is a reduced-size copy of the whole.
This characteristic is called self-similarity. Understand-
ing the fractal dimension and geometry of clouds could
be another possible way to model clouds. Fractals could
possibly be another metric to classify clouds.

FIG. 1: Surface air temperature over the entire earth in (top)
1990, and predicted surface air temperature in (bottom) 2098
[1].
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THEORY & APPROACH

Creating the Code

One way to understand these physical systems is to un-
derstand the dimension of clouds. Clouds themselves all
have fractional dimension numbers, meaning each cloud’s
roughness can be described through its fractal dimen-
sion. Through Euclidean geometry, we learn about one
two and three dimensional objects, but usually in nature
lots of objects are in between one to two or two to three
dimensions. We call this a fractal (fractional) dimension.
For example, a newspaper is two dimensional, and a per-
fectly compact newspaper ball is three dimensional, but
a crumbled up piece of newspaper is in between two and
three dimensions. Clouds have the property of ‘in be-
tween’ dimension. Understanding what dimension these
clouds are can be beneficial to understanding how these
clouds contribute or do not contribute to global warming.

In 1918, Felix Hausdorff introduced the Hausdorff di-
mension or fractal dimension, which is a measure of
roughness [5]. We know that a single point is of dimen-
sion zero, a line segment is of dimension one, a circle is of
dimension two, and a sphere is dimension three, but as
stated before, lots of shapes in nature have dimensions
in between integer numbers.

There are multiple ways to find the dimension of these
shapes, depending on how simple the shape is. When
measuring coastlines, we can see when zooming into the
coastline, as the zoom increases, we can see more and
more detail. For example, when measuring the coastline
of Great Britain, by using different length scales to mea-
sure the coastline, the perimeter will grow as we use a
more precise measurement [6]. Meaning that since the
coastline is not a straight line and there are boulders and
rocks in the way, you have to measure each and every in
and out where boulders, rocks and pebbles are located.
Thus the perimeter increases when using a ruler com-
pared to using a meter stick. The final answer is as you
measure more and more closely, you approach infinity.
So, we use a fractal dimension to classify and understand
this coast line. This is done by measuring the perime-
ter using different length scales, like a ruler and then a
meter stick. We then calculate the dimension by taking
the logarithm of the perimeter over the logarithm of the
inverse length scale, or magnification, to find the fractal
dimension.

For clouds, we essentially use a similar method by cre-
ating a program in Mathematica, but break it down a
little differently compared to finding the perimeter. In
our experiment, because these images are very complex,
we use the box counting method [7]. The box count-
ing method is executed by covering the image of interest
(here the clouds) with a grid of boxes of a specific area
and counting how many boxes cover part of the bound-

FIG. 2: Example of the box counting algorithm. First image:
a two-by-two box grid overtop of a cloud image, all four boxes
interfere with the boundary. Then we move to smaller boxes
as seen in the second image, where there are 16 boxes and
only seven interfere with the boundary.

ary of the image image. Then this process is repeated by
using a finer grid with increasingly smaller boxes. Exam-
ples of two-by-two and four-by-four grids can be seen in
Fig. 2. Because the size of boxes on the grid is shrinking
while repeating this box counting method, we can more
accurately capture the structure of the image. Then we
can find the dimension by dividing the logarithm of how
many boxes included the boundary by the logarithm of
the inverse length scale, which in this case is the inverse of
the box size. Usually, to understand this number we plot
the logarithm of the number of boxes interfering with
boundary versus the logarithm of the inverse box size
and take the slope as the dimension of the image. For
our clouds, the fractal dimensions range from one to two
dimensions. A straight line is of dimension one and a su-
per wiggly line that completely fills up a two-dimensional
area is two-dimensional. So, a steeper slope closer to two
means a more wiggly line and a shallow slope closer to
one corresponds to a straighter line [8].

We calculate the fractal dimension of the boundary of
clouds, not the cloud itself. This is because our program
is not equipped to analyze the entire three dimensional
cloud, so we focus on the boundary of the cloud.

To actually calculate the fractal dimension of the
boundary of clouds, we start by inputting an image, like
any of the images seen in the first row of Fig. 3. Then
we binarize these images so the images are strictly black
and white. This makes it easier to apply the box counting
method, so the box can recognize where either the back
or the white boundary of the cloud. The binarization
process for each cloud does differ, because not all cloud
images are taken with the same brightness settings, so we
have to manually determine what the threshold should be
to best identify where the cloud is in the image. After
this process, our images look something like what the
second row of Fig. 3 looks like [9].

After the binarization process, we create a matrix of
zeros and ones, where all of the zeros are the black areas
and the ones correspond to the white areas on the image.
Each value corresponds to a pixel in the image. Then
we create boxes and loop through the rows of the image
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FIG. 3: Three different clouds used in the study. From left to
right: cirrus, altocumulus, and cumulus clouds. The top row
are the images and the bottom row are the binarized versions
of the top row.

to see where the images changes from zeros to ones, or
from black to white to outline the boundary of the cloud.
For example, when our box size is 2 by 2 pixels, we go
through and average the ones and zeros in the 2 by 2
square. If the average is zero or one, that means we have
not hit any boundary, but if the average is somewhere
between zero and one (1/4, 2/4, or 3/4) we count that
box as interacting with the boundary of the image. Then
after looping through each row of the image we add up
the number of boxes interacting with the boundary of
the cloud and take the logarithm of that, which is then
graphed versus the logarithm of the inverse box size. The
slope of the graph will give us the fractal dimension.

Testing the Code

To test our program and make sure it was running
correctly we inputed an image of a fractal with a pre-
determined fractal dimension. We used the Koch curve
seen in Fig. 4, whose boundary has a fractal dimension of
1.26. When running our fractal through our program, we
got a fractal dimension of 1.18, which is about a 6% er-
ror. This number was decent, but could be improved. In
general, as we increase the size of the box, the accuracy
of the dimension decreases, so we fit a line of the actual
dimension to our plot of points to see what parts of the
graph fit the line best, or in other words, what part of
the graph was most accurate. This plot can be seen in
Fig. 5, where the red line has a slope of 1.26. Because of

FIG. 4: A computer simulation of the Koch curve at the
seventh step of the curve.
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FIG. 5: Logarithm of the number of boxes interfering with
boundary plotted against the logarithm of the box size for
the Koch curve seen as represented in blue dots and lines.
The red line represents the line of best fit that gives a slope
of 1.287, which is the computed fractal dimension of the curve.
The actual fractal dimension value for this curve is 1.26. Our
value is off by approximately 2%.

our findings here, we decided that for further analysis we
would only look at points from an inverse box size of 10
to 70. Because we looked more at the middle section of
data, our accuracy went from 6% error to 2% error, and
we found a fractal dimension of 1.287 for the Koch curve
boundary. We made this choice because naturally at the
lowest and highest points on the graph, the data tends
to trail off because of accuracy issues.

Because of the results from the Koch curve test, data
collection could begin. We used cloud images from mul-
tiple sources, including the Cloud Appreciation Society
[10]. Cloud images were collected in terms of the thick-
ness of the cloud, so we collected images of clouds that
were almost transparent, but also thick clouds that were
completely opaque. We tested ten thin and ten thick
cloud images. With these images we wanted to explore
the relation, if any, that these images have with their
fractal dimension.

We also collected images of nine categories of clouds,
including cirrus, cirrocumulus, altocumulus, which are
lower level clouds, altocumulus, nimbostratus, and stra-
tus clouds, which are mid level clouds, and lastly cumu-
lus, cumulonimbus, and stratocumulus clouds, which are
higher altitude clouds. We tested two images from each
category because of limited resources for images. Again,
we wanted to explore the relationship between height of
the cloud in the sky to the fractal dimension of each im-
age.

Since there is a relationship between high level clouds
being more thinner clouds and lower level clouds being
thicker clouds, we wanted to not only find the fractal
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0-9: Thin Clouds, 10-20: Thick Clouds

FIG. 6: Fractal dimension versus image number. Purple dia-
monds (numbered 0-9) are considered thin clouds and red dia-
monds (numbered 10-20) are considered thick clouds. There is
no obvious trend for the fractal dimension here when switch-
ing from thin to thicker clouds. Error bars show that the thin
clouds (in purple) have a 1.4% error and the thick clouds have
a 2% error.

dimension of all the clouds listed above, but also examine
any trends related to this idea and the fractal dimension.
So, for example we wanted to find out if higher level
clouds, which are generally thicker clouds would have a
lower fractal dimension compared to lower level, thinner
clouds.

RESULTS & ANALYSIS

When approaching this problem, we focused on two pa-
rameters of clouds besides the fractal dimension to test
if there was any relationship. First, we examined the
thickness of the cloud and compared it to the fractal di-
mension of the clouds. These clouds were categorized as
thin and thick clouds. Usually, with thinner clouds, they
are easier to see through and with thick clouds one is
unable to see through the cloud.

The calculated fractal dimension for the different thin
and thick clouds are shown in Fig. 6. The first ten clouds
plotted are the thin clouds and the thicker clouds are
plotted on the x-axis as clouds 10-20. As seen in the
plot, there is no immediate relationship or change when
looking at thin or thick clouds. The plot has a lot of noise
and it is hard to draw any conclusions from this data
other than that using the fractal dimension of clouds to
understand the difference between thin and thick clouds
may not be the best direction to go in, because there are
no clear relationships seen.

The second parameter we looked at was the height at
which the cloud was at in the atmosphere. We primarily
looked at three different groups of clouds: low level, mid
level, and high level clouds. These results can be seen in
Fig. 7 and Fig. 8. In Fig. 7, if you look specifically at the
way the low level cloud (clouds 1-6 on the x-axis) fractal
dimension compares to the mid level clouds (7-12 on the
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1-6: Low Clouds, 7-12: Mid Clouds, 13-18: High Clouds

FIG. 7: Fractal dimension versus image number. Red dia-
monds (numbered 1-6) are low level clouds, green diamonds
(numbered 7-12) are mid level clouds, and purple diamonds
(numbered 13-18) are high level clouds. As the color changes
from red to green to purple, the fractal dimension increases.
Error bars show a 4% error for low clouds, a 3% error for mid
clouds, and a 0.5% error for high clouds.

x-axis), there is an overall increase. Similarly looking at
the increase from the mid clouds to the high level clouds
(clouds 13-18 on the x-axis), this makes it evident that
there may be a relationship between the height of the
cloud in the sky and the fractal dimension of the cloud
boundary. After averaging the low, mid, and high level
cloud fractal dimensions and plotting them seen in Fig. 8,
the relationship is even more clear; as the height of the
cloud in the sky increases, the fractal dimension seems
to increase as well. Or, the higher up the cloud is, the
rougher the cloud becomes. This is also obvious if you
think about a cumulus, low-level cloud, the puffy, cotton
ball like clouds, like the third image in the top row in
Fig. 3. These clouds seem pretty smooth compared to
more wispy, cirrus clouds that are more jagged, like the
first image in Fig. 3, which are higher up in the sky.

Again, to make sure we were getting results that made
sense, we checked our results for the fractal dimension of
different clouds with other papers from places that might
have better binarization techniques or better imaging sys-
tems. For example, our calculations show that cirrus
clouds have a fractal dimension of 1.56, and a paper by
Batista -Tomas reports in the Quarterly Journal of the
Royal Meteorological Society [11] that the fractal dimen-
sion of cirrus clouds is approximately 1.39, giving a 10%
error, as well as cumulonimbus clouds having a dimension
of 1.23, when our program gives a value of 1.31, which is
a 7% error.

There seems to be a relationship between the altitude
of the cloud and the fractal dimension of the cloud, but
no clear relationship between the thickness of the clouds
and its fractal dimension. This is an interesting result,
because as stated before, lower level clouds are generally
thinner clouds and higher level clouds are generally cat-
egorized as thicker clouds. Although our results do not
follow that general idea or result. This could be because
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FIG. 8: Average fractal dimension of low, mid and high level
clouds versus type of cloud: red diamond (numbered 1) repre-
sents low level clouds, the green diamond (numbered 2) rep-
resents mid level clouds, and the red diamond (numbered 3)
represents high level clouds. As seen here, there is an direct
trend, with a trend line in black with a fit of r-squared value
to be 0.99. Error bars seen are 4% for low clouds, 3% for mid
clouds, and 0.5% for high clouds.

challenges finding suitable images for analysis, because
it was difficult to find high resolution images, and also
there were no clear cloud image databases that had cat-
egorized clouds as thick or thin clouds. Thus, we were
making educated guesses on how to categorize each cloud
image into the category of thick or thin.

Error Analysis

In Fig. 4, all of the data points on the plot are exact,
but when taking a section of the plot to use for results
instead of the entire plot to find the slope of the data like
we did, error is present. The error bars on Fig. 6, 7, and
8 were found by calculating the percent error between
our calculated dimension values (values 10-70 in Fig. 4)
and the values calculated between 0 and 80 on our log-log
plot. While this is not a rigorous way to calculate error,
the errors calculated gave us a better understanding of
how much our data would change due to a slight change
in data collection.

CONCLUSION

The purpose of this lab was to explore a new way to
classify clouds to improve climate models and catego-
rization of clouds in general. Through the box counting
method, we were able to create a program that could
calculate the fractal dimension of the boundary of cloud
images. The code took in an image and binarized it ac-
cording to the image’s brightness. Pixel by pixel the
image was covered with a grid, as seen in Fig. 2 to count
how many boxes covered that actual boundary of the
cloud. After varying the size of the box used, we plotted
the results. We plotted the logarithm of the number of

boxes that covered the boundary versus the logarithm of
the inverse box size. To make sure that our program was
running smoothly, we checked its accuracy by feeding the
program an image with an already known fractal dimen-
sion. We used the Koch curve. After fitting a line to the
graph and choosing which set of points were going to give
us the best results, we found the dimension of the fractal
to be 1.287, compared to the known value of 1.26, which
gives a 2% error.

We run our cloud images through, comparing fractal
dimension to thickness of a cloud and also fractal dimen-
sion to altitude placement of clouds. Results show that
there is a lack of a relationship between the thickness of
a cloud and its fractal dimension, as seen in Fig. 6. Al-
though, when comparing the altitude placement of the
cloud in the sky and its fractal dimension, results show
that clouds placed higher up in the sky tend to have a
higher fractal dimension, seen in Fig. 7. The average of
each category: low level, mid level, and high level clouds,
were averaged and fit to a linear trend line in Fig. 8 to
strengthen the argument that higher clouds are rougher,
or have a higher fractal dimension.

Our first result, that there is no clear relationship be-
tween the fractal dimension and the thickness of the cloud
comes as a surprise when paired with the second result,
that fractal dimension decreases as the altitude place-
ment if the cloud in the sky increases. This is because
generally clouds that are thicker are at higher points in
the sky and thinner clouds are lower level clouds. Al-
though these results are found by using small datasets,
so trends and results could be strengthened or become
more clear when using larger datasets. Also, we person-
ally classified clouds as either thin or thick, there was
no strong scientific reasoning behind why some clouds
were considered thinner or thicker, other than the way
the clouds looked (if they were transparent or opaque).
The other clouds used at different altitudes were taken
from a website that classified each cloud as either low,
mid, or high level clouds, so we are more confident about
those results.

Overall, further analysis must be done in order to de-
termine if the fractal dimension is a strong metric for
classifying clouds. Although, we do know that the fractal
dimension of clouds is not something to overlook when
creating climate models. The roughness of each cloud
does differ, as this study does show, and that is impor-
tant when creating a model with clouds. You cannot
just use a circle or a shape from Euclidian geometry to
describe the shape of a cloud, that is incorrect science.
Thus this study could be helpful when determining how
rough to make a cloud in a model.
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FUTURE WORK

Further analysis of our work here could be useful and
relevant. Using larger data sets or more accurate data
sets can help strengthen our results and prove or disprove
our result that the fractal dimension decreases for clouds
higher up in the sky, and could help create new results
about the thickness of the cloud compared to the fractal
dimension. It could also be the case that there is no
relation, which is still a result in itself.

Another way to better this program is to build off of
it, and create somewhat of a backwards program. By
that, we mean create a program similar to the one used
by where the user inputs a fractal dimension, and maybe
some other parameters like size of a cloud, and the pro-
gram outputs an approximate cloud with that specific
dimension. This could be helpful to modelers when try-
ing to replicate the exact shape of the cloud, since that
can be difficult.

Lastly, this program created can also be used for other
objects, it is not only able to calculate the fractal dimen-
sion of clouds, but any object’s boundary. For example,
the program can be used to calculate the fractal dimen-
sion of leaves. Studies have shown the the fractal dimen-
sion of a leaf is related to the cell density of surface area
of the leaf, which could be used as a new approach to
taxonomical study of plants.
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