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A block-spring earthquake model was investigated experimentally for a one-block system, and the
behavior was characterized according to the rate- and state- dependent friction theory developed by
Dieterich and Ruina. Position data was recorded for the block as it was driven by a constant velocity
driver, and the behavior was characterized as stick-slip, non-stick-slip self-sustained oscillations, or
stable sliding. Slip-stick and oscillatory behavior indicated velocity-weakening systems, while stable
sliding indicated velocity-strengthening systems. The systems were characterized by the type of
materials in contact during the sliding: PVC and aluminum, nitrile, or cardstock. Cardstock exhib-
ited the most stick-slip behavior while aluminum lead to distinctly velocity-strengthening behavior.
Nitrile trials were largely inconclusive. Furthermore, increasing the spring strength stabilized the
system for the cardstock, which further validates the theory for velocity-weakening friction .

I. INTRODUCTION

Of all the pseudo-forces in physics, friction is certainly
one of the most ubiquitous. Truly, we live in a world
governed by friction. One imagines a world in which
friction did not exist – an ice-rink of the eternally adrift –
and is quickly thankful to have one’s feet planted firmly
on the ground. Possibly only the introductory physics
student might find reason to object...and this student
would have good reason. After all, friction is notoriously
difficult to model!

In fact, definitive friction models remain elusive. As
a non-conservative force, friction is difficult to describe
purely theoretically due to the inherent energy loss. How-
ever, friction’s ubiquity is an advantage in the experi-
mental realm, where the available systems governed by
friction are plentiful. Thus, there has been success in
developing empirical friction models, particularly in the
latter 20th century up to present day. This progress is of
particular importance given the impact of friction on our
daily lives, both favorable and adverse. We can thank
friction for the traction of our car tires on the road, but
also the occurrence of earthquakes which can wreak dev-
astation. Thus, there is real significance to the creation of
these friction models, with interdisciplinary applications.

Earthquakes are a particularly famous example of
complex frictional motion, where tectonic plates in the
Earth’s crust slide against each other and their motion
is controlled by dynamic friction. This motion can be
modeled using a simple array of blocks connected by
springs, famously discovered by Burridge and Knopoff
in the 1960s [1]. This Burridge-Knopoff model was then
improved by Dieterich [2] and Ruina [3] in the 1970s and
1980s to create the rate- and state- dependent friction
equations which are still currently in wide use given how
effective they are at describing the complex, and often
chaotic, behavior of earthquakes [4]. Earthquakes are
notoriously difficult to predict, and so harnessing these
equations to effectively model their motion would be an
incredibly powerful tool. Papers by Erickson [4], Kostic

[5], Chen [6], and others continue to develop this theory
and explore the complex nonlinear dynamics of earth-
quake motion, mainly through computational simulation.

This paper will explore the rate- and state- dependent
friction equations and work to verify the implications of
the theory experimentally for a one-block system.

II. THEORY

When cracks propagate through the Earth’s crust,
faults are formed and the subsequent motion of these
interacting rock segments is controlled by friction. The
rocks stick together along the fault line, held together by
static friction, until they suddenly slip, resulting in an
earthquake. This stick and slip behavior is complex and
modeling requires more sophisticated methods than the
well-known static and dynamic friction theories – par-
ticularly, the rate- and state- dependent friction model.
First, however, it is necessary to characterize friction at
the microscopic level.

A. Asperities and Real Contact

The macroscopic effects of friction are well known and
easily observed; rub one’s hands together and there is a
clear resistance to the motion due to friction at the plane
of contact. So, what is truly going on at the microscopic
level?

If one were to zoom in on the contact between two
materials, perhaps a fault between two rocks, it might
look like Fig. 1a, where the true contact occurs between
the irregular bumps and protrusions along the surfaces,
called asperities. When these surfaces slide against each
other, the asperities may interlock and exert a force op-
posing this sliding motion. This is friction in action, at
a microscopic level.

It follows, then, that the magnitude of the friction force
correlates to the number of asperity contacts. Further-
more, one can add up all of these points of contact to
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FIG. 1: Schematic of contact between two materials.
Part (a) depicts a close-up view of contact between two
materials, where real contact occurs at the asperities.
Part (b) shows the macroscopic view of real contact

area, where each darkened region is composed of tiny
asperity contacts. Necessarily, real contact Ar is smaller

than surface area A. Figure from [7].

get the area of real contact Ar – a distinct quantity from
the more traditional surface area A. Real contact area is
visualized in Fig. 1b where the darkened patches indicate
areas of real contact, composed of lots of tiny asperities,
and Ar < A. The natural conclusion then, is that friction
is determined by the real contact area Ar, independent of
the total surface area. Indeed, this concept agrees with
the well-known formulation for friction,

Fµ = Nµ, (1)

where N is the normal force pushing on the surface and µ
is the coefficient of friction. If N is equal to the weight on
an object, say for a book sitting on a flat tabletop, then
adding masses on top of the book will increase the weight,
and thus increasing N and Fµ. Conceptually, increasing
the weight of the book would increase the real contact
area between the book and the table, as additional as-
perity contacts are created through the materials being
pressed closer together, and thus the friction force would
increase, as predicted by Eq. 1. This relationship be-
tween friction and normal forces, as determined by the
real contact area, is critical for describing more compli-
cated friction such as stick-slip.

B. Stick-Slip Motion

Consider a block pulled by a spring across a rough sur-
face, as in Fig. 2a, where the spring is pulled by a con-
stant velocity driver. There are two forces affecting mo-
tion in the x-direction: a pulling force by the spring, Fs,

FIG. 2: (a) A block is pulled by a spring of stiffness k
across a rough surface, where friction Fµ is determined
by the normal force N . (b) A diagram of the friction

and spring forces acting on the block. The block slips at
B, the point of instability, and speeds up until C where
it starts to slow down until it sticks again at D. Figure

adapted from [7].

and a damping force due to friction, Fµ. As in any New-
tonian mechanics problem, the balance of these forces
determines if the block is speeding up, slowing down, or
moving at a constant speed.

Experiment has shown that friction is not a constant
force, but a dynamic one. Thus, we see in Fig. 2b a dy-
namic friction force Fµ for our block (a) juxtaposed with
the linear spring force Fs = −ku. The spring begins max-
imally engaged before point B, and then decompresses as
the block slips. Point B indicates the threshold for in-
stability, where Fµ decreases faster than Fs and so the
block speeds up due to the force imbalance, otherwise
known as a slip. At point C, Fµ overtakes Fs and the
block slows down until it sticks at point D. The area of
the shaded regions are equal, as the net work required to
speed the block up from B to C must equal the net work
to slow the block down the same amount from C to D.
If B is the point that initiates instability, it follows then
that the condition for instability is,

∣∣∣∣∂F∂u
∣∣∣∣ > k, (2)

and this unstable region implies stick-slip motion [7].

However, the question remains, what would cause a
system to behave according to Fig. 2 and Eq. 2? The
answer is simply that Fµ must decreases for higher slip
velocities, indicating a velocity-weakening system. Ruina
[3] first demonstrated how a velocity-strengthening sys-
tem will never lead to regular stick-slip motion as the
increase in friction with slip velocity damps the system
so that condition Eq. 2 is not met, and no instability oc-
curs. Thus, velocity-weakening is a necessary condition
for regular stick slip motion to occur, whereas velocity
strengthening always results in stable sliding. [7]
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C. Rate- and State-Dependent Friction

Through the mid 20th century there were efforts to
create mathematical velocity-weakening models for stick-
slip friction, but none were ultimately successful until Di-
eterich [2] and Ruina [3] developed the rate- and state-
friction laws (RSF) in the 1970s and 1980s. The key
improvement they made to previous models was the in-
clusion of a state variable θ to describe the contact be-
tween the surfaces, and how this contact evolves through
time [7]. The precise physical interpretation of θ remains
unknown, where it may possibly be characterized by tem-
perature, pore pressure, the chemical environment, or the
average asperity contacts between the surfaces [2, 4].

Not only is θ itself an unknown quantity, the way that
it evolves remain an open problem. The most common
state evolution equations were proposed by Dieterich and
Ruina – the Aging Law and the Slip Law respectively.
Dieterich’s law takes the form

θ̇ = 1− V θ

Dc
, (3)

where θ = t when V = 0; in other words, when the block
is stationary the state still increases with time, which
agrees with experiment [7]. Conversely, Ruina’s law

θ̇ = −V θ
Dc

(4)

does not allow for state evolution when V = 0, but it has
proven to agree with experiment during a slip event. In
both Eqs. 3 and 4, Dc indicates the critical slip distance
required for the system to reach steady-state, θ̇ = 0, and
is usually on the order of micrometers [7]. Thus, at the
steady-state, Dc = Vssθss where Vss is the steady-state
slip velocity and θss is the steady state [7].

Now that we have characterized the state variable θ, we
can use it to describe stick-slip friction. Specifically, since
the normal force N is constant, µ must be the dynamic
element of Eq. 1, and can be written as a function of slip
velocity V and state θ,

µ ≡ µ(V, θ) = µ0 + b ln

(
V0θ

L

)
+ a ln

(
V

V0

)
. (5)

This equation was, again, developed by Dieterich and
Ruina, and depends on a constant driving velocity V0,
and constants a and b. These a and b parameters are
particularly important in characterizing a system as ve-
locity weakening, and they are best understood through
consideration of Fig. 3.

Reading Fig. 3 from left to right, the block has an
initial velocity V0 with constant friction until it undergoes
a sharp velocity jump to a new velocity V , at which point
the friction also spikes by a. As the block slips the friction
decays exponentially by b, approaching the value (a− b).
This velocity-stepping process can then be repeated for
a negative change in velocity and the plot inverts. The

FIG. 3: A velocity weakening system. A sudden
velocity increase occurs where µ spikes up a distance a,
where V0 → V for V = eV0 necessarily to define a. Dc

characterizes the slip distance to achieve the steady
state θss. a characterizes the initial increase in frictional

stress due to increase in slip velocity, and b
characterizes the exponential decay until the block
sticks. For a sudden e-fold decrease in velocity the

behavior is inverted. Figure adapted from [7].

variable Dc indicates the distance required for the block
to achieve the steady-state.

Importantly, a is defined by an e-fold change in velocity
where V = eV0, so that when plugged into Eq. 5 we get

∆µ = a ln

(
V

V0

)
= a . (6)

We can also define the total change in friction (a− b)
by considering the steady-state friction µss. Recall that
for the steady state, Vssθss = Dc, and so Eq. 5 becomes

µss = µ0 + (a− b) ln

(
Vss
V0

)
. (7)

If we then differentiate Eq. 7 with respect to lnVss, we
get a definition for (a− b),

dµss
d(lnVss)

= (a− b). (8)

Thus, assuming that Dc is small so the block is in the
steady-state for the entirety of the slip, (a−b) character-
izes the change in µ over the course of a slip. This quality
is apparent from Fig. 3. Furthermore, from Fig. 3 we see
that (a − b) < 0 characterizes the system as velocity-
weakening, given the net decrease in friction due to an
increase in velocity. In the context of asperity contacts,
the “viscous” term a determines the shearing rate of real
contacts at the onset of a slip which results in a sudden in-
crease in friction, and the “healing” term b characterizes
the rate of change of real contact area due to a sudden
velocity change. To that end, a is related to the shearing
deformation of the material and b is related to normal
deformations. The interplay of (a − b) determines if the
system is velocity weakening, and thus if the system will
exhibit stick slip motion. [7]
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D. Instability in a Velocity-Weakening System

A velocity-weakening system always has the ability to
exhibit stick-slip motion, but the system must meet a
condition of instability in order to do so. Particularly,
there is a critical value of normal stress σn that deter-
mines the stability of the system. As one might expect,
σc depends on (a− b),

σc =
kDc

(a− b)
, (9)

where values of σn > σc indicate instability and thus
stick-slip motion. Noticeably, this critical stress is pro-
portional to the spring constant k, along with the other
constants that define the sliding material. Fig. 4 plots
the necessary velocity change ∆V for a system to un-
dergo unstable slip, below which the system will settle
to stable sliding. Thus, σc is a bifurcation point for the
system’s behavior, where values of σn < σc indicate con-
ditional stability and will only experience stick-slip mo-
tion for sufficiently high ∆V . Near the critical stress, but
still less than σc, the motion becomes oscillatory but not
quite stick-slip.

Geologically, Fig. 4 provides an important overview of
the necessary conditions for earthquake motion. Earth-
quakes will only nucleate in the stick-slip region where
σn > σc. The region of self-sustained oscillations corre-
sponds to periodic slow-slip events.

III. PROCEDURE

A. Experimental Design

Stick-slip friction was investigated using an aluminum
block of mass 235 g, pulled across a sliding platform by a

FIG. 4: Plot indicates the stability for a velocity
weakening system, as a function of the effective normal
stress σn. Below the critical value σc, a given velocity
perturbation ∆V must exceed the curve for instability
to occur. Near the critical point the system will exhibit

self-sustained oscillations. Figure from [7]

TABLE I: Springs and their measured k values.

Spring k (N/m)

A 4.83 ± 0.02
B 9.61 ± 0.09
C 20.2 ± 0.2

low-friction PASCO cart, attached with a spring. Fig. 5a
shows an image of this setup, including the PASCO Mo-
tion Sensor II used to record the position of the block.
Fig. 5b depicts a schematic of this configuration where
the cart moves at velocity V0, the block slips with veloc-
ity V , and the spring has stiffness k. The sliding plat-
form, seen best in Fig. 6, was a 91.5 cm long metal sheet
covered in a 1 mm thick vinyl (PVC) mat. The cart is
pulled via a 970 rpm gear motor and pulley, driven by a
TP3005DM DC power supply.

B. Data Collection

1. Calibration

The spring constants of three springs were measured
by hanging masses from each spring and recording the
displacement. Mass and displacement were plotted ac-
cording to Hooke’s law, mg = kx, where k was the slope.
Values of k for each spring, A, B, C, and D, can be found
in Table. I.

The driving velocity was calculated for voltage 2.6 V,
through an average of three trials. For each trial the
cart was pulled across the platform and position data
was recorded. Velocity was determined from the slope of
each position plot and averaged to V0 = 0.205 m/s with
a standard deviation of 0.004 m/s.

2. Stick-Slip Trials

The system’s behavior was explored for different slid-
ing contact surfaces and for different spring strengths.
Each trial used the PVC platform, but different mate-
rials were attached to the block’s bottom face, yielding
distinct types of contact with the PVC. Specifically, three
materials were used: aluminum (the block itself), nitrile
rubber, and cardstock. For each surface, springs A, B,
and C were used, with measured strengths found in Ta-
ble I.

A given trial was conducted by pre-setting the power
supply to 2.6 V so that the power could be switched on
to the correct voltage immediately, providing clean data
for the entirety of the slip. The positions of the block
and cart were both recorded by motion sensors, one at
each end of the sliding platform.

A constant voltage 2.6 V was used for all trials, in or-
der to isolate the sliding material and spring strength as
experimental parameters. When calibrated, this voltage
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(a) (b)

FIG. 5: A spring block system pulled by a constant velocity driver. (a) is the experimental setup, with an aluminum
block pulled by a low-friction cart with a spring, across a textured 1 mm vinyl surface. A Pasco motion sensor

tracks the position of the block. (b) depicts a schematic of the setup, where the cart moves at constant V0 and pulls
the block with spring k, and the block slips with velocity v.

FIG. 6: A power supply drives the motor-pulley system
which is clamped firmly to the lab bench, and pulls the

cart-spring-block system across the PVC sliding
platform while the motion sensor records position data.

corresponded to a speed V0 = 0.205 ± 0.004 m/s; how-
ever, when a block was attached to the cart, the average
driving velocity decreased noticeably below one standard
deviation. For example, when using cardstock the aver-
age driving voltage decreased by 0.058 m/s for spring C,
0.69 m/s for spring B, and 0.083 m/s for spring A. Thus,
the average driving voltage for each trial decreases as the
spring strength decreases.

IV. RESULTS & ANALYSIS

A. Qualitative Material Properties

Before analyzing the block-spring data, it is pertinent
to consider the qualities of the materials used, in the
context of the theory of velocity-weakening and velocity-
strengthening systems. This discussion will be somewhat
speculative in regard to the microscopic qualities of these
materials, given the limitations of laboratory equipment
and time to conduct a thorough empirical investigation
of material properties. Future work would certainly in-

volve measuring the viscous term a, healing term b, and
characteristic length Dc for these materials. Despite the
current limitations for measuring these constants, given
how important they are in controlling the sliding motion
of the block they are worth discussing qualitatively.

The sliding surface material is the same for each trial,
PVC, and so its inherent properties are certainly an im-
portant factor in the block’s motion, as well as the as-
perity interactions between PVC and each of the other
materials – aluminum, nitrile, and cardstock. The 1
mm thick PVC mat is somewhat cushioned and elastic
so that it compresses under pressure and returns to its
original configuration. It is also textured to the touch,
rather than slick. These distinct qualities suggest that
the PVC likely maximizes its real contact area more than
the other materials. The inherent elasticity could imply
that asperity contacts would be restored readily through-
out a slip event, which would correlate to a smaller
b value, according to Fig. 3. If real contact area in-
creases quickly, friction would be restored quickly and
the velocity-weakening effects would be mitigated. How-
ever, this does not necessarily imply that a < b; likely,
the value of a would depend on the nature of the contact
of the PVC with the other material.

Aluminum is a soft metal, but still more rigid than the
other materials used in this experiment. Rigid asperities
in the metal’s surface could result in a greater induced
frictional stress at the onset of a slip as static friction is
overcome, and thus would imply a larger value of a by
Fig 3. Furthermore, the aluminum was observed to ad-
here slightly to the PVC, as though through a slightly
“sticky” contact, which would also contribute to this in-
creased frictional stress at the onset of slip. Given these
observations, one can hypothesize that PVC-metal is a
velocity strengthening system with (a − b) > 0. Indeed,
this is found to be true through data analysis.

Cardstock is the next most rigid material, next to alu-
minum, but the asperities in the paper surface likely
shear more easily than aluminum. However, cardstock
also adhered somewhat to the “sticky” PVC surface.
These observations could imply a value of a smaller than
for aluminum, however to this author they do nothing to
suggest the size of a in comparison to b.

Nitrile’s rigidity likely falls somewhere between the
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PVC and cardstock, and has a similar sticky quality as
the PVC. Nitrile, however, is more elastic than PVC. The
combination of both nitrile and PVC’s malleability likely
results in the largest real contact area of all the material
combinations, and their elastic properties would imply
relatively quick frictional healing. Thus, one might ex-
pect the nitrile-PVC contact to have a large b value. The
value of a, however, is somewhat more difficult to predict
qualitatively.

B. Slip-Stick

Block position data is displayed in Fig. 7 with distinct
plots for each combination of materials – PVC with either
aluminum, nitrile, or cardstock. The spring strengths are
indicated by color in each plot, for springs A, B, and C.
With nine combinations of sliding materials and springs,
a variety of behaviors are found in this data, many of
which correspond well to the theory.

First, some general trends. Across all plots (a), (b),
and (c), the time before the initial slip increased with
decreasing spring strength, so spring A took the longest
time to slip and spring C took the shortest time. This
makes sense, given that spring A is the weakest and
spring C the strongest. In fact, spring A was weak enough
that for plots (a) and (b) the block remained stuck so
long that the cart had nearly reached the end of the plat-
form by the time the first slip occurred. Thus, there is
not much analyzable motion for the plots (a) and (b) for
spring A.

The sliding material appeared to have the greatest im-
pact on the stability of the system, where cardstock ex-
hibited slip-stick motion the most readily of the three
materials. No slip-stick behavior was found for nitrile
but there were oscillations, and aluminum exhibited only
brief stick-slip behavior for spring B. All slip-stick and os-
cillatory behavior was periodic, as demonstrated in Fig. 8
for the trials of cardstock with spring B (slip-stick) and
nitrile with spring C (tremors). For each of these posi-
tion traces, the time of a given slip was found by fitting
the curve with a straight line and then plotting the resid-
ual. The maximum negative deviations from the linear
fit indicated the beginning of a slip, or equivalently the
end of a stick, and these times were plotted in Figs. 8b
and 8d.

These systems can be examined in the context of Fig. 4
to characterize their level of stability or instability. Recall
from Eq. 9 that σc ∝ k, so for a given material defined
by constants a, b, and Dc, a higher spring strength cor-
responds to a higher critical stress; thus, by Fig. 4, for
certain k the system will have normal stress near σc and
undergo self-oscillatory slips within a range of initial slip
velocities ∆V beneath the curve in Fig. 4.

Fig. 7c suggests that cardstock results in regular stick-
slip, and thus cardstock is a good candidate for a velocity-
weakening system. Of course, this cannot be asserted
with absolute certainty as velocity-weakening is defined

(a)

(b)

(c)

FIG. 7: Plots of position and time for a single block
with three different sliding surfaces and three different
springs, pulled by the same velocity driver. Each block
slides over a PVC mat with either (a) aluminum (Al),

(b) nitrile, or (c) cardstock. Orange traces are of spring
A, green are spring B, and red are spring C, where

kC > kB > kA. Vertical black bars indicate the point at
which the driving cart comes to a stop.

by longterm behavior and the sliding distance can only be
80 cm at most, so the experimental design does not allow
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(a) (b)

(c) (d)

FIG. 8: Clear examples of the periodicity of slip events. Left: Position data demonstrating periodic slips, for (a)
cardstock with spring B or (c) nitrile with spring C. The red arrows indicate the first few slip occurrences for each
material. Right: The corresponding time-of-slip data for each position plot. The time of a given slip is given by the
start of the slip, pointed to by the red arrows on the left plots. The linear fits to (b) and (d) indicate a periodic slip

occurrence for each system.

for observations of true longterm behavior. However, if
cardstock were velocity-strengthening the stick-slip mo-
tion would likely damp quickly to steady sliding, as seen
for aluminum in Fig. 7a, and this is not the case. Thus,
given the periodic stick-slick motion seen in Fig. 7c, card-
stock most resembles a velocity-weakening system of the
three materials used in combination with PVC. From this
we can conclude that the cardstock-PVC contact is char-
acterized by (a − b) < 0 and so the decrease of friction
stress throughout a whole slip is larger than the stress
increase at the onset of a slip.

One may wonder, if cardstock is velocity-weakening,
then why does the trace for spring C damp to stable slid-
ing? Recall that spring C corresponds to a higher critical
stress σc than springs B and A, and so the curve in Fig. 4
is shifted to the right. Thus, for a high enough slip ve-
locity, the system can transition from unstable to stable
without self-sustained oscillations by increasing k so that
the point falls beneath the stability curve sufficiently far
left of the critical stress. This appears to be the case in

Fig. 7c, where a driving voltage 2.6 V corresponds to a
high enough slip velocity that the region of self-sustained
oscillations is missed entirely as σc increases. Of course,
the slip velocity is not necessarily constant for each trace
of Plot 7c, particularly given that V0 increases with in-
creasing k. However, these variations in slip velocity V
are likely negligible compared to the more substantial
differences in spring strength, unless the system is quite
close to the threshold curve of Fig. 4.

Possibly the easiest material to characterize is alu-
minum – a distinctly velocity-strengthening system. This
property makes sense in consideration of the observable
material properties of aluminum, such as the relative
rigidity compared to the other materials, suggesting a
higher a value. As one would expect for a velocity-
strengthening system, stick-slip behavior can occur under
certain conditions, but it is not regular stick-slip. Rather,
any perturbations to the motion are quickly damped as
the block settles to steady sliding, regardless of the spring
strength.
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The trickiest system to characterize is certainly ni-
trile. The data for spring A is limited due to the con-
strained available sliding distance, and the remaining two
traces exhibit sustained oscillations. This might sug-
gest that nitrile is velocity-weakening and the region of
self-sustaining oscillations in Fig. 4 is large enough to
contain the system even as the critical stress is shifted
to the right; however, this would not explain why the
oscillations become more pronounced for larger k. In
fact, this behavior is counter-intuitive in the context of
Fig. 4 which implies that increasing k would make the
oscillations less pronounced. This behavior could be an
anomaly, or it may be a result of special material prop-
erties of nitrile not considered in the theory presented
in this paper. Alternatively, nitrile could be velocity-
strengthening and the total sliding distance is not long
enough to characterize the longterm behavior. Regard-
less, this data is inconclusive regarding the characteriza-
tion of nitrile, other than that there may be a preference
for small oscillations or “tremors” instead of stick-slip
motion, and these tremors are periodic as seen in Fig. 8.

V. CONCLUSIONS

The position data for a one-block and spring model
driven at a constant velocity was analyzed for three com-
binations of sliding materials, and three different springs.
The metal-PVC system was determined to be velocity-
strengthening as the block settled to stable sliding in-
stead of stick-slip motion. The cardstock-PVC system
was determined to likely be velocity weakening due to
the appearance of regular stick-slip; however, further tri-
als taken over a longer total sliding distance would need
to be completed to better determine the longterm be-
havior of the system. The nitrile-PVC system yielded
inconclusive results regarding whether the system was
velocity-weakening or strengthening, but it did exhibit
periodic tremors which may be self-sustaining.

The observed properties of these materials, in the con-
text of a block-spring experiment, may be analogous to
different kinds of rock properties that affect fault inter-
actions during earthquakes, and this is something to be

researched in future work. Furthermore, while this paper
examines some of the types of simple earthquake oscilla-
tions that can be modeled experimentally, there are lots
of complex and chaotic behaviors to explore in this sys-
tem. The nonlinear dynamical behavior of earthquakes
is one of the important areas of current research in geo-
physics. Developing experiments to probe 2, 3, and even-
tually any n-block arrays would be a logical progression
to the experimentation done in this paper. A two-block
model was even briefly explored in the course of this ex-
periment, but the complexity of that system fell outside
the scope of this paper.

Regarding the specific systems examined in this pa-
per, further experimentation is needed to quantitatively
characterize the materials. The constants a and b can be
measured with more sophisticated techniques than used
in this experiment, as well as the characteristic length
Dc. Determination of these constants is an important
next step in characterizing these materials as velocity-
weakening or strengthening.

Furthermore, there are important improvements to be
made to the experimental setup. The relatively short
sliding surface created noticeable issues for the weaker
spring A, as the cart would drive nearly the entire length
of the platform before the block slipped. This could be
improved by constructing a much longer sliding surface,
at least two or three times the current length. Further-
more, future work would benefit from a higher geared
motor that can generate more torque. This would allow
for a much more stable driving velocity where the mo-
tor’s function is not impeded by the resistance due to
the block’s friction.
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