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Using computational and numerical methods, I show that entering Jovian orbit via a gravity
assist with the Galilean moons is inherently more deterministic than solely relying on deep space
∆v maneuvers. By creating a simulation in Mathematica that plots a position vector as a function
of time constrained by a set of acceleration and position vectors, one can find all possible orbits
for a certain period of simulation time t. Additionally, if the mass rate of change is programmed
into the acceleration vectors, one can plot trajectories for fuel conservation. While the simulation
was greatly limited by the computational capabilities available, a physics engine was successfully
programmed and all four Galilean moons could be considered. Fuel conservation is achieved when a
spacecraft first gravity brakes or orbits around a Galilean moon before injecting into a stable Jovian
orbit. Adding just a single moon like Io to the flight path corresponded to a 20 % increase in fuel
conservation.

I. INTRODUCTION AND HISTORICAL
PRECEDENCE

Jupiter, the fifth planet from the Sun, has been of
great interest to astronomers and the destination of
two NASA missions. In 1995, Galileo became the first
spacecraft to enter Jovian orbit [1]. Then, in 2016
Juno also entered a stable orbit around Jupiter. In the
15th century, Galileo Galilei discovered the four largest
moons of the gas giant: Io, Europa, Ganymede, and
Callisto. Galileo and Juno both relied on deep space
∆v maneuvers (DSM). Entering the orbit of a massive
planet such as Jupiter via a DSM is stochastic and the
final orbit is very sensitive to initial conditions [3].

The Galilean moons provide a natural gravitational
braking system. Using the moons for a gravitational
slingshot or going into orbit around one or more would
greatly decrease the sensitivity of the final Jovian or-
bit to initial conditions [3]. According to flight data,
Galileo performed a slingshot maneuver around Io be-
fore entering Jovian orbit, but Juno directly entered or-
bit via a DSM [1]. Future missions to Jupiter will be
more costly. Designing missions that fly by or orbit the
Galilean moons would maximize time spent by probes
collecting data.

FIG. 1: The Galilean moons in order of distance from Jupiter:
Io, Europa, Ganymede, Callisto. Relative sizes are too scale,
however, spacing is not to scale. Note: Figure courtesy of
Science News.

II. THEORY

The orbit of the Galilean moons can be assumed to
be approximately circular. Their orbits follow Kepler’s
Laws of planetary motion where the period of an orbit is

T =

√
4π2

GM
R3, (1)

where G is the gravitational constant, M is the mass of
the body being orbited (Jupiter) and R is the radial dis-
tance separating the satellite and the body being orbited
[2]. All orbiting bodies obey the Law of Conservation
of Angular Momentum and, therefore, have an angular
velocity

ω =
2π

T
. (2)

Equation 1 can be rearranged to solve for exact radial
distance of an orbit for a particular moon such that

R =

(
GM

ω2

) 1
3

. (3)

Newton’s Second Law states that ~F = m~a. This equa-
tion will be the foundation for setting up an initial value
problem wherein the force of Jupiter and each of the
moons are considered acting on the mass of the spacecraft
[2]. In order to plot and classify the orbit of a spacecraft,
it is necessary to set up an initial radial vector dependent
on time:

~r(t) = x(t)x̂+ y(t)ŷ. (4)

In the computer simulation, this position vector is lo-
cated by solving the differential equation that results
from considering Newton’s Second Law. The force of
Jupiter on the spacecraft can be classified by considering
the Universal Law of Gravitation such that

~FJ = −GMJms√
~r(t)2

r̂(t), (5)
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where FJ is the force on the spacecraft due to Jupiter,
MJ is the mass of Jupiter, ms is the mass of the
spacecraft, and the radial vectors are normalized [5].
The mass of Jupiter MJ is assumed to be 1.

The force of a moon such as Io on the spacecraft is

~FIo = − GMIoms√
~r(t)− ~rIo(t)2

r̂(t)− r̂Io(t), (6)

where the vector ~rIo(t) is a parametrically defined, ap-
proximately circular orbit such that

~rIo(t) = 0.22(cos(ωIot) + sin(ωIot)). (7)

The ratio 0.22 is the ratio of the distance of Io from
Jupiter if the farthest moon, Callisto, is taken to be of
radial distance r = 1 from Jupiter.

Given these equations and calling the force of the
thrust vector FT , one can establish a differential equa-

tion using ~F = m~a:

(ms)(~r
′′(t)) = ~FJ + ~FIo + ~FEu + ~FG + ~FC + ~FT , (8)

where FEu, FG, FC are the forces of the moons Europa,
Ganymede, and Callisto respectively on the spacecraft
[5]. However, in order to conserve fuel, it is necessary
to consider the ms term as changing with time. A
significant percentage of a spacecraft’s total mass is fuel.
Burning chemical fuel causes the mass to change by
some incremental difference dm [4].

However, if the mass of the spacecraft is changing ac-
cording to dm/dt, then the fixed mass ms does not de-
scribe the situation. Dividing both sides by the fixed
mass will allow for consideration of acceleration only [4].
That is, instead of considering both a changing force and
a changing mass over time, one may only consider how
acceleration vectors change over time. The final differen-
tial equation is

~r′′(t) = ~aJ + ~aIo + ~aEu + ~aG + ~aC + ~aT , (9)

where, for example, the acceleration vector due to any
moon in general is

~amoon =
−GMJ√

~r(t)2 − ~rmoon(t)2
r̂(t)− r̂moon(t). (10)

III. MATHEMATICA SIMULATION

The purpose for using computational and numerical
methods for determining the behavior of a spacecraft
around the Jupiter-Galilean moons system is to exactly
solve the differential equation for all possible approaches
and points in space [6]. Additionally, the problem

being considered is a restricted 5-body problem, which
is very time consuming to solve analytically. The
computer program can be thought of as an algorithm.
The algorithm consists of creating two sets of vectors
while the differential equation is solved for all possible
trajectories, given initial conditions, that respect both
sets of vectors. The differential equation is a component
of an initial value problem (IVP). The other component
of the IVP is a set of initial conditions.

A. Algorithm: Position Vectors

A spacecraft must avoid crashing into the moons and
Jupiter. Prior to introducing a spacecraft, the positions
of the moons and Jupiter were defined. Jupiter was
considered to be a fixed point of mass MJ = 1, centered
at the origin. Hence, the inertial reference frame is
Jovicentric.

The Galilean moons’ positions are a function of time.
Kepler’s Third Law gives the radial distance R of the
moons from Jupiter, while angular velocity ω locates the
moon on its orbit. Assuming that the orbits are circu-
lar, the radial distance and period parameters are pro-
grammed into the definition of a circle, which is defined
using ~r(t) = R(cos(ωt) + sin(ωt). The radial distance R
of each moon is in terms of Callisto’s distance which is
R = 1. The thought process is as follows:

Algorithm 1: Position Vectors Algorithm

Result: Moon and Spacecraft Vectors
initialize;
if RCallisto = 1 then
RIo = 0.22;
REuropa = 0.37;
RGany = 0.57;

end
—————————————————————–;
→ Define Kepler’s Third to solve for T using R’s;
→ Define ω = 2π/T and solve for each moon;
FUNCTION: Moon Positions (t);
→ t replaces T so that there is more than 1
revolution (2π);
FUNCTION: Spacecraft Position (t);

In the algorithm, t replaces T . The period of an orbit
was defined in terms of 2π. Therefore, the moons would
only orbit once if we gave ~r(t) = R(cos(ωt) + sin(ωt))
the period T . This allows the user to interact with the
system over some defined simulation time t, instead of
being limited to to just considering the time interval of
one orbit for each moon. The result of this algorithm is
four position vectors, one for each Galilean moon.

After defining and assigning the four moon position
vectors, the spacecraft position vector is simply defined
as a time-dependent radial vector with time-dependent x-
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and y-components. The function is ~r(t) = x(t)x̂+ y(t)ŷ.
The definition is intentionally left completely general
because the position ~r(t) is being solved for and plotted
in the final simulation.

By solving an initial value problem for ~r(t), one could
then plot the position vector in space. However, the
position vector does not just respect the laws of physics
in space unless there are objects that constrain its
movement. Thus, Jupiter and the Galilean moons must
be added. The physics is programmed separately from
the positions.

The moons are symbolically represented as a circular
orbit. While the exact positions of the moons can not
be discerned in the simulation, the spacecraft is aware of
their position in space and time because of the definition
of the moon vectors. The simulation is also programmed
to recognize when it is solving for points in space that
would be inside a planet or moon. In this case, the
simulation stops integrating and plotting solutions. The
spacecraft is intelligently aware of whether or not it has
crashed into a planet via the following algorithm:

Algorithm 2: Hit a Planet or Moon Algorithm

Result: Crashed!
initialize;

if ~r(t)2 < R2
J or ~r(t)2 == ~rmoon(t) then

→ Stop Integration;
end

If the position of the spacecraft is less than that
of the space occupied by the radius of Jupiter RJ ,
stop numerically integrating the flight path. Or, if the
position of the spacecraft is equal to the position of a
moon at the same simulation time t, stop numerically
integrating the flight path. A crash is defined by these
conditions and simulated by stopping the integration,
which stops the plotting of a flight path. This algorithm
is not implemented until later in the program when the
flight path is being plotted after the differential equation
is solved for ~r(t).

There now exists a full set of position vectors for the
moons, Jupiter, and spacecraft that communicate with
one another as the differential equation is solved for ~r(t).

B. Algorithm: Acceleration Vectors

The simulation plots an exact flight path in space
determined by solving the differential equation in 9,
for the spacecraft given time and fuel constraints. In
order to address the problem of fuel conservation,
an acceleration vector was created that acted in the
direction opposite the acceleration vectors acting on
the spacecraft. This vector simultaneously considered
the mass rate of change dm/dt and whether or not the

spacecraft was accelerating before, during, and after
performing a ∆v maneuver.

The three times - before, during, and after - refer
to the times during which a thrusting event or ∆v
maneuver is being performed. Before the thrusting, the
acceleration of spacecraft is as = 0. During thrusting,
the spacecraft has an acceleration as 6= 0. After thrust-
ing, as = 0.

This requires three additional times to be established.
Before thrusting is considered any simulation time t,
which was previously established. For the three new
times, there is the beginning of thrusting tstart, end of
thrusting δt, and during thrusting tstart + δt.

The mass of the spacecraft is the sum of the mass of
chemical propellant mp and the actual hardware md.
Accelerating causes the craft to lose mass according to
dm/dt where ms = mp + md. The total mass ms is
decreasing by the rate dm/dt. This dm/dt occurs only
during tstart + δt.

Simply, the force of thrusting FT is causing an accel-
eration aT over time tstart + δt during which it is losing
mass according to ms - dm/dt. This is the thought pro-
cess can be expressed as

~aT =
FT

(ms − dm
dt ) ∗ (tstart + δt)

. (11)

Then, the Galilean moons and Jupiter each have their
own acceleration vectors as well. They can be generalized
as

~aJ =
−GMJ√
~r(t)2

r̂(t), (12)

and

~amoon =
−GMJ√

~r(t)2 − ~rmoon(t)2
r̂(t)− r̂moon(t). (13)

These three sets of acceleration vectors are the
backbone of the simulation; they are the physics engine.
While the equations are not as simple as those of the
position vectors, they are much more simple to under-
stand in the context of the program. The acceleration
vectors are simply defined and then set equal to ~r ′′(t).
They operate in the background, while the integration
and plotting are the difficult tasks in the programming.
Rendered as an algorithm,

Algorithm 3: Acceleration Vectors Algorithm

Result: Acceleration Vectors
initialize;
FUNCTION: Spacecraft ~aT (t);
FUNCTION: Jupiter ~aJ (t);
FUNCTION: Moon ~amoon (t);
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The acceleration vectors have no responsibility until
called again in the differential equation in the IVP. There
are now two sets of vectors. The position vectors pro-
vide the visuals and the acceleration vectors provide the
physics.

C. Algorithm: IVP and Simulation

In summary, there are two sets of vectors constantly
communicating with one another as the differential
equation is solved and trajectories are plotted. These
two sets are the acceleration vectors and the position
vectors, both of which depend only on time. The accel-
eration vectors contain the physics of F = ma, while
the position vectors constrain the possible trajectories
to space not occupied by a moon or Jupiter.

The acceleration vectors contain the relationship be-
tween thrust and mass rate of change dm/dt, which is
necessary to consider fuel conservation. Then, the po-
sition vectors contain the information about where each
of the moons and Jupiter is at any given time during
the simulation. This information is communicated to the
IVP through the differential equation

~r′′(t) = ~aJ + ~aIo + ~aEu + ~aG + ~aC + ~aT , (14)

with initial conditions

~r(t) = ~r0(t), (15)

~r ′(t) =< −v0, 0 >, (16)

so that it knows when to stop plotting solutions; oth-
erwise the orbits would go straight through the moons
and the gas giant. Equations 15, 16, and 17 together are
the IVP.

Each of the two vector algorithms and the IVP are
contained within one Manipulate function that also
contains the ParametricP lot function that plots the
trajectories or solutions. This allows for user interaction.
From a high level, the entire program runs as follows:

Algorithm 4: Full Algorithm

Result: Acceleration Vectors
initialize;
if RCallisto = 1 then
RIo = 0.22;
REuropa = 0.37;
RGany = 0.57;

end
—————————————————————–;
→ Define Kepler’s Third to solve for T using R’s;
→ Define ω = 2π/T and solve for each moon;
FUNCTION: Moon Positions (t);
→ t replaces T ;
FUNCTION: Spacecraft Position (t);
—————————————————————–;
FUNCTION: Spacecraft ~aT (t);
FUNCTION: Jupiter ~aJ (t);
FUNCTION: Moon ~amoon (t);
—————————————————————–;
→ Define IVP;
FUNCTION: Manipulate (IVP);
→ Solve IVP for ~r(t);

if ~r(t)2 < R2
J or ~r(t)2 == ~rmoon(t) then

→ Stop Integration;
else
→ Plot position using ParametricPlot
end

There is, of course, other functionality built in that
allows the user to control various initial parameters and
the coloration of the flight path according to time and
duration of thrusting events. In summary, the program
that runs the simulation can be thought of as two sets
of vectors that are brought together by the solving of an
initial value problem.

IV. LIMITATIONS

Simulations are, at best, approximations of the real
world based on a set of rules or the laws of physics. The
algorithm used to code the Mathematica program is
no exception. I ran into a range of problems typically
associated with processing power of the computer
running the simulation or values that were too large or
too small for the integration

A. Small Masses

The primary limitation of the program is in the
small-mass limit. For masses much, much smaller than
Jupiter or its moons, the computers on which I ran
the simulation simply could not process the numbers.
The fault often occurred in the NDSolve function,
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which solves the differential equation. The mass of
Jupiter is realistically 28 orders of magnitude larger
than most spacecraft and 6 to 7 orders of magnitude
larger than any of the four moons. The simulation
ran for the Jupiter-moons system, but broke for the
Jupiter-moons-spacecraft system in the small-mass limit.
Thus, the spacecraft in most of my simulation runs is,
at best, only 6 orders of magnitude less than MJ . If MJ

is taken to be 1, then ms = mp + md ≤ 0.1.

B. Times

Another obstacle associated with this approach is the
problem of times. There are three levels of time: period
time T , simulation time t, and thrust times tstart and
tstart + δt. Simulation time t was substituted in for T ,
however, t could never be surpassed by tstart and tstart
+ δt. Additionally, there was a global variable tstop
that stopped the integration at simulation time t = tstop
according to Algorithm 2. If tstop is not defined as a
global variable, then t, which is a global variable, will
not stop integrating when the spacecraft crashes.

Following from the previous obstacle, the simulation
will break if the mass rate of change dm/dt exceeds a
certain point that can only be found once the other
parameters are changed. This breaks the simulation
because the time during which thrusting occurs (tstart +
δt) is long enough that dm/dt takes the mass negative,
which is impossible. However, this is encouraging,
because it is also realistic; one just has to be intelligent
in their use of the parameters.

V. RESULTS & ANALYSIS

A. Fuel Conservation

The moons of Jupiter provide natural gravitational
brakes if the spacecraft approaches the system in the
correct way and performs a well-timed thrust or ∆v
maneuver. The rocket equation states that for any
increase in acceleration ~r ′′(t), there must be a decrease
in the time rate of change of mass dm/dt. The primary
goal of this simulation is to show that fuel can be
conserved by using the moons of Jupiter to maneuver
into a stable orbit [6]. To determine the viability of this,
one can compare the total mass of the propellant mp left
over after injecting directly into a Jovian orbit versus
the mass of the propellant left over after first orbiting
an increasing number of Galilean moons.

The rate of fuel consumption is varied so that the
mass of the propellant determines the final, stable orbit
of the spacecraft. The hardware mass md is 0.1 and the

Direct Jupiter Insertion

mp = 0.058 ≈ 40 % of propellant
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FIG. 2: Spacecraft directly entering Jovian orbit from beyond
Europa (blue). The final orbit is slightly chaotic, but this is
due to the effects of Io and the craft did not crash over a long
period of time.

Jupiter Insertion via Io

mp = 0.078 ≈ 20 % of propellant

Out[ ]=

tMax

tstart

δtThrust

fThrust

rate

v0

Zoom

FIG. 3: Insertion into Jovian orbit via Io from beyond Europa
(not shown to minimize chaotic effects). The spacecraft orbits
Io before entering a stable, circular orbit around Jupiter.

propellant mass is mp = 0.1, so the initial total mass is
ms = 0.2. For direct insertion into Jupiter’s orbit, it is
found that the total mass of propellant after a maneuver
is mp = 0.058 2. This is determined by subtracting the
propellant mass by the rate of change over simulation
time: ms = mp - (dm/dt).

Using Io for a gravity assist in a restricted 3-body
problem does save fuel. Orbiting Io conserves 20 %
more fuel and even allows for a higher initial velocity
v0 3. Figure 3 demonstrates this phenomenon well.
The spacecraft starts from beyond the orbit of Eu-
ropa and enters a stable orbit around Europa. The
result of this particular trajectory is a final, nearly circu-
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Jupiter Insertion via Io and Europa

mp = 0.078 ≈ 20 % of propellant
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FIG. 4: Orbiting Europa before going into a highly elliptical,
stable orbit around Jupiter. The green piece of the flight path
is the time during which the spacecraft is thrusting to get into
orbit around Jupiter.

lar orbit around Jupiter having conserved 20% more fuel.

One can expand their starting position to encompass
both the orbits of Io and Europa, so as to conserve even
more fuel and enter a more stable Jovian orbit. This is
a restricted 4-body problem and the orbits take hours to
find by locator. Considering or even trying to find orbits
above the 4-body situation is not a timely proposition
unless one has access to phenomenal computing power.
Entering Jovian orbit via Europa is indeed possible, how-
ever, it requires the full use of boosters over an extended
period of time; this is shown by the green trajectory.
During the green phase, the thrusters are firing over a
very long period of time. This allows the spacecraft to
enter Jupiter’s orbit and conserve fuel. Orbiting Europa
or Europa and Io requires the spacecraft to only use
20% of the propellant or mp = 0.078. Additionally,
the spacecraft is traveling much slower, as evidenced
by the fact that the tMax slider is the same in both
simulations, but the orbits do not overlap nearly as much.

Notice that the orbits become much more difficult to
predict and sensitive to initial conditions as more moons
are considered. Less fuel is required to enter Jovian

orbit via the Galilean moons based on the results of this
simulation. More fuel is conserved by taking advantage
of the gravitational fields of the Galilean moons. This
conclusion relies heavily on the exact initial conditions.

VI. CONCLUSION

Traveling to deep space, whether it be Juno or a
colony ship of the future, is inherently unpredictable,
and orbital injection around a planet as large as Jupiter
is stochastic in nature. The goal of astrodynamics and
space flight planning is to make deep space exploration
a deterministic endeavor in which the final orbit of a
spacecraft is predictable. Moons provide a natural tool
with which spacecraft can gravity assist or gravity brake
around. Not only does this make the process more
deterministic, but it also conserves fuel if the thrusting
is timed right.

The Mathematica simulation outlined in the previous
sections applies these principles to the Galilean moons
of Jupiter. The lack of computing power and a lack of
understanding of the underpinnings of Mathematica led
to considerable limitations, especially where realistic
masses are concerned. However, fuel conservation was
simulated for direct insertion into Jovian orbit via deep
space (no moons), Io, and Europa. The percent of
propellant burned decreased from roughly 42 % to 22 %
as more moons were introduced. The Galilean moons,
when the spacecraft has the exact initial conditions and
thrusts at the optimal time, allow the craft to conserve
fuel.
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