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The purpose of this experiment was to find out the gravitational constant G of Newton’s law
of gravity. To prove that this concept existed, and to find the specific value, we replicated Henry
Cavendish’s torsion pendulum experiment. Using a laser and a torsion balance, we managed to
find out the the equilibrium positions of two separate configurations of the torsion pendulum. With
that, we were able to calculate G = (6.40 ± 0.05)x10−11m3kg−1s−2 . This is in comparison to the
accepted value G = 6.67x10−11m3kg−1s−2. This relative accuracy can be attributed to the large
amounts of data points we collected during the experiment. Not only that, but the specific time in
the day in which we took the data led to little to no disturbance in the pendulum.

I. INTRODUCTION

In 1797, Henry Cavendish used a torsion pendulum
in order to find the Newton’s gravitational constant G.
The purpose of this experiment is to try and also find
G with modern technology while still using Cavendish’s
methods. In this case, we used a sensitive torsion
pendulum connected to a computer in order to see if
Cavendish’s method for finding G was valid.

II. THEORY

When two objects of any mass are in proximity to each
other, the fundamental theory of gravity states that

Fg =
(m1) (m2) (G)

r2
(1)

where r is the distance between the two objects,m1 and
m2, and G is Newton’s gravitational constant. To find
this gravitational constant, one uses a torsion balance.
This torsion balance is a sensitive device used to measure
the force created by objects in proximity to each other.
Inside the enclosed structure is a pendulum arm con-
taining two small lead spheres at opposite ends to each
other. To counteract the force of gravity, a torsion wire is
suspended above the device, cancelling the effect gravity
has on the pendulum arm. Outside the enclosed struc-
ture is a rotary arm. This holds two large lead spheres
of much greater mass than the two in the pendulum arm.

This rotary arm is used to adjust the position of the
two large masses. The gravitational force of attraction
between the large masses m1 and small masses m2

creates a torque on the pendulum arm. This torque
causes the pendulum arm to wobble in a sinusoidal
motion.

To measure the magnitude of this torque over time,
the external parts of the torsion balance are used. A
laser fires at a downward angle to a mirror that is inside

FIG. 1: Figure displaying the laser and the torsion balance.
The laser is on the left, and the torsion balance is to the right
of the image. The device in the middle of the image is irrel-
evant to the experiment, except for holding up the electronic
device that collects data. The electronic device is connected
to the bottom of the table. Figure borrowed from Ref.[1].

the enclosed portion of the balance. This light from the
reflected laser, when equilibrium is disturbed by either
position S1 or S2, would proceed to oscillate. These
oscillations could be used to find G.

As the masses interact with each other, a torque is
created. This is the torque due to gravity, τgrav, which
is given by

τgrav = 2Fgd (2)

where d is the length of the lever arm, and Fg is the
gravitational force. We know, however, that the system
is in equilibrium. This means that there must be an equal
and opposite torque, not due to gravity, but due to the
torsion band being twisted. This torque τband/ is given
by
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FIG. 2: Figure showing how the one can find θ by the posi-
tions of S1 and S2 Figure borrowed from Ref.[1].

τband = −κθ = −2dGm1m2

b2
(3)

Where κ is the torsion constant, and θ is the angle of
rotation and b is the distance between the two masses.
With S1 and S2, it is possible to find θ using trigonom-
etry. As the masses m1 and m2 are shifted, the angle
between the emitter and the emitted laser θ changes in
accordance tan 2θ. Since θ is so small, however, we can
treat is as simply tan θ = θ. Using the principles of
trigonometry, we can set 2θ equal to 2θ = (S2 − S1)/2L.
We can find then θ as

θ =
S2 − S1

4L
(4)

when it comes to the angle. To find κ, one must know
the period between oscillations. These oscillations are

from the lever arm’s interactions with the gravitational
force created by both masses. In this case,

T =

√
4π2I

κ
(5)

where I is the moment of inertia of the small masses
m2 inside the box. I can be found as

I = 2m2(d2 +
2

5
r2) (6)

Where m2 is the small mass inside the enclosed struc-
ture. Plugging this into the Eq.(5), and rearranging it
for κ, we get:

κ =
8π2m2(d2 + 2

5r
2)

T 2
(7)

With both θ and κ found, we can plug in both Eq.(4)
and Eq.(5) into Eq.(1), giving us

G = π2∆Sb2
d2 + 2

5r
2

T 2m1Ld
(8)

III. PROCEDURE

As stated in the theory, the device used was a tor-
sion balance. The laser of this balance was turned on,
and it was made sure that the device was properly cal-
ibrated. The first step was to measure the length from
the mirror to receiver L. This was measured by tak-
ing a small ruler to the beginning of the enclosed mirror
and the measured screen, resulting in a measurement of
L=121.4 ± 0.5 mm. The uncertainty for L was given be-
cause of the tool of measurement would give the result to
the nearest millimeter. We measured d to be 50 mm, r to
be 9.55 mm, b to be 46.5 mm, and m1 to be 1.5 kg. The
large masses were placed on the lever arm, with the arm
initially positioned perpendicular to the enclosed portion
of the device. The LABVIEW data collection software
on the computer was turned on. The lever arm was then
set to position S1 for 2 hours and 30 minutes. With
the LABVIEW software still running, the lever arm was
then set to position S2 for another 2 hours and 30 min-
utes. The long running time was necessary in order to
minimize uncertainty in the results, especially because of
the extreme sensitivity of the device. We also made sure
that the experiment would run at a time in which very
little people would be in the building where the device
was located. The extreme sensitivity of the device ne-
cessitated that there be no one around, since even the
disturbances in the air caused by someone walking near
the device could potentially skew the data. The software
was then stopped, and the trial concluded. The data was
transferred over to IGOR Pro for analysis. The resulting
graph was able to let us find ∆S, and G.
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FIG. 3: Voltage vs. Time plot of the Torsion Balance plotted
on IGOR. The red line represents the data collected. The
blue line is the fit line of S2. The green line represents the fit
line of S1. The middle of the fit lines give both the positions
S1 and S2, and the distance from one peak to another to find
T . Since the LABVIEW Software gave a Voltage vs. Time
Graph, rather than Position vs. Time, it was necessary to use
Eq.(11) to convert the values properly.

IV. RESULTS & ANALYSIS

Figure 3 shows the graph of the oscillations. We see
that over time, the magnitude of the oscillations lessen.
Theoretically, it would eventually show a straight line.
The value of these two straight lines, S1 and S2, is what
we needed to find G. To find the value of S1 and S2, we
had to create a custom fit line on IGOR. The fit line was
fitted to the equation

x = e−γtαcos(ωt− α) + P (9)

What is most important is αS and t. Using a fit line for
both portions, we saw that ω=0.0128±0.0003.The uncer-
tainty for ω was found with IGOR. In this case we used
the differences in the value for ω for S1 and S2 to find
the uncertainty. We used this value to find T with the
equation

T =
2π

ω
(10)

Plugging in for ω, we see that period T=523.60 ± 1
s. The uncertainty for T was calculated by looking at
the significant figures of the Voltage vs. Time graph,
and seeing that it only went to the nearest whole second.
To find ∆S, we use the value of the offset P. However,
the LABVIEW software gives a voltage vs time graph,
so we must convert the voltage we have to the actual

displacement S1 and S2. To do this, we simply use the
equation

x = (V0)

(
37

20

)
(11)

With this, we can find that S1=0.995±0.0002 mm and
S2=-1.958±0.0001 mm , so ∆S=2.953 ±0.0003 mm. The
uncertainty for ∆S was made by simply adding the un-
certainties for S1 and S2 together. With both T and
∆S found, we can find G. Plugging in all the values into
Eq.(8), we got

G = (6.40 ± 0.05)x10−11m3kg−1s−2 (12)

Thus the gravitational constant G was found. Compared
to the accepted value, G=6.67x10−11m3kg−1s−2, we ob-
tained a value 4.2 percent away from the accepted value.

V. CONCLUSION

This experiment showed the validity of Cavendish’s
methods when it came to measuring G. Because of the
numerous procedures which were used to mitigate uncer-
tainty, we got a value that was very close to the actual
value for G, only 4.2 percent away from the accepted
value. The extreme sensitivity of the balance was ac-
tually a boon here. While it would be a problem if it
was being used in a busy room where people walking
would create influencing air currents, the data was col-
lected late in the afternoon, when there was nobody in
the room. This made it so that the air would be com-
pletely still, and that nobody would accidentally bump
into it. We also mitigated uncertainty with the many
data points that were collected, therefore making the fit
line more accurate. One way to experiment could be im-
proved, however, could be measuring L more accurately,
as that had the highest uncertainty compared to any of
the other values. The high accuracy and low uncertainty
of this experiment shows that Cavendish’s method to find
G was reliable for both his time and today.
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