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The phenomena of percolation is explored in a physical experiment to determine a 2-dimensional
critical point. Keys, or strips of acrylic with a known amount of material randomly removed are
created and randomly placed together to create a grid through which a route from one end to the
other may exist. The amount of material removed from the total grid, the total vacancy, is calculated
as an average of the individual vacancies of the keys, and the ability of each random configuration
to allow the passage of fluid is recorded. In this system, vacancies are allowed to overlap, which may
more closely represent an organic system where particle sizes are not constant. A two-dimensional
critical probability of 0.42 ± 0.03 is found, which is 29% from the expected value of 0.59.

I. INTRODUCTION

A. Model

To one, the term percolation may bring to mind the
idea of coffee. This is not an incorrect thought; as water
flows through coffee grounds, the liquid is finding a path
from the top of the filter to the bottom. If the coffee
grounds were too compacted or too fine, the water would
not have a route to travel through the system, and the
coffee would not percolate.

In more scientific terms, percolation is a model of ad-
jacent or linked points. The mechanisms by which points
are linked can be sorted into two types: points with fixed
positions and random linkages (bond percolation); and
points with random positions and linkages determined
by a rule dependent upon position (site percolation).
Both shorthand names originate from their applications
in solid-state physics, and while there are situations that
require new sources of randomness or a combination of
types, these two are the most prevalent [2].

Consider two points, a start and a goal. If there ex-
ists any series of points, a path, between the start and
the goal, the system is said to percolate. It is possi-
ble that many paths exist between the points; but only
one is required for the system to be percolating. To illus-
trate this, consider the example of a simple platform-style
game, where a player can move and jump from one solid
block to another and must reach a goal at the top of the
stage, as in FIG. 1. The entire field that the player can
move across is a grid where each block is either an empty
space or a solid block the player can land on and jump
from, but not pass through. The probability that each
block is either empty or solid is a variable, which ranges
from zero to one, which I will call vacancy. Given that
a player can jump up to two blocks high and six blocks
across, it is clear that with an empty grid, there is no
chance that the player will be able to jump to a goal
located more than two blocks high. As this vacancy in-
creases, however, there are blocks a player can land on to
reach higher layers, and it becomes possible that a route
exists from the starting position at the bottom layer to
the goal at the top. In any situation where the player

can finish at the goal, this system is percolating.
It should be clear that given the presence of blocks is

a random probability, not all possible fields can be fin-
ished. A second probability can be associated with the
original of vacancy: the probability of the entire grid to
produce a system that percolates, known as the percola-
tion probability. From a set of fields at a given vacancy
value, one can produce a ratio of systems that percolate
to systems that do not percolate, resulting in a value for
percolation probability. Bear in mind, a number of other
factors determine the percolation probability; but they
can be ignored for this basic definition.

The question becomes, at which vacancy does the per-
colation probability become high enough that most of the
systems have a route from the start to the finish?

B. Application

Most real-world applications of percolation theory con-
tain such a large number of particles that the grid may be
considered infinite and contained within an unbounded
volume. In such a system, probabilities tend to disappear
into an average, and thus percolation acts as a phase-

FIG. 1: A simple java game I created in 2015 using
Khan Academy’s JavaScript course. Simple demonstra-
tion of percolation. In (a) the player fails to reach the
goal; the system does not percolate. In (b), a route ex-
ists to the goal, therefore the system percolates. Game
can be played at https://www.khanacademy.org/computer-
programming/2pr-randomizer/5317211975712768.
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FIG. 2: Conductive (black) and non-conductive (white) grains
in a conductor. For the medium to conduct, a route must exist
from one side to the other. Borrowed from J. W. Essam [2].

change transition. In other words, in a graph of percola-
tion probability to vacancy, percolation probability will
remain at zero until a specific critical point is reached,
beyond which the percolation probability will abruptly
become one. The condensation of water vapor into liquid
water is thought to be an example of this phase-change
relationship of percolation [2].

Another application of percolation theory is in con-
duction. A material created from a mix of conducting
and non-conducting grains with a given vacancy for a
grain to be conductive will only percolate above a crit-
ical threshold, beyond which there exists a route across
the material. This model of percolation is an example of
site percolation [4]. A diagram illustrating this model is
presented in FIG. 2.

An application one might not expect is in brush fires.
Site percolation is a model in which two adjacent points
interact with one another, seeking a route from a start
to a goal. Similarly, adjacent patches of dry brush would
be able to ignite each other. In this way, the spread of a
fire is a system that follows percolation theory.

C. History

Percolation has its origins in graph theory. Broadbent
and Hammersly first posed this problem in 1957, con-
necting points in a linear graph, considering the vertices
as the points of the model and a given pair of vertices
that form an edge of the graph. The links between these
vertices are determined by a vacancy independently of
all others pairs, as in, pairs that do not form an edge
are never linked, as in bond percolation. This problem
related to telephone engineering, where large networks
with many rapidly-changing linkages must find a route

FIG. 3: Model of a phone network. Vertices can switch to con-
nect to another vertex, but too many connections will block
a call. Borrowed from J. W. Essam [2].

between two callers, even when other routes are in use
[2]. An example diagram of the maps Broadbent and
Hammersly created in their phone networks is given in
FIG. 3

A later venture into a similar concept was done by
Roach in 1968, attempting to diagram a radio commu-
nications network, where transmitters of fixed range are
used. The fixed ranges of these transmitters must over-
lap to create a route of connected transmitters from one
location to another [2].

The model of percolation in conductive grains was used
by Goodman in 1975, although not to describe electrical
conduction. In this similar model, the grains in FIG. 2
are replaced with two components of a glass, which was
used to determine an optical absorption of the medium
[2].

More recently, however, percolation has been extended
far beyond the simple example of a two-dimensional grid.
Systems of six dimensions and beyond, and even fractal
dimensions have been examined, and interesting conse-
quences and implications of higher dimensions have been
discovered and theories have been created to predict their
behaviour [6]. However, these are far beyond the scope
of this experiment.

II. THEORY

As previously stated, in a system where the locations
or connectivity of a particle is determined by a vacancy,
represented with the variable p. In large systems, a criti-
cal probability pc exists, below which, a system will never
percolate, and beyond which, it will always do so. As
such, in large systems, the relationship mirrors that of
a phase-change transition. However, the incredibly large
scale models required to perfectly demonstrate the pure
phase-change relationship cannot be replicated with par-
ticle sizes as large as those in this experiment. Therefore,
computations have been done on much smaller scales, on
the range of ten to a hundred particles squared. What is
found in these, though, is that grid size plays a large role
in the behaviour of the percolation probability. The step
function relationship will be smoothed out into a curve,
the critical probability lying somewhere on that relation-
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ship. The randomness and probability associated with
the percolation of a system resembles that of a thermo-
dynamic system; so it is logical to begin with such a rela-
tionship [4]. Beginning with the Fermi-Dirac distribution
noted in Daniel V. Schroeder’s book (p. 267) [5],

nFD =
1

e(ε−µ)/kT + 1
, (1)

where ε is the energy of a single-particle state occupied
by a single particle, µ is the chemical potential, k is the
Boltzmann constant, and T is the absolute temperature.
This creates a curve which is a step function at low values
of T , but becomes more gradual as T increases, as in
FIG. 4. This is nearly the relationship we are looking
for; however, it is mirrored compared to what we expect
in the graph of p against percolation probability. This is
easily resolved by substitution −ε for ε.

Now, there are a number of other substitutions that
must be made to fit the function to the data obtained
in this experiment. The process is outlined in M. Chin-
chilla’s work [4]. These substitutions are as follows:

1

kT
= 2a, (2)

where a is twice the slope to be located at pc,

ε = p, (3)

equating the relationship to the percolation threshold,
and

µ = −pc, (4)

to find the percolation threshold itself. After these sub-
stitutions, the equation

f(p) =
1

e−2a(p−pc) + 1
(5)

is formed. Now, using a leap of insight to fit this to a
simplified equation, we multiply the numerator and de-
nominator of the fraction by a factor of e2a(p−pc) to the
result

f(p) =
e2a(p−pc)

1 + e2a(p−pc)
. (6)

FIG. 4: Fermi-Dirac distribution at high, medium, and low
values of T . Borrowed from D. V. Schroeder [5].

Expanding the squared expressions into their bases, the
equation becomes

f(p) =
1

2

(
1 +

ea(p−pc) − e−a(p−pc)

ea(p−pc) + e−a(p−pc)
.

)
(7)

The numerator is now in the exact form of the hyper-
bolic sine function, and the denominator in the form of
the hyperbolic cosine function, which simplifies to the
hyperbolic tangent function. Simplifying the expression,
we are left with the much simpler function

f(p) =
1

2
(1 + tanh a(p− pc)), (8)

which has parameters giving the critical probability and
the steepness of the curve at this point. It may not be
obvious that this equation properly describes the rela-
tionship of percolation; however, previous research has
determined that the distribution will closely follow this
function [4].

III. PROCEDURE

A. Initial Design

To create a physical model for site percolation, we
devised a system to represent water flowing through a
porous solid with vacancy assigned randomly. To do so,
slats with material randomly removed to a known va-
cancy value, keys, were placed together to create a grid,
as shown in FIG. 5. Other options that would have
worked to illustrate this could have been matches ran-
domly placed, so that adjacent matches ignite each other;
or a plane of conductive and non-conductive beads. How-
ever dramatic a fire may have been, the concept can be
just as easily demonstrated by water with a much lower
risk of damage.

To simulate a random grid of a known vacancy, thirty
keys of acrylic were prepared. Each strip was approxi-
mately half of an inch in width and height, and six inches
in length. A Mathematica program was used to produce
schematics of the keys with a set number of quarter-inch
cuts, distributed randomly about sixteenth-inch incre-
ments. The resulting shape is replicated in acrylic and
calculated to find a value for each key’s vacancy. An
example diagram is presented in FIG. 6.

In design, the keys consisted of two halves, separated
by a horizontal plane. The bottom half was completely
solid, and only served as a back plate to keep the key
together. This portion had no impact on the actual data
collection, and was not figured into the total vacancy
value. The top half of the key contained all of the mate-
rial that actually constructs the percolation grids. Gaps
allowed water to pass through, while solid areas blocked
its flow. When keys were put together into grids, gaps
could fall in line with one another to produce a route for
the water’s flow.
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The initial set of ten keys was produced with a va-
cancy value around 0.59, approximately the value for
two-dimensional critical probability found in previous
studies [1, 3]. After analysis of this group, it was deter-
mined that further sets should be produced with lower
vacancies, in an attempt to find a full range of data from
a percolation probability of 0 to a percolation probability
of 1.

B. Data collection

For each run, ten keys were selected and aligned to-
gether to produce a roughly square grid. The vacancy
value for each key was averaged to find the total vacancy
value for the setup. The grid was analyzed visually to
determine if the system percolates or not, and a result
was noted. Then, the same ten keys were randomly shuf-
fled, flipped, rearranged, and reassembled into a grid of
the same vacancy value, and the process was repeated to
gather twenty possible configurations.

Determining if a system percolates is similar to solv-
ing a maze, in a sense that for a liquid to flow through,
there need be only one route from one side to the other.
Liquids solve mazes by themselves, filling in every possi-
ble route to the end, as in FIG. 7. Flooding could have
been initiated at the top, to simulate liquid passing down
through the grid; or from an area in the center, to simu-
late liquid spreading laterally as it is poured down onto a
particulate substrate. The choice of flooding from the top
of the apparatus and not from a point in the center was
made for simplicity’s sake, since previous experimenta-
tion found little difference between results of top-flooded
and center-flooded experiments [3].

FIG. 5: Multiple angles of the keys and grids.

C. Implications of Setup

The acrylic keys in this experiment were of a fixed
length, height, and width. The height of the acrylic, and
indeed the height of the cuts, played no role other than
to allow the passage of water. The width of the pieces
does not matter either; as the cuts in the keys are all
in this direction, the only consideration for percolation
is if there is the presence of material to block the path.
For example, a key with a width of one unit will effect
the possible paths water could take the same as a key
with a width of one hundred units. The length, however,
does play a role: with shorter lengths, the half-inch cuts
would take up a larger proportion of the total surface,
and therefore would alter the vacancy value of the key.
If the width of the cuts was altered proportionally to the
change of the length, then this dimension could be scaled
as well.

Now, consider the radius of the cuts themselves and
the spacing between their possible locations. The cuts in
this experiment are all a quarter inch in radius. Some
cuts were within this length of another, creating an over-
lapping gap and a wider, continuous area of vacancy, al-
lowing for the random particle sizes desired in this exper-
iment. The location of every cut is randomly determined
on sixteenth-inch intervals; while this granularity could
have been continuous, it was much easier to calculate and
machine cuts determined as they were. In addition, gaps
closer than a sixteenth of an inch would have presented
problems due to the surface tension of water. Closer than
that, the water may have been more inclined to flow over
the apparatus than to actually pass through the gap.
However, with deeper cuts, a less viscous fluid, or higher
pressure, a continuous interval could be physically tested
with a similar setup.

The width of the cuts, on the other hand, play a mas-
sive role in the outcome of the experiment. Cut widths
were the major determining factor in the grid size; larger
cuts would result in a more smoothed-out relationship
between vacancy and percolation probability, while thin-
ner and more numerous cuts would approach the phase-
change transition relationship of large and infinite grids.

FIG. 6: Diagram of a key produced in Mathematica. The
image represents the form that the final key will take. The
black lines are the center lines where each half-inch cut will
be made. To the right, the value represents the vacancy of
the particular piece, on a scale from 0 to 1, 0 being an entirely
vacant key, and 1 being an entirely solid key.
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FIG. 7: An arrangement that exhibits percolation, the liquid
finding an interesting route through the grid.

Finer cuts would allow for a closer estimate of the criti-
cal vacancy, but would be physically intensive in creating
the keys and shuffling the setup. As the size of the cuts
decreases, say by a half, the grids would require twice as
many keys.

The reasoning behind making cuts with a chance to
overlap over a strict grid is to more closely emulate what
I would expect in natural phenomena. In soil and other
organic particulate matter, particles are rarely of a fixed
size and in fixed locations, as they often are in a compu-
tational approach. In this physical experiment, I sought
to more closely replicate the variability of physical phe-
nomenon such as liquids passing through organic par-
ticulate matter, such as soil. Although the variety of
particle size is only in the horizontal direction, I imagine
this could simulate particulate substrates where material
has been layered flatly due to pressure or some similar
circumstance.

IV. RESULTS & ANALYSIS

Keys were selected randomly from a group of thirty
to obtain a range of average vacancies, but also specifi-
cally selected in a few cases to achieve vacancies at the
upper and lower extremes of the possible combinations.
Once a group of ten keys was selected, the group was
randomly shuffled and flipped to create twenty random
combinations of each grid’s average vacancy.

Configurations were visually inspected to determine if
percolation is possible. Once each of the twenty configu-
rations were determined to percolate or not, the ratio of
percolating grids to non-percolating grids is calculated,
and a graph of percolation probability dependent upon
average vacancy was constructed, as shown in FIG. 8.

A particular combination of keys led to results that
were far outside of the expected relationship in four data
points, due the location of the cuts allowing most sys-

1.0

0.8

0.6

0.4

0.2 P
er

co
la

tio
n 

P
ro

ba
bi

lit
y

0.500.450.400.35

 Vacancy

FIG. 8: Graph of percolation probability dependent upon va-
cancy, fit to Eq. 8. A slope at the critical probability is
found to be a = 19± 2, the critical probability is found to be
pc = 0.42 ± 0.03, with χ2 = 11.6.

tems to percolate, despite the orientation of the pieces.
For example, regardless of the order or orientation of the
pieces, a route almost always existed near the edges of
the grid. These four data points were removed to obtain
a more accurate representation of the relationship. In a
more expansive test with more variety in keys, I would
not expect these outliers to exist in in any significant
proportion.

After collection of the percolation probabilities, it be-
came apparent that in this system of overlapping vacant
squares, the critical probability was much lower than
what was expected from the more traditional grid setup
used in computational experiments. While the upper
end of vacancies, systems with a percolation probabil-
ity of one, were well represented, the available keys did
not have vacancy values low enough to produce any data
runs with a percolation probability of zero.

The resulting percolation probabilities were averaged
in groups of four of five similar values to find a stan-
dard deviation, which is used as the error values for each
group of points. The logic behind this is that some grids
of a known vacancy exhibited a much larger variance in
percolation probabilities than others. For example, on
the upper end of the vacancies, where percolation prob-
ability was higher, the data was more consistent. The
vacancies on the lower end was the second most consis-
tent, then variance increases towards the middle of the
distribution. Calculating uncertainty in this way allows
for a better weighted fit, where more precise data is val-
ued more heavily then the more spread out points.

The fit function, Eq. 8, is the theoretical expectation,
but it is found that χ2 = 11.6 when aligned to the data. I
attribute this to the pseudo-random nature of the config-
urations; combinations of the same keys tended to favor
either percolating or not, even when they are randomly
shuffled. I would not expect this in a truly random grid
configuration.

The critical probability is determined to be
pc = 0.42 ± 0.03, which was around the value I
expected to find it at during data collection. Yet, this
is 29% lower than the predicted value, at 0.59. This
discrepancy may have been the result of the pseudo-
randomness; but with such a significant difference, it is
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much more likely that random particle size does play a
significant role in critical probability.

V. CONCLUSION

The experimental setup of acrylic keys randomly as-
signed with cuts to allow for the observation of perco-
lation around a critical threshold. As the keys are se-
lected to create grids and shuffled randomly to obtain
a percolation probability of a known vacancy value, the
expected Fermi-Dirac relationship was somewhat appar-
ent in the data. Initial research of critical probability pc
in two dimensional systems suggested a value of about
0.59, but through experimentation using this setup de-
signed to more closely replicate organic systems, a pc
value of 0.419 ± 0.003 was found. This is 29% from the
expected value, but I might suggest that allowing vacan-
cies to overlap and assigning them on an interval smaller
than the radius of the cut width will always result in
a lower critical probability then a typical grid format.
Logically, this conclusion makes sense, because even the
smallest gaps between particles allows for percolation to
occur. To confirm this, however, I would first like to run
several tests on larger-scale grids, which would allow for
a more precise estimation of pc.

In the very least, I believe that the results of this ex-
periment suggests a difference between computational re-

sults and those that may be found in organic systems.
For example, I believe that the critical probability for
the spread of a bush fire may be lower then what one
may expect. Extending this suggestion, I believe that
a similar test in three dimensions where vacancies are
randomly assigned and allowed to overlap may result in
closer estimates of real-world percolation problems, such
as the passage of water through soil.

It is possible that allowing for overlapping vacancies
changes the ’aspect ratio’ of the grid; for example, al-
lowing the fourth-inch cuts to be made in sixteenth-inch
increments may actually have the effect of producing a
grid that is in effect four times shorter, since the cuts are
effectively four consecutive vacant spaces in a grid that
is effectively divided into sixteenth-inch squares. This,
too, would require further investigation to confirm or dis-
prove.
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