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The double pendulum is a pendulum with a second pendulum attached to the end of the first.
The double pendulum is a chaotic system whose motion is difficult to model over time. While
idealized models enable computational simulations which can predict the pendulum’s motion, they
do not reflect the behavior of a physical double pendulum. The inability to model the motion of
a physical double pendulum accurately does not yield the model ineffective. Rather, it isolates a
unique behavior of the double pendulum. This experiment used a purposely limited mathematical
model and computer simulations to discover what proprieties of the double pendulum are so dom-
inant that they appear both in computer simulations and in the physical double pendulum. By
comparing computational results to experimental results of the time it takes for one of the pendu-
lums in the double pendulum to flip, the double pendulum was found to have a distinct transfer of
energy between the two pendulums which is based on the initial difference in angle between the two
pendulums. Ultimately, a pendulum was more likely to flip if they were out of phase by an angle of
π/2 with one the other. That is if the pendulums were in phase the energy transfer was potential
to linear kinetic energy, and no flip occurred, and if they were out of phase the energy transfer was
from potential to rotational kinetic energy and a flip did occur.

I. INTRODUCTION

The legacy of Daniel Bernoulli is for his work in fluids
dynamics and the early development of probability the-
ory. However, a lesser-known fact is Bernoulli was the
first to analyze the double pendulum in 1733 [1]. The
double pendulum is when two pendulums are attached
such that the pivot point of the second pendulum is at
the end of the first. Bernoulli modeled the motion of
small-angle oscillations of the double and n-chained pen-
dulum. While Bernoulli is credited as the first, the his-
torical continuity for the double pendulum’s motion af-
ter his initial discovery is contentious. Some imply Euler
and Bernoulli began to work together due to their friend-
ship [2]. Other’s suggest that first Bernoulli, then Euler,
and lastly Bernoulli’s father developed their equations
independently [3]. However, Bernoulli claimed his father
stole his work and improved it to appear as his own [1].
Bernoulli’s father nearly developed the differential equa-
tions of motion for the double pendulum yet failed. Fi-
nally, D’Alembert discovered the differential equations of
motion for the double pendulum, yet it was the applica-
tion of his results to derive the first wave equation which
he is most known for, not the equations themselves [4].

The use of differential equations to model the dynami-
cal system is a powerful application of calculus to model
physical systems [1]. Yet certain differential equations
are problematic; they appeared unsolvable and represent
phenomena that had no order. The lack of order is a
result of the double pendulum’s nature: it is inherently
chaotic. That is, there is no analytical solution for the
pendulum’s position as a function of time. Eventually,
computers solved the equations of motion through nu-
merical integration, and the double pendulum was ana-
lyzed with renewed interest. The lack of historical con-
sistency perhaps represents how computational analysis

enabled a deeper conception of chaotic systems and bol-
stered chaos theory into mainstream physics.

To analyze how computers changed the modern con-
ception of dynamics, the double pendulum will be an-
alyzed through the application of computations, La-
grangian formulation, and experimental results. While
computers model complicated dynamics beyond human
ability, some systems are idealized to neglect aspects of
physical systems which are difficult to model accurately.
Modern computational programs model real-world phe-
nomena with incredible accuracy and precision, yet real-
world chaotic systems prove difficult to model as a slight
deviation in initial conditions results in divergent behav-
ior over long periods.

This experiment used a purposely limited computa-
tional model and mathematical model of the double pen-
dulum to discover the fundamental properties of the sys-
tem. As mentioned prior, predicting the motion of the
double pendulum is not possible without the most careful
considerations to the physical system. Thus, a different
aspect is tested; if one of the pendulums can flip or makes
an angle greater than π to its rest position while in mo-
tion. That is, if the one of the pendulums can make a
full revolution about its pivot point. If one of the pendu-
lums can flip, then the time it takes is compared between
different initial positions. For the mathematical model,
qualitative observations were made and compared to the
model to see if the observed behavior conflicts or corrob-
orates the mathematical model.

II. THEORY

The double pendulum is a chaotic system whose solu-
tions to the equations of motion cannot be solved ana-
lytically. However, the Lagrangian for the double pendu-
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FIG. 1: A double pendulum with the center of mass,
lengths to the center of mass, angles, and coordinate

system which is used to derive the Lagrangian.

lum is possible to construct, which models the energy of
the system. For our purposes, the Lagrangian is used to
develop a qualitative description of the behavior of the
double pendulum.

A. Assumptions and Coordinates

First, a few assumptions are made to simplify the
derivation: frictional forces and potential products of in-
ertia are assumed to be negligible, the total energy of the
system remains constant, and the gravitational potential
energy is zero at the origin of our coordinate system.
Next, we define the coordinate system for our model.
The double pendulum is constructed in the form of Fig. 1
where the first pendulum is colored red and the second
pendulum is colored yellow and the grey circles represent
the pivot points for each respective pendulum. The first
pivot point is where the origin is set, as it does not move
while the pendulums are in motion.

To model the motion of the pendulums, we identify
the center of mass for each pendulum as two sets of co-
ordinates, which are denoted in Fig. 1 as (x1, y1) and
(x2, y2) for the first and second pendulum respectively.
Lastly, in Fig. 1, we define parameters θ1 and θ2 to rep-

resent the angles of the pendulums from the −y axis, l1
and l2 be the lengths to each pendulums center of mass
from their respective pivot points, and L1 to be the total
length of the first pendulum. Now we apply the assump-
tions and coordinate system to model the motion of the
double pendulum.

The location of the center of mass for each pendulum
is

x1 = l1 sin θ1, y1 = −l1 cos θ1

x2 = L1 sin θ1 + l2 sin θ2

y2 = −L1 cos θ1 − l2 cos θ2, (1)

where x1, y1, x2, and y2 is the position of the center
of mass, l1 and l2 are the length to the center of mass
for each pendulums respective pivot point, L1 the length
between the two pivot points for the top pendulum, and
θ1 and θ2 is the angle of the respective pendulum to the
normal. The time derivative of these functions are

ẋ1 = l1θ̇1 cos θ1, ẏ1 = l1θ̇1 sin θ1

ẋ2 = L1θ̇1 cos θ1 + l2θ̇2 cos θ2

ẏ2 = L1θ̇1 sin θ1 + l2θ̇2 sin θ2, (2)

where the new term θ̇ is the angular velocity of the
the respective pendulums. Armed with the location and
change in location over time for each pendulum’s center
of mass, the Lagrangian for this system is constructed.

B. The Lagrangian

To construct the Lagrangian, we need kinetic and po-
tential energy of the pendulums as the Lagrangian is de-
fined to be

L = T − V,

where L is the Lagrangian, T is the kinetic energy, and V
is the potential energy. However, before we find the ki-
netic and potential energy, let us redefine some of the pa-
rameters of the double pendulum to simplify the model.

First, L1 and l2 are defined in terms of l1, which is

a =
L1

l1
=⇒ al1 = L1

b =
l2
l1

=⇒ bl1 = l2 (3)

where a and b are numerical constants depending on the
design of the double pendulum. Second, m1 is defined in
terms of m2, which is

c =
m1

m2
=⇒ cm2 = m1 (4)

where c is the ratio of the mass of the pendulums. With
these simplifications, we model the kinetic and potential
energy.
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1. Kinetic Energy

The total kinetic energy of our system is comprised
of linear and rotational kinetic energy. Recall the total
kinetic energy is defined as

T =
1

2
m

(
ẋ2 + ẏ2

)
+

1

2
Icmθ̇

2,

where m is the mass, ẋ and ẏ are the components of the
linear velocity, Icm is the moment of inertia about the
center of mass, and θ̇ is the angular velocity. For the
double pendulum, the kinetic energy is

T =
1

2
m1

(
ẋ1

2 + ẏ1
2
)

+
1

2
I1 cmθ̇

2

+
1

2
m2

(
ẋ2

2 + ẏ2
2
)

+
1

2
I2 cmθ̇

2. (5)

Substituting the results from Eq. 2 and 3 into Eq. 5,
we find

T =
1

2
m1l

2
1θ̇1

2
+

1

2
I1 cmθ̇1

2

+
1

2
m2

(
a2l21θ̇1

2
+ l22θ̇2

2
+ 2al1l2θ̇1θ̇2 cos (θ1 − θ2)

)
+

1

2
I2 cmθ̇2

2
(6)

and if we apply the parallel axis theorem

I = Icm +ml2,

where l is the distance between the center of mass and
the point of rotation, Eq. 6 reduces to

T =
1

2
I1θ̇1

2
+

1

2
I2θ̇2

2

+
1

2
m2

(
a2l21θ̇1

2
+ 2al1l2θ̇1θ̇2 cos (θ1 − θ2)

)
(7)

which is the kinetic energy of our system. Notice the ro-
tational kinetic energy is the first two terms and the third
term contains two terms: the linear motion of the pivot
point of the second pendulum and a more complicated
form of linear motion. With the kinetic energy modeled,
we now model the potential energy.

2. Potential Energy

The potential energy of our pendulums is potential
gravitational energy, which is modeled by

Vgrav = m1gy1 +m2gy2

where m is the mass of the object, g is the acceleration
due to gravity, and y is the height of the respective pen-
dulums. From Eq. 1, 3, and 4, the potential energy of
our system is

Vgrav = −m2gl1 (c cos θ1 + a cos θ1 + b cos θ2) ,

and thus the potential energy of the double pendulum is

V = −m2gl1 ((c+ a) cos θ1 + b cos θ2) . (8)

With both the kinetic and potential energy modeled,
we can finally construct the Lagrangian, which is

L =
1

2
I1θ̇1

2
+

1

2
I2θ̇2

2

+
1

2
m2

(
a2l21θ̇1

2
+ 2al1l2θ̇1θ̇2 cos (θ1 − θ2)

)
+m2gl1 ((c+ a) cos θ1 + b cos θ2) . (9)

This result is confirmed by Hans Jürgen [5] to be the
correct derivation of the Lagrangian of the double pen-
dulum, where the constant values are changed depending
on the physical design. The equations of motion are pos-
sible to find, but the solution to the equations provides
little insight for our purposes. Next, we shall derive the
potential energy required for a flip to occur.

C. Potential to Flip

For the double pendulum to flip, there must be enough
initial energy in the system for one of the pendulums to
make a complete revolution. With the pendulum released
from rest, the kinetic term in Eq. 9 goes to zero and thus
the gravitational potential energy must be energetically
enough for a flip to occur. The lowest amount of energy
for one of the pendulums to make a complete revolution
is either θ1 = π or θ2 = π. Let us assume that b <
c + a which implies that the second pendulum requires
less energy to flip. Therefore, from Eq. 8, the minimum
potential energy required is

V = −m2gl1 ((c+ a) cos (0) + b cos (π))

=⇒ Vmin = −m2gl1 (c+ a− b) ,

where Vmin is the minimum energy required for a flip.
Thus, the requirement of the potential energy for a flip
is

V > Vmin

− ((c+ a) cos (θ1) + b cos (θ2) > − (c+ a− b) .

If we remove the negative signs, then we find that a flip
is impossible if

((c+ a) cos (θ1) + b cos (θ2) > (c+ a− b) . (10)

With the values of a, b, and c, then the angles which
it is energetically possible for a flip to occur is found.
Although, even though it may have enough energy for a
flip to occur, that does not mean a flip will always occur.
In the next section, we apply the results of our model
to discover what set of angles have the same potential
energy.
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FIG. 2: The computational result where the x-axis
represents the initial release angle, θ1, for the first

pendulum and the y-axis represents the initial release
angle, θ2, for the second pendulum. The blue line is the

possible initial angles combinations for when the
potential energy equals zero and the red line is the

possible initial angle combinations for minimum energy
required for a flip to occur. Inside the shaded region of

the red line is where a flip is impossible to occur
regardless of any combinations of different combinations

of initial release angles.

III. THE ANGLES FOR CONSTANT
POTENTIAL ENERGY

To determine what corresponding angles of θ1 and θ2
have the same potential energy, the results from Eq. 8
and Eq. 10 were applied. First, Eq. 8 was simplified such
that m2 = g = l1 = 1; this was done as the value of V
is not important but rather that it remains constant. To
denote the difference between the actual potential energy
and the numerical potential energy, Vc is defined to be
the computed potential energy. Next, the constants a,
b, and c were measured to be a = 1.556, b = 0.778, and
c = 1.400, which are needed to solve Eq. 8 numerically.
Finally, the initial potential energy was chosen to be the
value for Eq. 8 when θ1 = θ2 = π/2, which was 0. This
process resulted in the equation

Vc = 0 = 2.956 cos θ1 + 0.778 cos θ2. (11)

To find angles that satisfy this equation besides θ1 =
θ2 = π/2, the solutions for Eq. 11 was computed in Math-
ematica, which yielded a θ2 as a function of θ1, and thus
yielded the corresponding angles which Vc = 0 held. The
same process was applied to Eq. 10 to find which cor-
responding angles a flip is energetically impossible. The
solutions to Eqs. 11 and 10 are represented in Fig. 2 with
θ1 on the x-axis and θ2 on the y-axis, with the blue line
representing Vc = 0 and the red area representing which
angles a flip is impossible to occur.

With the desired angles found, the physical double
pendulum was constructed to incorporate the computed
angles. Before any trials were conducted, the physical

FIG. 3: The physical double pendulum’s final design.

double pendulum was refined to be consistent with the
assumptions made for our model.

IV. EXPERIMENTAL DESIGN

The theoretical model developed prior assumed aspects
of the system which are not true for the physical double
pendulum, such as no frictional forces. Therefore, the
double pendulum was constructed specifically to reduce
any properties which we did not model. Fig. 3 was the
final design for the physical double pendulum. In the
figure, notice that the base of the pendulum is clamped
down which was to ensure that it did not move as the
pendulums were in motion. The pendulums were com-
prised of identical acrylic rectangles and low friction ball
bearings, with the first pendulum attached to a peg se-
cured in the board. In Fig. 3, the ball bearing attached
to the peg was secured by parafilm between the inner
portion of the ball bearing and the peg itself to ensure
that the bearing did not slide along the peg.

The pendulums were connected by a bolt and nuts with
washers spacing the pendulums which resulted in Fig. 4
to prevent contact between the pendulums. However, the
number of washers used was only enough to barely avoid
contact as increased space between the pendulums re-
sulted in torque being applied to the peg. While parafilm
reduced the motion on the peg large amounts of torque
resulted in motion along the axis of rotation. Moreover,
the washers added lowered the center of mass for the first
pendulum. Done to a large extent, the behavior of the
double pendulum changes drastically.
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FIG. 4: How the two pendulums were connected and
spaced through the use of a nut, bolt, and 3 spacing

washers.

Fig. 5 demonstrates how the angles found prior were
denoted on the pendulums, with the angles drawn on
the second pendulum colored to correspond with angles
drawn on the first pendulum. The larger black lines in
Fig. 5 is the position of the center of mass for the pen-
dulum and was used as the reference to draw each of the
colored angles. The matching colors represent the angles
that each pendulum required for Vc = 0. Lastly, the pen-
dulums were recorded by a camera to measure the drop
angle and the time it took for a flip to occur. The camera
was placed on a stand about 1.2 meters away from the
pendulum and positioned to have both the pivot in view.
With the pendulum carefully constructed, we now can
develop the experimental method to analyze the system.

V. EXPERIMENTAL PROCEDURE

The experiment intended to select pairs of θ1 and θ2
such that all pairs had equivalent initial energy. There-
fore, the pendulums were dropped from rest, and the
angles were measured such that Eq. 8 is constant. Each
corresponding angle was dropped multiple times, as en-
suring the angles were exact proved to be difficult alone.

FIG. 5: The different angles which were
computationally found and how they were denoted and

color-coded on the pendulums.

However, with enough drops, the desired angles had a
greater likelihood of being recorded. Ultimately, the an-
gles dropped were somewhat consistent, with data con-
taining angles that deviated slightly. This resulted in the
initial potential energy not being constant, but it did pro-
vide an upper bound for the initial energy in the system.

The video recordings of the pendulums were analyzed
qualitatively and the angles were measured again to en-
sure the precision and accuracy of each trail. A flip was
determined to be once either pendulum reached the value
of θ = π and proceeded to flip over. Alternatively, a flip
could be determined for when a pendulum makes a com-
plete revolution, returning to the initial angle. However,
the pendulums completed a revolution with higher ve-
locities than reaching θ = π and thereby was difficult to
determine the time it took to achieve the flip. Once the
desired angles were tested, the pendulum was dropped
from drastically different levels of height to see how the
level of energy stored in the pendulums altered the be-
havior of each pendulum.
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FIG. 6: The same figure as Fig. 2, except the numerical
solution for Eq. 12 superimposed onto it. Again, the
x-axis represents the initial release angle, θ1, for the
first pendulum and the y-axis represents the initial

release angle, θ2, for the second pendulum.

VI. COMPUTATIONAL RESULTS

The double pendulum which was experimentally tested
was not modeled computationally. However, the time
flip graph for the massive rod double pendulum was pro-
duced, and their equations for Vc were nearly identical.
For example, with the process to construct Fig 2 ap-
plied for the massive rod pendulum, which resulted in
the equation

Vc = 0 = 3 cos θ1 + cos θ2, (12)

which is nearly identical to Eq. 11.
Eq. 12 was added to Fig. 2, which resulted in Fig. 6.

The black and green lines almost exactly correspond to
the blue and red lines respectively. While the time flip
graph may differ in the exact initial conditions a flip oc-
curs, the properties of the time flip graph were analyzed
to compare the experimental properties of the physical
double pendulum.

The time flip graph is visualized in Fig. 7, where θ1
is on the x-axis and θ2 is on the y-axis. The graph is
colored to denote how long it takes for a flip to occur,
with green the shortest, red a moderate amount, and
purple the longest. Each of these colors are on a scale
of light to dark, where dark indicates a shorter amount
of time and light indicates a longer amount of time. For
example, the angles for light green indicate a flip takes
longer to occur than the angles for dark green but takes
less time than the angles for dark red. The white color
represents where a flip does not occur, where we can see
a similar shape to the red area in Fig. 2.

From Fig. 7, one conclusion is that the areas with the
angles that are out of phase by π/2 seem to flip more
quickly even at a lower level of potential energy whereas
the areas which are in phase appear to take a longer time
for a flip to occur. Eq. 9 corroborate this conclusion
as the linear kinetic energy term is dependent upon the

FIG. 7: The computational result for a double
pendulum which is constructed with rods and identical

locations for the center of mass. The corresponding
pairs of angles are the initial conditions and the color is
coded to represent the amount of time it takes for a flip

when dropped from the particular angles. Modified
from [6].

phase of the initial conditions. That is, to minimize the
linear energy, if the pendulums are out of phase, then the
stored potential energy will convert to rotational motion.

To be more precise, Fig 7 has lines drawn to specific
values of θ1 and θ2. First, consider the grey lines, when
both θ1 and θ2 are in phase with a value of 1.5 radians.
The region which they align is a dark red region, meaning
that the flip occurs in a moderate amount of time. Now
consider the pink lines, which θ1 = π/2 and θ2 = 0.
The region in which they align is dark green and thus
the pendulum flips in a shorter amount of time. More
specifically, the potential energy stored in the in-phase
case is Vc = 0 while out of phase the energy is Vc = −1.
The initial conditions with more energy do not imply that
a flip will occur in a shorter amount of time.

Now bring attention to the blue lines in Fig. 7. That is
when the pendulums are released in phase at a value of
2 radians. A flip occurs within a relatively short amount
of time. However, this does not contradict Eq. 9. If large
amounts of energy are stored in the system, a flip should
occur regardless of the phase. Now, consider the purple
lines, which represent the pendulums being out of phase
by about π/2. The purple lines are barely outside the re-
gion where it is energetically impossible for a flip to occur,
yet a flip still occurs. Therefore, for lower amounts of en-
ergy, the phase is more consequential to whether or not a
flip occurs. With the computational results determined,
we move on to the experimental results.
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VII. EXPERIMENTAL RESULTS

The experimental results are split into two groups:
qualitative observations and quantitative observations.
The qualitative observations were compared to the the-
oretical model and the quantitative observations were
compared to the computational results mentioned prior.

A. Qualitative Observations: Height and Speed

Some of the observations made were difficult to repro-
duce exactly due to the differing motion of the pendulum
due to slight deviations of initial conditions. However,
qualitative properties of the double pendulum were con-
sistent and recorded. First, the greater the initial angle
that each pendulum is released, the greater the height can
be for a flip to occur. It was noticed that for large an-
gles, one of the pendulums made a revolution at a greater
height than those which were released at smaller angles.
For example, the flip which occurred at maximum height
was when the initial conditions of θ1 = θ2 = π.

The second observation was that the speed of rotation
for the second pendulum increased if the first pendulum’s
center of mass was at its lowest y position and had no
rotational motion. Conversely, if the center of mass for
the first pendulum was at a larger value of y and it was
in rotational motion, then the second pendulum’s rota-
tional speed was at the lowest. For example, when the
first pendulum was at an angle of zero and not rotating,
then the rotation of the second pendulum was maximized
for the trial. Furthermore, if the second pendulum man-
aged to flip at a greater height, the speed of its rotation
decreased compared to when it flipped at a lower height.
Both observations were consistent but were difficult to
quantify. However, they indicate particular properties of
the double pendulum.

B. Quantitative Observations: To Flip or Not to
Flip

The experimental results for the physical double pen-
dulum time to flip is represented in Table I, with the
initial angles for each pendulum, the amount of frame it
took for a flip to occur if it did, the difference between
the angles, and the calculated initial energy Vc.

From Table I, it is clear that experimental results did
not seem to provide conclusive results into the behavior
of the pendulum when the potential energy remains con-
stant. The difference in Vc between the different trials
makes it impossible to tell how energy alters the pendu-
lum’s flipping time. However, what did remain consis-
tent is that when ∆θ was closer to the value of π/2, the
time to flip was decreased while when ∆θ was closer to
0, the pendulum either did not flip or took an increased
amount of time to flip. Moreover, while Vc was not con-
sistent, it always remained less than 0. Therefore, we

TABLE I: Experimental results of the physical double
pendulum.

θ1 θ2 Frames Till Flip Vc ∆θ
89.9° 90.1° No Flip ≈ 0 0.2°
90.0° 91.2° No Flip ≈ 0 1.2°
90.6° 91.6° No Flip ≈ 0 91.6°
102.4° 66.9° 31 -0.3244 35.4°
103.3° 64.2° 20 -0.3278 39.0°
102.3° 59.6° 20 -0.3244 42.7°
110.0° 46.8° 16 -0.4794 63.2°
107.2° 43.5° 16 -0.3097 63.7°
108.8° 45.0° 17 -0.4024 63.8°
112.4° 34.7° 16 -0.4868 77.7°
112.4° 34.0° 16 -0.4814 78.4°
114.5° 36.1° 17 -0.5878 78.4°
115.9° 28.9° 10 -0.6100 87.0°

restricted the initial conditions to be that of low initial
potential energy. With the qualitative and quantitative
experimental results, we now compare to see if the the-
oretical model and computational model have isolated a
fundamental property of the double pendulum.

VIII. ANALYSIS: ARE IDEALIZED MODELS
USEFUL?

A. Theoretical Model

The qualitative observations indicated the height when
a flip occurs increased when the initial angles were in-
creased and that the rotation of the second pendulum
increased as the height and rotational velocity of the first
pendulum decreased. Through Eq. 9 and specifically the
potential energy term, larger angles indicate a greater
amount of potential energy being stored in the system.
Therefore, the increased amount of energy stored in the
system implies there was more energy to be distributed
to the terms of the Lagrangian. Eq. 10 demonstrated
that there is a minimum amount of energy for a flip to
occur, which must be in the form of rotational kinetic
energy of the second pendulum. Thus, if the requisite
rotational energy is met, then the rest of the energy can
be stored in the other terms of Eq. 9, which could be in
the potential energy term.

Moreover, when the second pendulum flipped, the first
pendulum would either come to a stop or would drasti-
cally slow down. The linear terms of kinetic energy and
the rotational kinetic energy of the first pendulum de-
crease as they are dependent on θ̇1. The remaining terms
are the potential energy for both pendulums and the ro-
tational kinetic energy for the second pendulum. Thus,
with more overall energy in the system, the potential en-
ergy terms could be greater and still have enough energy
remaining for a flip to occur. If the initial potential en-
ergy is decreased, then the total energy is constrained to
either be potential energy or rotational kinetic energy,
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not both. Thus, it is expected to see the pendulum only
flip at a lower height when the initial angle of release is
small for both pendulums.

Even if the first pendulum effectively came to a stand-
still, a portion of the energy in the system is necessarily
potential, and thereby the rotational kinetic energy of the
second pendulum was less, meaning that θ̇2 is decreased
and the pendulum flipped at a slower rate. However, if
the heights of the pendulums are at their lowest, then the
energy is not potential and must go to the only remaining
term: the rotational kinetic energy of the second pendu-
lum. Therefore, if the first pendulum is not in motion
and at its lowest y position, the energy in the system is
contained only in the rotation of the second pendulum,
and θ̇2 is maximized. Both of the qualitative observations
are well represented through Eq. 9, meaning the trans-
fer of energy between the pendulums is a fundamental
aspect as to how and why flips occur.

B. Computer Simulations Versus the Real World

The computer simulation was unable to accurately de-
pict when flips occur in the physical double pendulum,
as the trials for θ1 = θ2 = π/2 resulted in no flip while
the simulation suggested a flip would occur. However, as
mention in the computational results, if ∆θ is increased,
then lower amounts of Vc still result in flips occurring.
More specifically, the computational results suggested
that at lower initial potential energies, ∆θ was the de-
termining factor as to whether or not a flip occurs rather
than Vc. Experimentally, these results were confirmed,
as Table 2 indicates that the time for a flip to occur de-
creased as the phase angle increased. For small amounts
of Vc, the fastest flip occurred when the pendulums were
most out of phase, even if there is less overall energy
stored in the system. The trials with the most initial en-
ergy were the trials that did not flip, which indicates that
a fundamental aspect to the flip behavior of the double
pendulum is the phase angle between the two pendulums.

From Eq. 9, the term 2al1l2θ̇1θ̇2 cos (θ1 − θ2) models
why this phenomenon occurred. If the angles are in
phase, this value is maximized, which is a part of the
linear kinetic energy term. If the angles are out of
phase by π/2, then this term disappears, which implies
the linear kinetic energy is minimized. Therefore, the
initial potential energy in the system is converted to
rotational kinetic energy if the starting angles are out of
phase, meaning a flip is expected to occur more quickly.
Conversely, if the angles are in phase, the potential
energy will more greatly be converted to linear kinetic
energy, and thus a flip will take longer to occur. Since
frictional forces were acting on the double pendulum,
this increase in time resulted in a flip not occurring,
but this does not negate the computational simulation.
Instead, it revealed a fundamental property of the double

pendulum: how phase angles alter the conversation of
potential energy to kinetic.

IX. CONCLUSION

The double pendulum is a chaotic system that does
not lend itself to predictive motion. However, through
the application of a highly idealized model and simula-
tion, the double pendulum did seem to have a particular
behavior that greatly impacts when a flip occurs: the
phase angle between the two pendulums. However, more
aspects of the double pendulum are potentially lost due
to the limitations of the experiment. First, the computer
simulation can be altered to retain more aspects of the
physical pendulum constructed so the time flip graph is
more representative of the physical system. Second, to
improve the physical pendulum, ball bearings with lower
frictional constants, a connection which aligned the pen-
dulums exactly rather than one in front of the other as
seen in Fig. 4, and pendulums with an identical center of
masses can be used to make the conversion to computer
simulation more achievable. As the design approaches
the theoretical model, the differences between computa-
tional results and experimental results are readily com-
parable and may reveal more aspects of the double pen-
dulum. Lastly, more data should be collected for the
quantitative results and the qualitative results could be
measured and provide a more exact description of how
the double pendulum behaves. Nonetheless, while the
experiment was imperfect, it still produced conclusive re-
sults.

One of the purposes of idealized models is to reduce a
system such that its most fundamental properties which
dictate its behavior are modeled effectively. Then, the
model is expanded upon until it represents the natural
world. Moreover, idealized models ensure the dominant
proprieties of a system are most apparent and are a tool
for the scientific process. They provide which compo-
nents of a system should be varied first whenever exper-
imentation is done. For the double pendulum, the use
of simple models revealed that the initial energy of the
system is less important than how the energy is trans-
ferred in the system. That is, the idealizations capture
impactful components of the double pendulum; the phase
angle between the two pendulums dictates the transfer of
energy within the system.
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