
Surface Ripples as Thermal Excitations

Carlos Owusu-Ansah
(Dated: May 7, 2020)

In this paper, we confirm that a model devised for thermally excited waves can be applied to ripples
moving along the surface of the water. Ripples with frequencies ranging from 180Hz to about 330
Hz were generated on the surface of the water and their wavelengths are measured by scattering red
light over the surface of the water. The ratio of the exponent of the wavenumber to the exponent of
the angular frequency was determined to be 1.46±0.04 which agrees with the value 1.5 predicted by
the model. Using an equation derived from the model, the surface tension of the water is determined
to be 0.070 ± 0.003 N/m which agrees with the widely accepted value at 0.072 N/m. We conclude
that the dynamics of the ripples formed are dominated by thermal effects.

I. INTRODUCTION

Imagine that it is drizzling outside. The water
droplets create circular ripples on the surface of a pud-
dle: thousands of ripples interfering constantly with each
other, and reflecting along the boundaries of the puddle.
It is all very intriguing and complicated, but suddenly,
the rain stops, and the surface settles into a clear mo-
tionless membrane. There is nothing very intriguing here
anymore, you might say, but you would be wrong. What
if there were hundreds of thousands of microscopic ripples
governed by the same dynamics as the visible ripples?

In the conduction model of heat transfer, heat prop-
agates through a material via random collisions between
its molecules. Due to the high mobility and density of
the molecules in liquids, these collisions cause displace-
ments that propagate through the liquid and lead to
time-dependent oscillations at the liquid-air interface. At
room temperature, these oscillations will be microscopic
because they represent the lowest energy state of the liq-
uid’s surface. In this paper, we derive the wave equation
for thermal excitations at the surface and show that it
can be used to model surface ripples by using it to accu-
rately determine the surface tension of water.

II. THEORY

Our derivation for the wave equation closely follows
what is outlined in [1]. We begin by assuming that the
liquid is incompressible. This means that the rate at
which molecules enter a volume element equals the rate
at which they leave the element. Mathematically, this
condition is imposed by stipulating that the divergence
of the velocity vector ∇·~v at any point in the liquid is 0.

We also assume that there is no rotational flow in
the liquid. In other words, if we placed a ball with negli-
gible mass and uniform density at any point in the liquid,
it would not rotate. This assumption is valid because we
are referring to a liquid whose internal dynamics results
solely from the thermal oscillations of its molecules. Per-
haps, at an instant, there may be a small torque on the
ball because of collisions at one side of the ball transfer
more momentum to that side of the ball than collisions at

the other side. However, since thermal motion is random,
these effects generally balance out. Mathematically, the
absence of rotational flow implies that the curl of the
velocity vector ∇× ~v is 0.

Any vector with a vanishing curl can be represented
as the gradient of a scalar quantity [1]. Therefore, we can
express the velocity vector at any point as the gradient
of some scalar potential function

~v = ∇φ. (1)

By taking the divergence of this equation and using the
result that the divergence of the velocity vector is 0, we
obtain the differential equation

∇ · ~v = ∇ · (∇φ) = ∇2φ = 0. (2)

This is the Laplace equation. It has a well known solution
that can be expressed as:

φ = X(x)Y (y)Z(z) (3)

where

Z(z) = (ekz −Ae−kz) (4)

X(x) = (Bei(kx−ωt) + Cei(kx+ωt)) (5)

Y (y) = (Eei(ky−ωt) + Fei(ky+ωt)). (6)

The asymmetry between the terms Z(x), X(x) and Y (x)
must be present for these expressions to solve the Laplace
equation. The terms A, B, C, ω and k are quantities in-
dependent of the position variables. The time variable t
was included in the solution because it is reasonable to
hypothesize that the potential function φ is time depen-
dent.

A. Boundary Conditions

To understand the physical meaning of our solu-
tion, we impose boundary conditions. The force over the
surface of our liquid is expressed as

f = −
‹

p ds (7)
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where p is the pressure over an area element ds of the
surface. Using the divergence theorem, we convert this
surface integral into the volume integral

f = −
˚
∇p dV. (8)

This equation indicates that the force on a volume ele-
ment in the liquid is directly proportional to the gradi-
ent in pressure −∇p at that point. Therefore, Newtons
second law for a volume element of the liquid may be
expressed as

−∇p = ρ
d~v

dt
. (9)

We simplify this equation by considering that the veloc-
ity vector at each point in the liquid is a function of both
position and time. Therefore, the time derivative of the
velocity vector is

d~v

dt
=
∂~v

∂t
+
∂~v

d~x

∂~x

∂t
=
∂~v

∂t
+ (∇ · ~v)~v (10)

which, when substituted into Eq 9, gives the equation

−∇p
ρ

=
∂~v

∂t
‘ + ~v(∇ · ~v). (11)

Since thermal oscillations at the surface have extremely
small amplitudes, we ignore terms that are second order
in ~v. By letting ~v(∇·~v) = 0, and making the substitution
~v = ∇φ from Eq 1, we obtain

−∇p
ρ

=
∂(∇φ)

∂t
(12)

which implies that

−p
ρ

=
∂φ

∂t
. (13)

The implication holds because the density is constant.
Our goal is to calculate the surface tension of the liquid
using the wave equation so we now seek an expression for
the pressure in terms of the surface tension.

Surface tension is the tendency of the surface of the
liquid to act like a stretched elastic membrane. It arises
because the cohesive forces between the molecules of the
liquid are greater than the adhesive forces between the
liquid and the environment. The surface of our liquid
behaves like a membrane along the x-y plane with mass
density σ and tension α undergoing small-amplitude os-
cillations. Therefore it obeys the wave equation

α∇2u = σ
∂2u

∂t2
. (14)

The variable u is the amplitude of the oscillations in the z
direction [1]. Comparing this wave equation to Newton’s

second law, we can see that net force per unit area is

f = α∇2u. (15)

This net force per unit area is the difference between the
pressure from the air molecules above the membrane and
the pressure from the liquid molecules below the mem-
brane. Therefore, it is the z-component of the net pres-
sure at the interface with the opposite sign. Substituting
this pressure into Eq 13, we obtain

α∇2u = ρ
∂φ

∂t
(16)

We approach our final expression for the surface tension.
The time derivative of u is the z-component of the veloc-
ity of any point on the membrane. In Eq 1, we defined
the velocity vector ~v to be the gradient of the potential
φ. Therefore the time derivative of u is the z component
of ∇φ. Taking the time derivative of Eq 16 and making
this substituting gives us

ρ
∂2φ

∂t2
− α∇2 ∂φ

∂z
= 0 (17)

When the solution generated in Eq 6 is substituted into
Eq 17, and the result is simplified we obtain

−ρω2φ+ αk3φ = 0. (18)

Now, we derive that the surface tension of the membrane
is given by

α =
ω2ρ

k3
(19)

Observe that the only boundary condition imposed on
the liquid is that a stretched membrane lies above it in
the x-y plane. The absence of other boundaries means
that the depth and breadth of the liquid in our model
extends infinitely. This is not possible, but it is a rea-
sonable assumption given that thermal oscillations are
unlikely to propagate from one end of the liquid con-
tainer to another end. We also assume that the effects of
gravity on thermal oscillations are negligible.

B. Surface Ripples

We apply our model for thermal oscillations to vis-
ible ripples along the surface of the water to determine
the surface tension of water. Ripples differ from thermal
oscillations in some key ways. Since they are generated
by forced oscillations at the surface, we cannot be certain
that the resulting flow beneath the surface is irrotational.
Ripples are also affected by gravity and have significantly
larger velocity vectors than thermal oscillations. By cor-
rectly calculating the surface tension with Eq 19 using
measurements on ripples, we ascertain that ripples of
certain frequencies and wavelengths behave similarly to
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FIG. 1: A schematic of our experimental setup. The distance
D is the distance between the point of reflection and the wall.
The height H is the height of the location where the specu-
larly reflected ray is incident on the wall relative to the height
of the surface of the water, and δH is the distance from this
point to the nearest point of constructive interference. The
angle θ is the angle of reflection of the specular ray while δθ
is the angle between the reflected specular ray and the con-
structively interfering rays above it. This figure was obtained
from [2].

FIG. 2: The reflection of two rays that constructively inter-
fere above the point of specular reflection. The specularly re-
flected rays are represented by the dashed lines. The distance
λ is the wavelength of the ripples. This figure was obtained
from [2].

thermal oscillations.
In our experiment, ripples are generated by period-

ically nudging the midpoint of the surface of the water
in a reservoir with a needle that oscillates at some fre-
quency. To use Eq 19 to calculate surface tension, we
need to record the frequency of the needle’s oscillations
and measure the corresponding wavelength of the ripples.
The wavelength is measured using a method described in
[2]. A laser beam is incident on the rippled surface and
reflected onto a distant wall. Depending on the frequency
of the oscillating needle, the specular reflection point may
be enveloped by two or more bright spots where light rays
constructively interfere with each other. This result is il-
lustrated in Fig 1. The distance between the points of
constructive interference and the point of specular reflec-
tion is used to calculate the wavelength of the ripples.

To understand the calculation we consider the in-
teraction between the light and the surface of the wa-
ter. Since the surface is not uniform, it causes both dif-
fuse and specular reflection to occur. However, we ex-
pect that the bright spots close to the specular reflection
point were reflected off wave crests because the gradient
at wave crests is closest to the horizontal.

FIG. 3: The reflection of two rays that constructively inter-
fere below the point of specular reflection. The specularly
reflected rays are represented by the dashed lines. This figure
was obtained from [2].

Fig 2 illustrates two light rays that were incident
on neighboring crests and reflected at an angle δθ greater
than the angle of incidence. Similarly, Fig 3 illustrates
two different light rays that were incident on neighboring
crests and reflected at an angle δθ less than the angle
of incidence. The quantity λ is the wavelength of the
water wave. We assume that the reflected rays in Fig 2
constructively interfere to form a bright spot above the
point of specular reflection. Similarly, the reflected rays
in Fig 3 constructively interfere to form a bright spot
below the point of specular reflection even though the
rays are parallel. This assumption is false. However,
since the wall is far compared to the distance between the
interfering rays, it is standard practice in optics to make
the simplifying assumption that the rays are parallel.

Since the rays in Fig 2 and Fig 3 constructively
interfere, we may assume that the path difference is equal
to the wavelength of light λl. By analyzing at Fig 2, we
can deduce that the path difference is between the two
rays is

λcos(θ)− λcos(θ + δθ) = λl. (20)

Similarly, by analyzing Fig 3, we obtain a similar equa-
tion for the path length difference:

λcos(θ − δθ)− λcos(θ) = λl. (21)

We use the double angle formula to expand the terms
with δθ in Eq 20 and Eq 21 and add the resulting equa-
tions. Simplifying, we obtain the expression

λl = λsin(θ)sin(δθ). (22)

From the perspective of Eq 19, a more useful form of
this Eq 22 may be expressed as

k = kl sin(θ)sin(δθ). (23)

The wave number of the ripples k = 2π/λ and the wave
number of light kl = 2π/λl. By inspecting Fig 1, we see
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that θ is calculated using the relation

θ = arctan

(
H

D

)
. (24)

The quantity δθ is calculated using the relation

δθ = arctan

(
H + δH

D

)
− θ. (25)

Using Eq 24 and Eq 25, we can compute the value for k
at each frequency f using Eq 23. The relation

ω = 2πf (26)

allows us to use the values of k and ω to calculate the
surface tension of water using Eq 19.

III. EXPERIMENTAL DETAILS

The schematic of our experimental setup is illus-
trated in Fig 1. In this section, we discuss the finer de-
tails of the experiment. The source of our beam was a
helium-neon laser that produces light with a wavelength
of 632.8 nm. An adjustable stand was used to elevate and
orient the helium-neon laser so that the incident beam
was reflected close to the midpoint of the dish. We kept
the incident beam close to the midpoint to prevent rip-
ples generated by the needle from interfering with ripples
reflected at the boundaries of the surface of the water.

To obtain accurate measurements for the wave-
length λ of the ripples, we ensured that the direction of
the incident beam was perpendicular to the wavefronts
of the circular waves. This condition guarantees that our
calculated value for λ is the shortest distance between
two crests. The point of specular reflection on the wall
becomes elongated as the incident beam becomes parallel
to the wavefronts. Therefore, we were able to ensure that
the incoming beam was perpendicular to the wavefronts
by adjusting the position and orientation of the laser and
observing the intensity pattern on the wall.

The container for the water was about 6 cm deep.
During our experiment, it was filled so full that the
meniscus was distinctively convex. Since our model for
thermal oscillations assumes that the upper boundary of
our liquid is an interface between only two different medi-
ums, it was important to minimize the adhesion between
the container and the surface of the water. The container
for the water was placed on an anti-vibration table to in-
sulate the water from disturbances in the surroundings.

The oscillating needle was attached to a loud-
speaker which was connected to a Pasco function gener-
ator. The function generator allowed us to control both
the amplitude and frequency of the needle’s oscillations.
The generator provided a sinusoidal signal causing the
speaker and the needle to oscillate at the specified am-
plitude and frequency. The amplitude was chosen so that
the needle repeatedly hits the surface of the water at the

midpoint of the container. The range of frequencies used
in our measurements was chosen to allow the distance
between the point of spectral reflection and the points of
constructive interference directly above and below it to
be measured accurately. We selected frequencies ranging
from about 180 Hz to about 330 Hz because it was diffi-
cult to distinctly identify the interference pattern beyond
this range.

To accurately determine the height H and δH in
Fig 1, a grid was placed on the wall so that the intensity
pattern is displayed on this grid. The distance between
the grid-lines was approximately 1 cm. The measurement
process consisted of adjusting the frequency using the
function generator and measuring the distance between
the point of specular reflection and points of constructive
interference on the grid.

Despite the anti-vibration table, the point of spec-
ular reflection and the points of constructive interference
oscillated slightly during the experiment. We found it
convenient to take pictures of the intensity pattern on
the grid after every adjustment in frequency. To keep
track of the correlation between the frequencies and the
pictures, we preceded each picture of a grid with a picture
of its corresponding frequency displayed on the function
generator. Distance measurements using pictures of the
intensity pattern on the grid are more reliable because
the bright spots are stationary. Our capacity to zoom-in
on the pictures also improves precision.

IV. ANALYSIS AND DISCUSSION

Using a tape measure, the distance D in Fig 1 was
measured to be 3.78 m. After measuring H and δH over
a range of frequency values, we used Eq 24, Eq 25 and
Eq 23 to determine wave numbers k corresponding to
these frequency f values. The angular velocities were
computed from the frequency values using Eq 26 to ob-
tain a table containing the angular velocities ω of the
ripples and their corresponding wave-numbers k.

If our model for thermal oscillations holds for the
ripples created in our experiment, then the angular veloc-
ity ω and the wave number k of the ripples should obey
Eq 19. By taking the natural logarithm of both sides,
Eq 19 may be rewritten as

ln(ω) =
3

2
ln(k) +

1

2
ln

(
α

ρ

)
. (27)

Evidently, the model predicts that the slope of a plot of
ln(ω) against ln(k) should be 1.5. Fig 4 is a plot of ln(ω)
against the ln(k) for our measurements on ripples mov-
ing along the surface of water. The slope of this plot is
1.46± 0.04 which is in fair agreement with the prediction
of the model. Therefore, the ratio of the exponent of the
wave number k to the exponent of the angular velocity
ω of the ripples is accurately predicted by the model.

To further ascertain the validity of the model, we
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FIG. 4: The natural log of the angular velocity log(ω) vs the
natural log of the wave number log(k) for the ripples on the
surface of the water. The slope of the line is 1.46 ± 0.04

FIG. 5: The square of the angular velocity ω2 vs the cube of
the wave number k3 divided by the density of water ρ. The
slope of this line is 0.070 ± 0.003 N/m. This slope is our
prediction for the surface tension of the water.

calculate the surface tension of water using Eq 19. Ac-
cording to Eq 19, a plot of ω2 against k3/ρ should
produce a line with slope equal to the surface ten-
sion α. Fig 5 shows a plot of ω2 against k3/ρ using
the values obtained in our experiment. It has the slope
0.070 ± 0.003 N/m. This value agrees with the ac-
cepted value for the surface tension of water which lies
at 0.072 N/m. In a second trial with 6 fewer data points,
we obtained the value 0.078± 0.002 N/m for the surface
tension which differs from the accepted value by 6%.

We conclude the model devised for thermal oscil-

lations is effective at predicting the behavior of surface
ripples. The dynamics of the ripples created in our
experiment are similar to those generated by thermal
excitations. In other words, the ripples created in our
experiment cause a flow that is largely irrotational and
described by velocity vectors with amplitudes so small
that second-order terms are negligible. Additionally, we
may conclude that the surface ripples created in this
experiment are not significantly affected by gravity since
our model did not consider the effect of gravity.

V. CONCLUSION

In the first part of this paper, we develop a mathe-
matical model for a liquid whose molecules interact solely
via thermal collisions. This model is compared with mea-
surements made on ripples on the surface of the water to
determine its generality. The ripples are created by peri-
odically nudging the surface of the water with a needle.
The wavelength of the ripples is measured by scattering
a beam of red light over the wave fonts. We compare the
measured relationship between the wavelength and the
frequency to the predictions of the mathematical model
and find that it fits the model nicely. The measured ratio
between the exponent of the wavenumber and the expo-
nent of the angular frequency is 1.46± 0.04 which agrees
the value 1.5 predicted by the mathematical model. We
indirectly ascertain the applicability of the wave equa-
tion derived in the model by applying it to the measure-
ments on the ripples to calculate the surface tension of
water. We determine that the surface tension of water is
0.070±0.003 N/m which agrees with the widely accepted
value at 0.072 N/m. The ripples created in our experi-
ment had frequencies ranging from 180 Hz to about 330
Hz. Therefore, we conclude that the dynamics of ripples
formed at these frequencies over the surface of deep water
reservoirs are largely dominated by thermal effects.
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