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Angstrom method is a smart way to measure the thermal conductivity. We will measure the
thermal conductivity of a brass rod by using this method. We will measure the temperature of
two different positions on the rod. We plot the temperature as a function of time and then do the
Fourier transform to it for further analysis. We picked three points in the temperature function to
calculate the conductivity. Finally, the average value we get is 109 KM/m, while the actual value is
120 KM/m. The error is 9%.

I. INTRODUCTION

It is an interesting topic that different materials have dif-
ferent capability to conduct heat. The property of mate-
rials’ capability to conduct heat is called thermal conduc-
tivity. There were researches about this topic hundred
years ago.
In 1861, Anders Jonas Angstrom published a method to
determiner the thermal conductivity of a rod. Generally,
this method is to provide heat to one end of a rod peri-
odically and monitor the the temperature as a function
of time. Then, we can use a formula to calculate the con-
ductivity. Later, a new refined method came out, it used
Fourier analysis of a simple square wave heating function.
For the new method, one end of the rod is at room tem-
perature, and a heat pulse is applied to the other end.
Two thermistors will be needed to record the tempera-
tures of two different positions along the rod. We will
record the temperature as a function of time by using a
written program. Then, we need to do Fourier analysis
to the two temperature functions. We are interested in
the amplitude and phase of the harmonics present in the
periodic temperature oscillations. [1]

II. THEORY

To determine the thermal conductivity of the rod, we
will use a heat pulse to provide it a periodical heat on
one end. There is a variable x, which is the distance of
a point on the rod to the heated end. We can control
the heat. We let T [x, t] be the rod’s temperature relative
to the air. The heated end should have temperature as
function T [0, t] since the distance between the end and
itself is zero, and

T [0, t] = T0cos[ωt] (1)

where T0 is the amplitude and ω is the frequency. The
heat from the heated end of the rod will diffuse alone the
bar and finally be lost to the atmosphere. The relation-
ship here is

dT

dt
= D

d2T

dt2
− εT (2)

where D = κ/sρ, and ε = RC/sρA. There are so many
variables. D is the thermal diffusivity, κ is the ther-
mal conductivity which is the thing we are measuring in
this experiment. The specific heat s, the density ρ, the
emission coefficient R, the circumference C and the cross
sectional area A are all constants. We can guess that the
solution for the temperature and position function is

T [x, t] = Ae−axcos[ωt− bx] (3)

As we put equation [3] into equation [2], the left part will
be

dT

dt
= −Aωe−axsin(tω − bx) (4)

We assume that

D =
ω

2ab
(5)

and

ε = (a2 − b2)D (6)

then, the right side of equation[2] will be consisted by
two parts, one is

D
d2T

dt2
= Aωe−ax a

2 − b2

2ab
cos(ωt−bx)−Ae−ax 2abω

2ab
sin(tω−bx)

(7)
and the other one is

εT = −Ae−axcos(ωt− bx)
a2 − b2

2ab
ω (8)

To check our assumption, we use equation[7] subtracted
by equation[8] and get Aωe−axsin(tω − bx). The result
is equal to dT

dt , which means that our assumption about
the value of D and ε is acceptable.
Since we will measure the temperature of two positions
along the rod, we define the point near the heated end
as xR and the farther one as xL. Also, their amplitudes
are AR and AL respectively.
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The amplitude ratio is

AL

AR
= e−a(xL−xR) (9)

and the phase difference is

ϕL − ϕR = b(xL − xR) (10)

Then, we want to define a and b with the equations above.
We invert equation[9] and equation[10] and get

a =
log[AL/AR]

xR − xL
(11)

and

b =
ϕL − ϕR

xL − xR
(12)

Within some algebra, we can get the equation to calculate
our goal, the thermal conductivity, κ

κ =
sρω(xR − xL)2

2(ϕL − ϕR)log[AL/AR]
(13)

We know that the rod in this experiment is made of brass,
with ρ = 8470kg/m3 and s=368J/kg•K. We will find the
rest of variables in our experiment.

III. PROCEDURE

As explained in the theory part, we want to find xR−xL,
ω, ϕL−ϕR, andAL/AR in the experiment. The overview
of the apparatus is shown as Figure [1]
The cylindrical thing at the front is a brass rod, with 1
cm in diameter. The machine on the left is called Kepco
power supply, It can provide power to a thermofoil heater
attached to one end of the rod. The top one is a Tektronix
function generator, which could provide square wave sig-
nal to the Kepco power supply machine. There’s a in-
sulation bubble wrap surround the entire rod to control
the loss of heat from the rod. To measure the tempera-
ture on two points, two YSI44004 Precision thermistors
are used. They are 15.1 cm apart from each other. The
thermistors are wired into a series circuit with a reference
resistance of 15 kΩ and a 1.5 V battery. The thermis-
tors have resistance which varies along temperature. The
thermistors are connected to the Hewlett Pachard 3421A
Data Acquisition Unit, which can measure the voltage
on the resistors. We used LabVIEW to record the datas
automatically.
The apparatus are prepared well. We can turn on the
machines and go back to sleep.
After 15 hours, the data we collected is shown as figure
[2]. Then we will do the Fourier Transform to a part of
the row data.

FIG. 1: Top view of instrument sets for Angstrom experiment
(This figure is borrowed from ref[1])

FIG. 2: The temperature as function of time. The red line
refers to the temperature at xL and the blue line refers to the
temperature at xR

IV. ANALYSIS

As we have the temperature data, we can start to look
for the variables we need to calculate the thermal con-
ductivity. As listed above, the variables we are interested
in are xR − xL, ω, ϕL − ϕR, andAL/AR. Since the two
thermistors are 15 cm between each other, which means
xR −xL=15 cm. Then, we will need to do Fourier trans-
form to find the amplitude and phase for each position.
And also, we need to find the frequency to calculate ω.
As we use Igor to do the Fourier transform, we want to
first know the interval of time we will use, since Igor will
not do that automatically. We plot the time function
and find the time interval as 5.328 s. Then, we can do
the Fourier transform and change the wave scaling into
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FIG. 3: The magnitude versus frequency from Fourier trans-
forms at xL. The peaks are the first, third, fifth harmonics.
The frequencies for each of them are 1.03mHz, 3.1mHz, and
5.15mHz. and the magnitudes are 4330, 322, and 81.

FIG. 4: The magnitude versus frequency from Fourier trans-
forms at xR. The peaks are the first, third, fifth harmonics.
The frequencies for each of them are 1.03mHz, 3.1mHz, and
5.15mHz. and the magnitudes are 629, 14, and 1.5.

5.328 s. There comes a magnitude versus frequency plot
for each position, shown as figure [3] and figure [4]
Therefore, now, we know AL, AR, and frequency. The
next step is to find the phase. We can use Igor to plot a
phase versus frequency graph to get the value.
The phases are shown as figure [5] and figure [6].
As we have all the information we need, we can start to
calculate the thermal conductivity with equation [13], I’ll
show an example of my calculation for the first harmonic.

κ =
sρω(xR − xL)2

2(ϕL − ϕR)log[AL/AR]
(14)

=
368KJ/kg × 8470kg/m3 × 0.007rad/s × (0.15m)2

2(3.02rad − 1.8rad))log[4330/629]
(15)

FIG. 5: The phase versus frequency from Fourier transforms
at xL. The peaks are the first, third, fifth harmonics. The fre-
quencies for each of them are 1.03mHz, 3.1mHz, and 5.15mHz.
and the phases are 3.02, 2.83, and 2.33

FIG. 6: The phase versus frequency from Fourier transforms
at xR. The peaks are the first, third, fifth harmonics. The fre-
quencies for each of them are 1.03mHz, 3.1mHz, and 5.15mHz.
and the phases are -1.8, -0.74, and 0.18

= 104KW/m (16)

To show the data in a better way, the important datas
mentioned above and the results are all shown in table
[1].

The average value for κ in this experiment is 109 KW/m,
while the actual thermal conductivity of brass is 120
KW/m. So, the error in this experiment is

120 − 109

120
= 9% (17)
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TABLE I: Summary of important datas and results

n 1 3 5

log(AL/AR) 1.93 3.13 3.98

δϕ(rad) 1.22 2.09 2.51

ω(rad/s) 0.007 0.02 0.033

κ(KW/m) 104 107 116

V. CONCLUSION

We used the Angstrom method to measure the thermal
conductivity of a brass rod. The error is 9%. This
method is really complicated theoretically. But when we

understand the theory part, making measurements on
different materials becomes really easy. This is a really
good method to test thermal conductivities.
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