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Stokes and Newton proposed different models for viscous drag on a body moving through a fluid.
Stokes stated drag on an object flowing through a fluid is proportional to its velocity. Newton
argued that drag on an object flowing through a fluid is proportional to the square of its velocity.
We confirmed both models by investigating their rotational counterparts. By spinning a rotor ball
and letting it come to a halt, measuring its frequency, and converting the frequencies to angular
velocities, we were able to look at the relationship between drag and its angular velocity. On
calculating the power via the slope of angular velocity versus time in a semi-log plot for motion
without additional resistance in form of attached flags, we were able to get approximately 1.20,
which is close to 1, suggesting it follows Stoke’s model for laminar flow more closely than Newton’s
model. On adding additional resistance with flags onto the rotor ball, the power was calculated to be
approximately 1.95, which is close to 2, thus suggesting that it follows Newton’s model for turbulent
flow more closely than Stokes’ model. The amount of turbulence is not always constant throughout
rotor’s motion and thus experimental values of power varies from theoretical values. The flow of
the body can also be described as a combination of the two models, which is also possible when it
is transitioning from one type of flow to the other.

I. INTRODUCTION

If you move your hand through air, you can feel some
resistive force acting on your hand in the opposite
direction. The faster you move your hand, the harder
it is to pass through the air. Now, if you tilt your hand
sideways, you will feel less resistance, because of the
decreased surface area that the air interacts with. Now if
we sift our hand in a bucket of water , the resistive force
we feel is even higher. This phenomenon was formally
summarized by Sir George Gabriel Stokes and Sir
Isaac Newton for all objects travelling in different fluids.

Whenever an object moves through a fluid, there
is a resistive drag force acted upon it by the fluid.
Sir George Gabriel Stokes said that the viscous drag
force of a sphere travelling or rotating in a fluid is
directly proportional to the velocity of the object,
which is the case when the flow of the object is
laminar [1]. Laminar flow of an object occurs when
there is no lateral movement of the fluid while the
object is flowing through the fluid. Laminar flow usually
occurs when the velocity of the object is relatively low [2].

However, Sir Isaac Newton had said that the drag
force is directly proportional to the square of the veloc-
ity of the object, which best describes turbulent flow [1].
A motion or flow can be called turbulent if the fluid is
moving irregularly laterally. Turbulent flow is usually
tied to a relatively higher velocity of the object [3].

We conduct this experiment to confirm these models
by using a sphere and setting it in rotational motion.
This experiment investigates the relationship between
frictional torque and angular velocity to see which model
fits the best for different angular velocities. This experi-
ment also investigates adding extra air resistance in the

form of flags on the sphere. Most of the times, it is a
combination of laminar and turbulent flow, and thus, we
try to find the power of velocity of the object, which may
be between 1 and 2. A power closer to 1 tells us that it
is mainly laminar and power closer to two tells us that
it is mainly turbulent. This could be because the speed
may vary at different times in the run, which affects the
type of flow.

II. THEORY

Flow of every object moving through any fluid depends
on multiple factors such as the object’s surface area
interacting with the fluid, speed of the object travelling
through the fluid, and density of the fluid itself.

Drag force increases with increase in the surface
area, becuase larger the area in contact with the liquid,
the object has more opposition while passing through
the fluid. Secondly, drag increases with increasing
speed, as we touched on it earlier in the introduction. A
stationary object will not experience any drag. However,
a slowly moving object will experience some drag and a
fast moving object will experience an even higher drag.
In real life, the speed of the object is not always constant
throughout, and thus the drag also varies as a result.
Lastly, drag also depends on the density of the fluid
that the object is travelling through. Denser the fluid,
particles are closer and the object requires more force to
get through the fluid. n this experiment, we vary the sur-
face area of our object and compare resultant drag forces.

The above relationships can be modeled into an
equation using the following models, depending on
the type of flow. All the above factors, except for the
velocity of the object are combined together to give a
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constant depending on density of fluid, surface area of
fluid, and other factors such as temperature of the fluid,
which is not very significant to our experiment. Stokes’
model states that for a laminar flow, that is at a lower

velocities, the resistive drag force ~Fd that acts upon a
moving object is directly proportional to the object’s
velocity ~v and can be written as

~Fd = −c1~v. (1)

Newton’s model states that for a turbulent flow, the re-
sistive drag force acting upon an object moving in that
fluid is directly proportional to the square of the object’s
velocity. Specifically

~Fd = −c2v2v̂. (2)

In most cases, the type of flow is a combination of lami-
nar and turbulent flow and thus, on combining these two
models, we get an equation,

~Fd = −cnvnv̂. (3)

Here c1, c2 and cn are constants proportional to the
radius of the object and the fluid that it is passing
through.
Experimentally, n is usually calculated between 1 and
2, as a combination of two types of flows. For a purely
laminar flow, n would be 1 and for a purely turbulent
flow, n would be 2.

For the purpose of our experiment, we can convert
these to rotational kinematics in order to study torque
of a smooth rotating sphere using the equation,

τ = Iα = I
dω

dt
(4)

where τ is the rotational torque or rotational force
causing the body to rotate around its axis. The mo-
ment of inertia I is the body’s tendency to resist an-
gular acceleration [4].It is proportional to the object’s
mass. Angular acceleration α can also be written as
derivative of angular acceleration with respect to time.
On solving for dω/dt, we get

dω

dt
=

−Cn

I
ωn. (5)

Eqn. (5) can also be written as

dω

dt
= −kωn, (6)

where k = Cn/I,
If n=1, we can solve differential Eqn. (6), and get

ω = ωoe
−kt. (7)

This means that if any data represents Stokes’ model
of laminar flow, then on plotting a semi-log plot of ω
versus time, the linear fit will be well fit. The slopes of
this semi-log plot gives the proportionality constant k.
If n=2, we can solve differential Eqn. (6) and get

−1

ω
= kt+

1

ωo
(8)

On plotting 1/ω verus time and fitting it, if a straight
line fits the data well, it represents Newton’s model for
turbulent flow where drag is proportional to the square
of body’s velocity.

III. PROCEDURE

In order to experimentally confirm the two models
and determine the type of flow, we spin a rotor ball
suspended with a supply of nitrogen from under the
ball making it float without any resistance. As it can
be seen in Fig. 1, the shiny rotor ball is covered with
vertical strips of black tape. This is done to cut off
laser supply periodically and measure the frequency.
Above the rotor ball, there is a stabilizer to prevent the
ball from processing when rotating. This was built by
Adam Deeley at the College of Wooster as a part of his
Junior Independent Study. At the focal point of the
laser, there is a photodiode to collect the light. A laser
is placed across the shiny rotor ball, it reflects off of the
ball and goes into the photodiode. Between the ball
and the photodiode, there is a converging lens through
which the light passes. The photodiode is connected to
a Schmitt trigger, which either gives high or low values
of voltages. The trigger is connected to an oscilloscope
which displays the voltage readings, which is connected
to the LabView computer program. This program
records frequency at an interval of every 10 seconds.

To align and focus the laser, I observed its pattern
by placing a plain notecard in its path before and
after the converging lens. The rough sphere pattern
it formed became smaller and focused after passing
through the lens. To get most of the light in, I placed
the photodiode at the focal length of the laser. Af-
ter this, the voltage supply created by the laser was
checked. Since Schmitt trigget only gives clean square
signals, I connected the circuit such that it would give
continuous reading of voltage. Once enough voltage
was seen on the oscilloscope, the circuit was connected
such that the Schmitt trigger was included in it again.

The rotor is given an initial spin and data are recorded
until it comes to a rest. Once the rotor starts rotating,
the laser continuously shines onto the photodiode, except
when passing through the black strips and records the fre-
quency. The frequency is recorded at an interval of every
10 seconds. I took multiple datasets in this configuration.
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Figure 1: Ealing Air Gyroscope with black strips, compressed
nitrogen supply from under, and a laser beam across. On top
of it, is a stabilizer to prevent the Gyroscope from processing
while runs are being taken.

To increase the surface area and resistance, a 2.5 × 3
inch notecard was attached to the rod above the sphere.
More data is collected in the same manner as previously.

IV. DATA AND RESULTS

We measured the angular velocity of the rotor ball
by setting it in motion, multiple runs were taken in
all orientation and selected the best ones. First, we
recorded data by putting the rotor ball in motion and
recording its angular velocity. A flag was then attached
on top of the rotor ball and its angular velocity was
recorded again. The data obtained for a rotating sphere
without any flags attached was plotted as a semi-log plot
of ω versus time. It was then fitted using a linear fit.
From Fig. 2, we are able to see that the no flag-run 1
and 2 have a good linear result and thus is modeled well
by Eqn. (7), which states that if n=1, angular frequnecy
of the object will be linearly proportional to constant
k. The values of the slopes of all three datasets are
listed in Table I. We can see that for n=1, k is smaller,
because there is no extra surface area of the notecard
and the air around it remains comparatively stationary.
For n=2, on solving Eqn. (8) for k, we get a higher
value of k. This is because the flow becomes turbulent
due to the added notecard. By these values of k, we are
able to differentiate between laminar and turbulent flow.

To confirm Newton’s model for turbulent flow,

Table I: Constant of proportionality (k) values for three
datasets on calculating slopes for equations for laminar and
turbulent flow

Data set slope = k

no flag run 1(n=1) (19.18 ± 0.2) × 10−4

no flag run 2(n=1) (18.06 ± 0.2) × 10−4

flag run 1(n=2) (12.48 ± 0.4) × 10−4
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Figure 2: A semi-log plot of ω versus time with a linear fit for
no flag run 1 and 2. The slope of 1 and 2 give k.

which can be done using Eqn. (8), we plotted a linear
plot of 1/ω verus time for flag run 1. It is the data of
the rotating sphere with a flag attached above the rotor
ball, as it can be seen in Fig. 1 causing the turbulence.
A linear result for this graph would tell us if the data is
modeled well by Eqn. (8) and follows Newton’s model.
On plotting 1/ω verus time for flag run 1 and doing a
linear fit on the first half of the points, we can see in Fig.
3, there is a well linear fit for ≈ 200 seconds. This means
that Newton’s model of turbulent flow fits well and it is
in turbulent motion for approximately the first half. At
lower velocities, there could be multiple factors affecting
the rotating sphere, causing the speed of ball to decrease.

To further confirm the results of both Newton’s
and Stokes’ models, we plotted Eqn. (6), which
states that on differentiating the angular velocity,
the slope will gave us the power n, and its intercept
gave us the constant of proportionality k. A slope
of 1.95 ± 0.1 in Fig. 4 tells us that it does follow
Newton’s model, because n is approximately equal to 2.

Unfortunately, we were not able to confirm the results
by this method for no flag run 2, becuase its velocity
was changing very rapidly with time. It is unusual for
this pattern to occur, but I am unsure of why this could
happen. In Fig. 5, the power law fit of log-log plot of dω
/dt versus ω gives us the slope n, which is 1.210 ± 2.5.
This data did not have any flag attached to it and thus
it represents Stoke’s model of laminar flow where n=1.
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Figure 3: A linear plot 1/ω versus time for flag run 1 with a
linear fit .
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Figure 4: A log-log plot of dω /dt versus ω for flag run 1 with
a power-law fit. The slope gives n. Slope calculated for this
flag run 1 = 1.95 ± 0.10

V. CONCLUSION

This experiment allowed us to learn two different models
- Stokes’ and Newton’s for laminar and turbulent motion
of fluids. We were able to study the rotational analogs
of these models. After looking at the data and plotting
equations of both models, we were able to see that if
the flow is laminar, the drag force on the body moving
through the fluid is proportional to its velocity. This
was suggested by solving Eqn. (6) assuming n=1,

for laminar flow. This was done by doing a linear fit
on two datasets without any flag on it, it was well
fit. If the fluid flow is turbulent, the drag force on
the body moving through the fluid is proportional to
the square of its velocity. This was seen in a similar
manner to the first one, by solving Eqn. (6) assuming
n=2. This was done by fitting a linear fit on the
third dataset with the flag attached to rotor causing
turbulence and increasing the surface area of the object.
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Figure 5: A log-log plot of dω /dt versus ω for no flag run 1
with a power-law fit. The slope gives n. Slope calculated for
this no flag run 1 = 1.210 ± 2.5

We were also able to calculate n for first dataset
with flags (flag run 1) which was ≈ 1.95. This means
that in this case, the drag on the object moving through
the fluid is equal to the square of its velocity in case of a
turbulent flow, which was caused by the flag, suggesting
that it follows Newton’s model closely. On plotting
second dataset without the flag (no flag run 1), n was
approximately 1.20, which is close to 1. This means that
in this case, the drag on the object moving in this fluid
is equal to its velocity due to a laminar flow, suggesting
that it follows Stokes’ model. Using Eqn. (7) and (8), we
were able to calculate k, the constant of proportionality,
which is dependent on the surface area of the object,
and the fluid it is passing through. From Table I, we can
see that for n=1, k is smaller, because there is no extra
surface area of the notecard, and for n=2, it increases, as
discussed earlier. Therefore, we were able to observe the
effects of both Stokes’ and Newton’s models of viscous
drag for translational mechanics to a certain extent.
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