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In this experiment, we measured the gravitational constant G using a torsion balance. We used two
methods to estimate a change in distance between two masses due to their gravitational attraction.
In the first method, we compared the gravitational force between the two masses in two different con-
figurations after collecting data for one hour. In the second method, we measured the force between
the masses in one configuration until the torsion balance reached equilibrium. For the first method,
the gravitational constant was measured to be G = (6.6±0.1)×10−11 N2m2kg−2, and for the second
G = (7.3±0.1)×10−11 N2m2kg−2. Compared to the known value of G = 6.67 × 10−11 N2m2kg−2,
we saw that only the first method had the known value to be within its uncertainty. Using the de-
termined G values from each method, we calculated the mass of the Earth to be (5.9±0.1)×1024 kg
and (5.4±0.1)×1024 kg. Compared to the known mass of the Earth mE = 5.97×1024 kg, we found
only the first method included the accepted value within its uncertainty.

I. INTRODUCTION

Although Isaac Newton predicted the gravitational con-
stant G in 1687 in his universal law of gravitation, he
never measured it. Today, when we think of the first
measurement of G, we attribute it to Henry Cavendish’s
1797 experiment. In the late 1700s, The Royal Society
was determined to find density of the Earth. Cavendish
devised an experiment using a torsion balance, and mea-
sured the density to astounding precision [1].
Today, using a modernized version of Cavendish’s appa-
ratus, we can rearrange variables and instead, directly
measure the famous gravitational constant. For this
experiment, we used our measurements for G and our
knowledge of forces to calculate the mass of the Earth.

II. THEORY

The gravitational constant G is fundamental in deter-
mining the gravitational force between two objects. The
gravitational force between two masses m1 and m2 is

F =
Gm1m2

b2
, (1)

where b is the distance of separation between their centers
of mass. A top view diagram of the apparatus is shown
in Fig. 1, where the small masses m1 are suspended from
the torsion balance, separated from the large m2 by the
distance b. The suspended masses are attached to each
end of a lever arm of length d, and can rotate about the
suspension point. Due to the rotation of the masses, we
need to consider the torques acting on the axis of rotation
from Fig. 1. The general form for a torque τ is

~τ = ~r × ~F . (2)

In this case, since the gravitational forces generating the
torque are perpendicular to the lever arm ~r, then we can
define the “gravitational” torque τg as

τg = 2Fd, (3)

where d is the length of the lever arm [2]. We note the
factor of 2 in Eq. (3) since we have the two gravitational
forces causing the arm to rotate in the same direction.
Due to the resistance of the torsion band, a torque is
created in the opposite direction of Eq. (3) where

τb = −κθ, (4)

with a torsion constant κ and θ is the rotation angle for
the system. The gravitational force perturbs the small
mass system, causing it to oscillate. For the system
to reach equilibrium, the torques from Eq. (3) and (4)
should be equal such that τg = −τb where

2Fd = κθ. (5)

If we substitute Eq. (1) into Eq. (5) , and solve for G, we
see that

G =
κθb2

2dm1m2
. (6)

The change in distance between our masses m1 and m2

can be determined from our experimental setup. We
will use the angle of deflection θ from Fig. 1 such that
tan(2θ) = ∆S/2L and ∆S is the change in distance.
Since we are dealing with such small angles, we can make
a small angle approximation so tan(θ) ≈ θ thus

θ =
∆S

4L
. (7)

The length L in Eq. (7) is the distance between the mirror
attached to axis rotation and the detector. As a result,
the change in distance between m1 and m2 ∆S, can be
characterized by the rotation of the axis picked up from
the detector and the length between them.
Again, the rotation due to the gravitational forces be-
tween the small and large masses will cause the lever
arm to oscillate until it reaches equilibrium. The period
of oscillations T can be defined in terms of κ and the
moment of inertia I of the suspended mass system so

T 2 =
4π2I

κ
. (8)
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Since the system experiences under damping due to the
torsion ribbon, the position x of the masses can be mod-
eled as a function of time t according to

x(t) = Ae−βt cos(ω1t− δ), (9)

where A is the amplitude, δ is the phase, and ω1 is the
angular frequency of oscillation [3]. As a result of under
damping, the decay parameter β is much less than the
natural angular frequency of the system ω0. As a result,
ω1 ≈ ω0 so we can use ω1 from observations to determine
the period where T = 2π/ω1. The moment of inertia
from Eq. (8) for the suspended masses is

I = 2m2(d2 + (2/5)r2), (10)

where m2 is the small mass [2]. We now take Eq. (8) and
solve for κ so that

κ =
4π2I

T 2
. (11)

Next, substituting Eq. (10) into Eq. (11) gives us

κ = 8π2m2
d2 + (2/5)r2

T 2
. (12)

Our final step is substituting Eqs. (7) and (12) into (6)
to arrive at

G = π2∆Sb2
(d2 + (2/5)r2)

T 2m1Ld
. (13)

However, our final equation value G will need to be ad-
justed. We only considered the large masses m2 inter-
acting with the small masses m1 right in front of them
and not with those on the other end of the lever arm. If
we consider the combination of those gravitational forces,
we find that our calculated G needs to be adjusted such
that

G0 =
G

1− b0
, (14)

where G0 is the corrected value and

b0 =
b3

(b2 + 4d2)3/2
. (15)

The full derivation for the correcting force with included
force-body diagrams can be found in the Lab Manual [2].
We can also use our measured values for G to estimate
the mass of the Earth. If we consider the force due to
gravity on an object at sea level is equal to the force
of gravitational attraction, we find that the mass of the
earth is

mE =
gR2

E

G
, (16)

where RE is the radius of the Earth and g is the acceler-
ation due to gravity at sea level.
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FIG. 1: Top view of the apparatus.

III. PROCEDURE

Our experimental setup was similar to Cavendish’s 1798
torsion balance but with some modern modifications. A
basic diagram of the apparatus is shown in Fig. 1. Two
tungsten balls with mass m2 = (1.5 ± 0.01) kg could be
rotated around the axis connecting them, shown in Fig. 2,
to allow for measurements in both ±θ directions. Inside
of a protective case, were two smaller tungsten balls of
mass (3.82± 0.02)× 10−2 kg, denoted m1, connected by
a bar. The center of bar was connected to an incredi-
bly sensitive pendulum which could rotate according to
a torsion balance located above the protective case.

The torsion balance had a beryllium copper ribbon which
created the resistance to the rotation of the lever arm so
the suspended masses could reach equilibrium. It should
be noted that, once oriented, the large masses were locked
in place so the change in distance between m2 and m1

was entirely due to the movement of the smaller masses.

From Fig. 1, the distance d from one m1 to the axis of
rotation was 50 mm. This distance d denoted our lever
arm. Located at the axis of rotation for the lever arm was
a mirror used to deflect a laser beam in order to record
the rotation. In line with the mirror was a detector in
the line of sight the mirror so that any deflection of the
laser could be detected. The measured distance between
the mirror and the detector was L = 12.8± 0.1 cm. The
uncertainty found in L was large compared to the other
known constants in the system, which resulted in a larger
uncertainty in the final calculations.

The laser detection was accomplished using a Hama-
matsu S3270 Position Sensitive Detector (PSD) con-
nected to Hamamatsu C3683-01 circuit which recorded
the change in laser position as a voltage. Both were con-
nected to a computer via a NI-DAQ 6009 so the measured
voltages could be converted back to distances using a pro-
portionality constant k = 37/20 mm/V for the results
and calculations [2].

We measured the change in the voltage of the laser over
time, and fit the damped-oscillatory behavior to estimate
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FIG. 2: Possible configurations for the large masses m2.

the period. The voltages were then converted to distances
to estimate ∆S between the small and large masses due
to the gravitational force.
We used two methods of determining this change in dis-
tance. For the first method, we measured the voltage
every 15 seconds for one hour with the large masses in
each position from Fig. 2. We then compared the deter-
mined equilibrium position for the small masses in each
position, h1 and h2 respectively, and used |h1 − h2| to
find ∆S for Eq. (13) to solve for G.
For the second method, the voltage was measured every
second for roughly 6 × 104 s with the large masses re-
moved to establish an initial value in case the neutral
equilibrium point for system was not located at θ = 0.
The voltage was measured again for 6 × 104 s, but with
large masses in position one from Fig. 2, until the small
mass assembly reached equilibrium. The ∆S value was
calculating using the difference between an equilibrium
position from Fig. 2 and the neutral equilibrium posi-
tion.
The period of oscillations, as required by Eq. (13), was
measured for both methods by fitting the respective
curves using the general solution for an under-damped,
harmonic oscillator from Eq. (9).

IV. DATA ANALYSIS

The two methods used to measure ∆S were: first, com-
paring the differences between the equilibrium positions
from Fig. 2, and second, comparing the difference be-
tween one of the equilibrium positions and a central
equilibrium position determined by removing the large
masses.
The results for the first method are shown in Fig. 3. The
deflection of the laser as a result of motion small masses,
m1, were fit with an under-damped, harmonic oscillator
in both positions from Fig. 2. The equilibrium positions
were measured to be h1 = −0.82±0.004 mm for position
one, and h2 = 1.82 ± 0.002 mm for position two. We
took the difference of the two positions to find ∆S =

4
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FIG. 3: Position of the laser measured as a function of time
for method one. The red diamonds designate the position of
the laser for m2 set to position two, and the green diamonds
for position one from Fig. 2. The green data set was taken at
a later time and offset in the plot in order to better compare
with the red data set. The black curves represent the fits used
for each of the data sets using an under-damped, harmonic
oscillator with a period of T = 491±1 s. The dashed red and
green lines represent the determined equilibrium positions of
the deflected laser with h2 = 1.82 ± 0.002 mm and h1 =
−0.822 ± 0.004 mm respectively.

TABLE I: Results from both methods of calculating the grav-
itational constant G and the Earth’s mass mE .

Method G Calculated ( N2m2kg−2) mE Calculated ( kg)

I (6.6 ± 0.1) × 10−11 (5.9 ± 0.1) × 1024

II (7.3 ± 0.1) × 10−11 (5.4 ± 0.1) × 1024

Accepted

G and mE : 6.67 × 10−11 5.97 × 1024

2.64± 0.01 mm.
The results for both methods of calculating G can be
found in Table I.
As expected, we found the period of oscillations to be
the same for each position within uncertainty, where
T = 491± 1 s. With the rest of the variables in Eq. (13)
being constants from Fig. 1, our estimation for G, us-
ing ∆S = 2.64 ± 0.01 mm and T = 491 ± 1 s, was
G = (6.6 ± 0.1) × 10−11 N2m2kg−2 after making the
correction calculation from Eq. (14). Compared to the
known value of G = 6.67×10−11 N2m2kg−2, we saw that
the known value fell within our uncertainty for method
one as shown in Table I. The large uncertainty in calcu-
lated G was due to the large uncertainty in the measure-
ment of the distance between the mirror and the detector
L. The results for the second method are shown in Fig. 4.
Using the same fit parameters as method one, we deter-
mined the equilibrium position for the m1 assembly and
when m2 were removed. We found that the equilibrium
position for position to be h = 2.006 ± 0.0002 mm, and
for the neutral position h0 = 0.5494± 0.0001 mm.
Since we only measured one position ∆S, according to
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FIG. 4: The laser position is shown as a function of time
for the masses in position two (purple diamonds) and masses
absent (blue diamonds). The blue data is offset to better
compare with the purple data though both data sets span
the same time period. The black curve represents the fit
used for the purple data set using an under-damped, har-
monic oscillator with a period of T = 491 ± 1 s. The dashed
black lines represent the equilibrium positions of the deflected
laser. The dashed line over the purple curve is located at h =
2.006± 0.0002 mm, for the blue at h0 = 0.5494± 0.0001 mm.

Eq. (7), ∆S = 2|h − h0| where the factor of two makes
up for the lack of a second measurement. Our ∆S value
for method one was ∆S = 2.914 ± 0.001 mm. The pe-
riod was measured to be the same as in method one
where T = 491 ± 1 s. From substituting T and ∆S
into Eq. (13) and making the correction from Eq. (14),
the gravitational constant was calculated to be G =
(7.3 ± 0.1) × 10−11 N2m2kg−2. We found that method
two did not contain known G within its uncertainty as
shown in Table I.
We used our measured G values from both methods to
estimate the mass of the earth from Eq. (16). For the
calculations, we assumed that the radius of the Earth
was RE = 6347.5 km, and used the acceleration due to
gravity at sea level where g = 9.807 ms−2. The accepted
value for the mass of the Earth is 5.97 × 1024 kg. For
method one, we calculated mE = (5.9 ± 0.1) × 1024 kg,
and method two mE = (5.4 ± 0.1) × 1024 kg. Similarly
with our comparison between the calculated and known
G values, the large uncertainty in L, resulted in a large
uncertainty for the calculated masses.

V. CONCLUSION

We measured Newton’s gravitational constant G for two
methods using the torsion balance. Our apparatus con-
sidered the deflection of a laser due to the rotation of a
lever arm from the gravitational forces between masses.
Using two measurement methods, we considered the ro-
tation angle θ of lever arm from Fig. 1, and used it to
determine the change in distance between the large and
small masses.
The first method measured the change in distance ∆S
by comparing the equilibrium locations of the lever arm
between the two configurations of the large masses, as
shown in Fig. 2. The second method compared one of
the equilibrium locations with the equilibrium location
of the small masses when the large masses were absent.
In method one, G was measured to be G = (6.6± 0.1)×
10−11 N2m2kg−2, and G = (7.3±0.1)×10−11 N2m2kg−2

for method two. Comparing both results to the accepted
value G = 6.67×10−11 N2m2kg−2, only method one had
the known value within its uncertainty.

Using the calculated G values and known constants for
the radius of the Earth, and acceleration due to gravity,
we calculated the Earth’s mass. The results for the two
methods were (5.9±0.1)×1024 kg, and (5.4±0.1)×1024 kg
respectively. Again, only method one included the mass
of the Earth, 5.97× 1024 kg, within its uncertainty.

Although most of the constants and calculated values had
a low uncertainty, the length measurement L between
the mirror and the detector was the highest. As a result,
both our calculated G and mass values for the Earth had
a 10% uncertainty. If L were to be measured exactly, we
could see the accuracy of both calculations increase by
one order of magnitude.
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