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Abstract

In this study, the human body’s behavior during a back somersault was examined. Due to the laws of
classical mechanics, once a body leaves the ground, all linear and angular momentum must be conserved
until the application of an outside force or torque. Therefore, any change in angular velocity without
application of an outside torque must be due to a change in the moment of inertia of the body. Using
Tracker video analysis, a video of a back somersault was analyzed to determine the angular spin of the
body and whether or not it was conserved. By simplifying all limbs to cylinders, the center of mass of each
limb, as well as the mass of each limb, was used to determine the center of mass of the body as a whole for
three key points in the somersault: the take off, the tuck or ball shape at peak height of the somersault
and just before the landing. From calculating the body’s overall center of mass and using the Tracker video
analysis program, the angular velocity and inertia tensor of the human body was calculated. With the
inertia tensor and angular velocity, the magnitude of the angular momentum of the body was found to be
L, =27.89, Ly = 57.409, L3 = 24.85, measured in kg M? where each number represents the three previous
positions and all three angular momentum act about the axes of rotation. The results found show that
angular momentum was not conserved and in fact doubles at the tuck phase of the rotation. This change in
angular momentum was more than likely due to the inefficiency of the measuring method used during the
video tracking of the several body parts of the body.

1 Introduction not stop with Newton but continued on. Scientists

such as Leonhard Euler[2], Pierre-Simon Laplace,

The conservation of energy and momentum has been
discussed since the age of Isaac Newton and his com-
position of the Principia. While Newton discussed
conservation of energy and linear momentum in his
experiments and writing, his only topic concerning
angular momentum was his proof of the Law of
Areas(1]. The trend of discussing important pieces of
angular momentum without increased analysis did

and Léon Foucault all discussed important parts to
angular momentum, but it was not until William
J. M. Rankine’s 1858 Manual of Applied Mechanics
that we received our modern definition of angular
momentum(3].

From bicycles and gyroscopes to the orbit of
planets, angular momentum and its conservation



principles are very important in governing the
movement of various objects and organisms. For any
who may have seen an animal such as a squirrel or
cat fall from a tree, than they have seen the abilities
of the animal to adjust the position of their body
mid-air in order to minimize damage or land on their
feet. We can see humans doing something similar in
many sports. From ice skating and dancing to diving
and gymnastics, athletes use the change in body
position in order to generate greater amounts of
angular velocity. Due to the laws of the conservation
of angular momentum, athletes are able to adjust
their body position to increase their angular velocity.

Among the sports that use this physical law is a
new sport known as Freerunning. Founded by David
Belle and Sebastian Foucan, freerunning is a freestyle
sport based in the movement of the body. The sport
came from the French military technique known as
parcour or parkour. This discipline was taught to
french troops to ensure their ability to safely move
in any environment quickly and efficiently. From
this, movements from martial arts tricking, hip hop
dance and gymnastics were adapted and the sport
as it is known today was created [4].

Because freerunners perform movements either di-
rectly from or similar to gymnastics, we will be ana-
lyzing the change in body position of a parkour ath-
lete in order to perform a back somersault. While
similar studies have been conducted in the study
of gymnastics movements, few have looked at the
increase of angular velocity due to the change in
body position and none have examined the tech-
niques of freerunning athletes. In this study, we ex-
amine the changing inertia tensor of the human body
and its efficiency in generating angular velocity. Us-
ing Tracker, a video analysis tool, a video of a back-
wards somersault was analyzed following the center of
mass of the major limbs of the body (arms, legs, torso,
etc.), measuring their position and angular velocity
relative to a set axes at the bottom of the athlete’s
feet. By using the positions of the centers of mass for
each limb, the body’s overall center of mass and in-
ertia tensor was calculated for the instant where the
feet of the athlete left the ground, the time at which

the greatest change in position occurs (in this case,
the tuck position of the somersault) and the instant
just before landing. Because all measurements were
taken while airborne, the body can be treated as an
isolated system and we can assume the momentum
of the body is conserved.

2 Theory

All equations in this section were taken from [4]. In
order to determine the body’s overall center of mass
and subsequently the inertia tensor, we must first de-
termine the center of mass for all major limbs. Esti-
mating each limb to be a cylinder of set length and
radius, with the head being a sphere of set radius,
the center of mass of each can be estimated to be in
the center due to symmetry. Treating these limbs as
point masses, we can use the center of mass equation,

X = L;maxa, (1)

to determine the center of mass of the human body
overall. In this case, X is the x-axis position of the
center of mass, M is the total mass of the body, m,
is the mass of one of the limbs and x, is the single
coordinate position of that point mass. This calcu-
lation was repeated for the Y and Z coordinates to
find the three dimensional position of the center of
mass. From Newtons laws of motion, when the ath-
lete leaves the ground, the athlete’s center of mass
will travel similar to a projectile with no torque act-
ing on the body. Because there is no external torque
about the center of mass once leaving the ground,
the angular momentum of the athlete is conserved.
Knowing that angular momentum is conserved, we
can look at how an athlete is able to change their
angular velocity by changing their body position.
The angular momentum of any body can be found
using the equation,

Ltotal = Lorb + Lspinv (2)
where L, is the angular momentum of the center
of mass and Ly, is the angular momentum of the
rotating body about the center of mass. In our case,



because the center of mass will take a parabolic tra-
jectory, Loy is trivial and we will focus on Lgp;p. In
order to find our Ly, we can can use the equation,

- drg,
Lspin = Z <T,o¢ X madt) ,

[e3%

(3)

where 17, is the position of the center of mass for any
particular limb relative to the body’s overall center
of mass, m, is the mass of any particular limb and
7?& is the change in position of any particular limb
relative to the body’s overall center of mass. In order
to move from the positions measured relative to some
origin to our 7 «, We can use the relation

Ty, =Ta— R

(4)

where r, is the distance from origin to the limb’s
center of mass and R is the position of the body’s
center of mass. With Eq. (3), we can use the position
and linear momentum of the limbs to determine the
angular spin of the body.
When observing a back somersault, it is seen that the
angular velocity of the body increases during the tuck
position of the somersault. This is due to the change
in body position during the somersault. Using the
equation

(5)

where I was the 3x 3 inertia tensor of the human body
and was the angular velocity of the human body, the
angular momentum can be determined. Because the
change in body position occurs while airborne, there
is no torque on the body, meaning that the angular
momentum is conserved. Because angular momen-
tum is conserved, a change in the inertia tensor of
the body from an initial flat body to a tight round
ball must be occurring. Knowing this, we can calcu-
late the inertia tensor during take off, at the position
when the tuck is the tightest and just before landing.
The inertia tensor acts on the 1 x 3 angular velocity
matrix according to

L=Iw,

L1 Imw Iwy Ixz w1
Lo | = Lye Ly Iy w2 (6)
L3 IZ’I' [zy Izz w3

To calculate the inertia tensor, we can use the
equations,

Ia::r = Za ((yoc)2 + (Za)2)
Iwy = Ea (ma . ya)
Iwz - Ea (-ra . Za) 5

(7)

to find the first row of the inertia tensor. In order
to find the second and third row of the tensor, the
same process as above needs to be done for the y and
z coordinates where we have the relations,

I.'zcy = Iyr
Imz —dzx , (8)
Iy = Iy
and ) )
Iyy = Ya ((xa) + (Za) ) (9)
Izz = Ea ((xcx)z + (ya)2) :
With Eq. (7). Eq. (8) and Eq. (9), we can calcu-

late the inertia tensor for each specified position. Be-
cause the angular momentum is conserved, if we see
a change in the inertia tensor, we should also see a
change in the angular velocity to compensate as to
maintain the constant angular momentum.

3 Procedure

3.1 Data Collection

For this experiment, a method to measure the mass,
height and center of mass position was needed. Be-
cause angular momentum is reliant on both the mass
and the position of the center of mass of an object,
my body was used as a constant. Because I was used
as the test subject, the mass, height and position of
the center of mass of each body part could be mea-
sured. In order to determine the center of mass of
each limb, they were broken into segments; forearm
and hand, upper arm, thigh, calf and foot and torso,
all estimated to be a cylinder. With the estimation of
a cylinder with uniform mass distribution, the center
of of mass of each must be in the center due to sym-
metry whereas the head is treated as a solid sphere
of uniform mass.

With a method of determining the center of mass po-
sition of each limb, several videos were taken of the



Figure 1: The three positions of a back somersault used for analysis, includes the markers of each limb’s
center of mass: upper arm (blue), forearm (white), head (yellow), torso (red), thigh (purple) and calf (green)

Figure 2: The illustration of the coordinate system
used for this experiment, where this figure was repro-
duced from source [5]

back somersault action using a GoPro Hero 3 video
recorder. The axis of rotation was determined to be
the y-axis, with an assumption that the body is sym-
metrical about the vertical axis, the vertical was de-
termined to be the z-axis and forward and backward
movements were on the x-axis as illustrated in Fig. 2.
With these axes, one of the videos with a view of the
xz-plane was used to analyze the motion of the som-
ersault as well as the position of the different limbs
before, during and after the somersault. Because the
goal was to analyze the spin angular momentum of
the body as it rotates, the program Tracker Video
Analysis and Modeling Tool was used to track the
position of the center of mass of each limb. This was
done by playing through the video frame by frame
and marking the position of the center of mass of each
limb in each frame as seen in Fig. 3. With the posi-
tion of each limb’s center of mass, Eq. (1) was used to
find the x, y, and z components of the body’s overall
center of mass. Because the human body is not rigid,



Figure 3: The beginning frame of the video used for
analysis, includes the markers of each limb’s center
of mass: upper arm (blue), forearm (white), head
(vellow), torso (red), thigh (purple) and calf (green)

this was calculated for the three points of interest, or
three basic body positions of the human body during
the somersault, separately. These points included the
three positions of the body that were most frequent
during the somersault, a flat body, a tucked or balled
up body and a semi-bent body as seen in Fig. 1. For
these three points, Eq. (7), Eq. (8), Eq. (9) were used
to calculate the inertia tensor of the body.

With the inertia tensors, the Tracker program was
used once again to determine the angular velocity of
the torso and head of the body. Because the somer-
sault is a 360 degree rotation of the body about the
center of mass, the angular velocity of the head and
torso system were multiplied with the inertia tensor
of the body. To determine these angular velocities,
the Tracker program used the change in position from
the previous point relative to the origin. However, be-
cause the inertia tensor was calculated relative to the
center of mass of the human body, the angular veloc-
ity must also be relative to this center of mass. In
order to do this, the position of the center of mass for
each previously specified body position was marked
in the original axes of all other measurements before

the orientation of the axes was changed to the center

© of mass of the body. With the axes adjusted and all

previous points of the various centers of mass shifting
relative to the change in axes, the Tracker program
recalculated the various positions and angular veloc-
ities of the limbs. These values were used to act on
the inertia tensors and find the angular momentum
of the body.

4 Data and Analysis

' i 4.1 Video Analysis

& In order to analyze the angular momentum of the hu-

man body during a somersault, the mass and height
of the body was needed. As specified in the proce-
dure of this report, my own body was used for all
experiments. Knowing that all video was of my own
body, my mass and height was used for all following
calculations. Being of a height of 175 cm and a mass
of 65.3 kg, these measurements were further used to
determine the mass and center of mass position of
all limbs. Because the body is a nonrigid object, the
separate limbs were assumed to be cylinders where
their centers of mass position would always be in the
center of each limb. The measurements of each limb
were done from the nearest joint, where the length of
the upper arm was measured from shoulder to elbow
and forearm was measured from elbow to finger tip
while the thigh was measured from hip to knee and
calf was measured from knee to the ground. With
these measurements, the center of mass of each limb
was marked as seen in Fig. 3. Using data from [7],
the average mass distribution of the 25 year old male
was used to determine the mass of each of these limbs
in Table II.

With a specified mass and position of center of
mass for each limb, Eq. (1) was used for the x, y, and
z coordinates to find the center of mass of the human
body. Because the human body is a nonrigid body,
the center of mass moves with the orientation of the
body’s limbs. Knowing this, a center of mass was
found for all specified points of interest, assuming
symmetry about the y axis, and was recorded in
Table III.



Table 1: The specific mass of each major limb of my

body.

’ Body Part | Mass(kg) |

Upper arm 2.575

forearm and Hand 2.26

Thigh 5.796

Calf and Foot 3.919

Head 6.914

Torso 28.35

Table 2: The center of mass position of my whole
body at the three chosen key points.
Body Position | CM Position(m)(x,yz) |

Take off (0.0101,0,1.320)
Tuck (10.044,0,1.543)
Landing (0.137,0,1.06)

These calculations for the center of mass(CM)

showed that, relative to the specified origin, the po-
sition of the CM moves farther up the body. In ana-
lyzing the change in position of the center of mass as
the body achieved a tucked position, or curled posi-
tion, the body changes from the simplified shape of a
cylinder to the shape of a sphere. Because the posi-
tion of the CM of a cylinder and sphere are different,
this shift is an expected result.
After finding the center of mass positions for each
body position, because the goal was to analyze the
spin of the body, the center of mass of the body was
used as a new origin for the calculations of the inertia
tensor and angular velocity. Using Eq. (4) and the
calculated centers of mass were used to find the po-
sitions of the limbs r/, relative to the center of mass
position R, the results of which were recorded in Ta-
ble IV.

The positions calculated in Table IV were used in
Eq. (7), Eq. (8), and Eq. (9) to calculate the inertia
tensors needed to find the angular momentum. The

resulting inertia tensors were

10.56 0 2.64

I = 0 11.09 0
264 0 156
28 0 —0.94
I, = 0 38 0 (10)
—0.94 0 324
38 0 —1.92
Iy = 0 626 0 ,

-192 0 2.94

where all measurements are of units in kg- m?. With
these inertia tensors, I; is the take off position, Iy
is the tuck position, and I3 is the landing position.
In examining these results, it is clear that the inertia
tensor of the take off was the greatest where as the
inertia tensor of the tuck was the lowest. In com-
paring these results with the simplified forms, a solid
cylinder about its central diameter and a sphere re-
spectively, the moment of inertia of a sphere is indeed
smaller than that of a cylinder.

Not only did this shift match the expectations of their
simplified forms, but with the assumption that angu-
lar momentum is conserved also holds in this case, if
the inertia tensor decreases, the angular velocity must
increase to compensate. However, in order to find the
angular momentum of the body at each body posi-
tion, the angular velocity of the body must be found.
In order to find the angular velocity of the body, the
system was simplified to the head and torso.

When doing a somersault, the rotation is judged by
the ability of the head and torso system to do a com-
plete rotation. Because of this consideration, to de-
termine the angular velocity of the body, a straight
line was drawn from the torso’s center of mass to
the head’s center of mass, going through the body’s
overall center of mass, which in this case is the origin.
Using trigonometry, the angle at which this line lay
with respect to the set axes was calculated. With this
calculation, the same was done for a frame before and
after the frame of the chosen position. Once this was
done, the difference in angles was found between the
chosen frame and the following frame, as well as the
chosen frame and the previous frame. These differ-
ences in angle were then divided by the time passed



Table 3: The calculated y-direction inertia tensor,
angular velocity of the head torso system and the

angular momentum of the whole body.
| Body Position [ I,,(m-r?) [ w(Rad/s) | Ly(kg - m?/s) |

Take off 11.09 2.5 27.9
Tuck 3.9 14.8 57.4
Landing 6.26 -4.0 -24.85

Figure 4: The position of the torso’s center of mass
in the x-direction as a function of time.

between frames. The resulting angular velocities were
then averaged, giving the results found in Table III.

Because the body rotated about the y-axis ex-
clusively, all of the angular velocity was in the y-
direction. Because all of the angular velocity was in
the y-direction, when the inertia tensor acts on the
angular velocity vector, the only result that will be
non zero will be in the y-axis. The y-axis row being
the middle row, it was clear that the product between
the center value and the angular velocity value would
give the angular momentum of the body.

With several specified angular velocities and inertia
tensors, Eq. (5) was used to find the angular momen-
tum for the three different body positions, where each
is referred to as the take off, tuck, and landing posi-
tions respectively. The results from Table IIT suggest
that angular momentum was not conserved. If an-
gular momentum were to have been conserved, these
values would have been either closer to one another
or exactly the same. In examining the magnitudes
of the take off and landing angular momentum, they
are within 10% of each other, showing the possibil-

Time(s)

Figure 5: The position of the torso’s center of mass
in the vertical or z-direction as a function of time.

ity of conservation. In observing Fig. 4 and Fig. 5,
the negative sign of the landing angular momentum
is explained by the seeming decrease in the change in
both the x and z positions of the body from ¢t = 0.8 to
t = 1.0. However, in examining the angular momen-
tum during the tuck position, the value found was
more than double that of the take take off angular
momentum and 2.3 times greater than the landing
angular momentum.

Because we expect angular momentum to be con-
served, the results found were used to investigate the
reliability of the tools used. The increase in angular
momentum was more than likely due to a multitude
of errors in calculating the angular velocities and the
position of the center of mass of the body. In calculat-
ing the angular velocities, after repeated analysis of
the change in the angle of the head body system, the
tuck position continuously resulted in an exceedingly
high angular velocity while the landing position re-
sulted in a negative velocity, indicating that the body
began rotating in the opposite direction. This error
in analysis is more than likely the cause of the error in
angular momentum but along with this error is the
calculation of the center of mass position. Because
the human body is a nonrigid object, the configura-
tion of the limbs actively changes the body’s overall
center of mass. Because the center of mass for each
position was considered to be constant, the change
in the angle of the head torso system could possibly
be incorrect as well. In acknowledging these failures



in analysis, a second method of analysis was used.
Whereas the previous analysis measured all angular
velocities from the center of mass, this method ana-
lyzed the rotation of the body relative to the original
origin at the athlete’s feet. In doing this, more re-
liable data was hoped to be collected. However, the
resulting angular velocities were not only very similar
to the initial quantities found, but the angular veloc-
ity of the landing position was once again calculated
to be negative. With these results, it was concluded
that the use of Tracker video analysis would not be
appropriate or functional for this type of analysis.

5 Conclusion

The stunts and actions performed by both gymnasts
and freerunners are incredibly impressive and com-
plex. In studying the back somersault, performed by
both such athletes, the conservation in the body’s
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