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In this project, the Morris-Thorne metric of the spacetime around a wormhole was investigated
to study the properties of the wormhole and determine if the wormhole might be traversable for
human travellers. First, a 2-D slice of the metric was took by fixing two coordinates t and θ,
and an embedding diagram of the wormhole surface was created. The diagram showed that the
wormhole connects two asymptotically flat spaces. Then, a plot of the geodesic was made to visualize
how a free-falling particle travels through the wormhole. Also, it was concluded that a traveller
experiences small tidal force during the trip if the velocity is small, make the trip through the
wormhole possible. Finally, the stress-energy-momentum tensor showed that the spacetime for the
Morris-Thorne wormhole requires negative energy density, which is only allowed on a microscopic
level for a short time.

I. INTRODUCTION

A wormhole is an alternate path that allows particles
travel from one point to another. which distinct from
the usual path in flat spacetime. Wormholes are con-
sidered to be a new hope for interstellar travel, since
the path through the wormhole has a smaller time in-
terval, and, most importantly, they are mathematically
constructed solutions to Einstein’s equations for gravity.
In 1988, Michael Morris and Kip Thorne introduced a
simple wormhole solution [? ] to the Einstein’s equation,
which is easy to visualize. In this paper, I will construct
the properties of the wormhole base on the metric, and
make conclusion about a particle travelling through it.

II. SPACETIME AND GENERAL RELATIVITY

A. Coordinates

For classical 3-dimensional coordinates, we use the sets
of basis {r, θ, φ} or {x, y, z}, which represents only spa-
tial dimensions. For the 4-dimensional spacetime coordi-
nates, we introduce an extra time dimension ct, where t is
the time measured by a static observer and the constant
c is the speed of light.

The four coordinates can be expressed using the no-
tation xµ, which is a collection of four variables with
indices µ goes from 0 to 3. Each variable represents one
dimension in the coordinate system by

xµ ↔

 x
0

x1

x2

x3

 =

 ctrθ
φ

 . (1)

B. The Metric

In mathematics, the metric d : M ×M → [0,∞) is a
function that defines the distance between a pair of points
in a metric space M . In physics, we usually call it the

spacetime interval. Suppose we have a 4-D vector space
V with basis {e0, e1, e2, e3}. Let dq be an infinitesimal
displacement, Then the vector dq can be expressed in the
form

dq =

3∑
µ=0

dxµ eµ. (2)

On the right side of Eq. (2), the dxµ is the vector com-
ponent on the basis eµ. Now we find the line element ds
by taking the dot product of the vector dxµ on itself. We
have

ds2 = 〈dq, dq〉 (3)

=

(
3∑

µ=0

dxµ eµ

)
·

(
3∑

ν=0

dxν eν

)
(4)

=

3∑
µ=0

3∑
ν=0

(eµ · eν) dxµdxν . (5)

(6)

We define a 4 × 4 matrix with elements gµν = eµ · eν .
Then

ds2 =

3∑
µ=0

3∑
ν=0

gµνdx
µdxν . (7)

In short, we write

ds2 = gµνdx
µdxν . (8)

Notice that there are the same indices µ, ν put at the top
and the bottom. That implies a sum over indices µ, ν
from 0 to 3.

We use the notation gµν to represent the rank-2 metric
tensor. In a 4-dimensional spacetime, the indices µ, ν
goes from 0 to 3. Then the metric has the form of a 4×4
matrix

gµν ↔

 g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

g30 g31 g32 g33

 . (9)
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For example, in a 3-D Euclidean space R3 with the set
of orthonormal basis {x̂, ŷ, ẑ}, we have

eµ · eν = δµν =

{
1 µ = ν,

0 µ 6= ν.
(10)

The the metric tensor has the form of a 3× 3 matrix

gµν ↔

 1 0 0
0 1 0
0 0 1

 , (11)

and the inverse of the metric tensor gµν is denoted by
gµν . Then we have

ds2 = gµνdx
µdxν (12)

=
[
dx dy dz

] 1 0 0
0 1 0
0 0 1


 dxdy
dz

 (13)

= dx2 + dy2 + dz2, (14)

which is the space interval on a 3-D Euclidean space.
Also, if we use spherical coordinates {r, θ, φ} as the set
of orthogonal basis. Then the metric has the form of a
3× 3 matrix

gµν ↔

 1 0 0
0 r2 0
0 0 r2 sin2 θ

 . (15)

Then the metric takes the form

ds2 = dr2 + r2dθ2 + r2 sin2 θ dφ2. (16)

From the above examples, notice that even in the same
space, the metric has different forms depending on the
basis we use. If we define the vector dxµ = gµνdx

ν ,
Eq. (8) becomes

ds2 = dxµdx
µ, (17)

The vector dxµ is the contravariant component, with the
index µ on top. Thus we define dxµ to be its covariant
counterpart, with the index µ on the bottom. The scalar
product of the two is invariant under coordinate trans-
formation, even Lorentz transformation. As a result, the
dot products in Eq. (14) and (16) are equivalent, even
with different basis. This is crucial since observers in any
inertial frame should agree on the spacetime interval.

III. MORRIS-THORNE-WORMHOLE

In the above section, we have developed some mathe-
matical definitions and notations. Then we can use them
to study the properties of wormholes.

A. The Metric

The metric introduced by Machael Morris and Kip
Thorne [? ] is described by

ds2 = −c2dt2 + dl2 + (b20 + l2)(dθ2 + sin2 θ dφ2), (18)

where:

• t is the time measured by a static observer, and
−∞ < t <∞.

• θ, φ are spherical polar coordinates, and 0 ≤ θ ≤ π,
0 ≤ φ ≤ 2π

• l is the radial coordinate, and −∞ < l < +∞.

For l2 � b20, the metric takes the form of Eq. (16), which
is a representation of flat spacetime in spherical coordi-
nates. It shows that the spacetime has two asymptoti-
cally flat regions at the limits of l→ +∞ and l→ −∞.

B. Embedding Diagram

The metric describes the structure of the wormhole in
4 dimensions. To visualize the wormhole, we first take a
2-D slice of the metric by fixing t = t0 and θ = π/2. Then

if we let l =
√
r2 − b20, where r is the radial coordinate

used in polar coordinates, the metric become

ds2 =

(
r2

r2 − b0

)
dr2 + r2dφ2. (19)

Now we have a curved 2-dimensional surface in polar
coordinates (r, φ). We can embed the surface in a 3-
dimensional space by expressing it in cylindrical coordi-
nates (r, φ, z), with

ds2 = dr2 + r2dφ2 + dz2 (20)

=

(
1 +

(
dz

dr

)2
)
dr2 + r2dφ2. (21)

We solve for z using Eqs. (19) and (21), and we get

z = ± b0 ln

r +

√(
r

b0

)2

− 1

 . (22)

Then we can plot a slice of the surface of the wormhole
is a 3-D diagram.

Figure 1 shows the curved 2-D surface of the wormhole
being embedding in a 3-D space. For the metric to work,
we assume that the wormhole connects two asymptoti-
cally flat regions, the spacetime gets flatter and flatter as
|l| increases and l2 � b20 by comparison. It also shows
that wormhole has a throat where l = 0 and r = b0.
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FIG. 1: The embedding diagram of the Morris-Thorne worm-
hole in cylindrical coordinates. Fixed t = t0 and θ = π/2.
There are also 2 asymptotically flat regions on top and bot-
tom.

C. Geodesic

There is a great deal of information we can get from
the metric. A geodesic is the path of a free-falling par-
ticle, with no external force except gravity acting on it,
moving along the space. First we can find the connection
coefficient Γ from the metric by

Γµνα =
1

2
gµβ

(
∂gβν
∂xα

+
∂gβα
∂xν

− ∂gνα
∂xβ

)
. (23)

The connection coefficient gives us information about
how the tangent vector changes as it moved along the
space. In a curved space, if we parallel transport a tan-
gent vector Aµ for an infinitesimal displacement along
dxβ , the vector components of Aµ generally changes.
Suppose the new tangent vector is Aµ

′
= Aµ + δAµ in

the parallel transport. Then

δAµ = −ΓµνβA
νdxβ . (24)

Note that Γµνβ determines the change of the vector com-
ponents in parallel transport.

The geodesic equation is

d2xµ

dτ2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0. (25)

The variable τ is a scalar parameter. For massive par-
ticles, τ can be thought of the proper time. Notice the
first term on the left side of Eq. (25) is the acceleration
in respect to each coordinate, and the second term of

FIG. 2: The geodesic (red line) of the free-falling particle on
the surface of the wormhole.

Eq. (25) tells us how the path is curved due to curvature
of the space itself. At the limit of a flat spacetime where
Γµνα = 0. Then Eq. (25) becomes

d2x

dt2
=
d2y

dt2
=
d2z

dt2
= 0, (26)

which agrees with Newton’s First law for a body travel-
ling straight with no net force acting on it.

If we use the connection coefficient for the Morris-
Thorne wormhole, we find that the particle moves along
the world line

l = vt, (27)

θ = const, (28)

φ = const, (29)

where v is the velocity of the particle. The proper time
interval ∆τ for travelling from one point to another is
given by

∆τ =

∫ √
gµν

dxµ

dτ

dxν

dτ
dτ. (30)

Suppose there is a particle free-falling through the worm-
hole with velocity 0.1c, and it travels from the point
τ1 = −10 to the point τ2 = 10. Then c∆τ = 19.9 meters.
Thus the proper time interval is ∆τ = 6.64×10−8 second,
which is nearly instantaneous. In theory, a wormhole can
directly connect two points that are arbitrary far apart,
but the trip only takes small amount of time. That shows
the path through the wormhole has a much smaller the
time interval.

Figure 2 shows the geodesic of the free-falling particle
expressed in cylindrical coordinates. The plot was over-
lapped with the embedding diagram of the wormhole,
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showing how the particle travels along the surface of the
wormhole.

D. Tidal Force

When free-falling through the wormhole, we expect a
tidal force that stretches and twists the traveller. That
means a traveller will not survive the trip if there is strong
tidal force. To understand the tidal acceleration on the
free-falling particle, we have to consider the Riemann cur-
vature tensor in the frame of the particle.

Then we can find the Riemann curvature tensor by

Rµναβ = Γµνβ,α − Γµνα,β + ΓγνβΓµγα − ΓγναΓµγβ (31)

However, all the calculations above took place in the
reference frame of a static observer, which is the unbarred
frame. Now we need information in the frame of the
free-falling particle, the barred frame. Then we need to
apply Lorentz transformation to the tensor. Suppose the
particle is free-falling with velocity v, then the Lorentz-
transform matrix has the form

Lµν̄ ↔

 γ γ vc 0 0
γ vc γ 0 0
0 0 1 0
0 0 0 1

 , (32)

where γ = (1−v2/c2)−1/2. Then we obtain the Riemann
curvature tensor Rµ̄ν̄ᾱβ̄ in the frame of the free-falling
particle by the set of equations

Rδλρσ = gδγR
γ
λρσ, (33)

Rµ̄ν̄ᾱβ̄ = Lδµ̄ L
λ
ν̄ L

ρ
ᾱ L

σ
β̄ Rδλρσ, (34)

where Rδλρσ and Rγλρσ are simply two different forms of
the Riemann curvature tensor in the frame of the static
observer. Using Eq. (34) with some calculation, it was
found that

R2̄0̄2̄0̄ = R3̄0̄3̄0̄ = −
(γv
c

)2 b20
(b20 + l2)2

. (35)

Also for µ, ν 6= 2 and µ, ν 6= 3,

Rµ̄0̄ν̄0̄ = 0. (36)

Then the tidal acceleration vector Aµ̄ can be found by

Aµ̄ = −gµ̄ᾱRᾱ0̄ν̄0̄x
ν̄ , (37)

where the barred indices indicate that the calculation
takes place in the barred frame. We can conclude from
Eq. (35) and (37) that at the limit of v → 0, the tidal
acceleration also goes to zero and vanishes. That means
theoretically, a traveller with small velocity can survive
the trip through the wormhole, making the wormhole
traversable.

IV. STRESS-ENERGY-MOMENTUM TENSOR

In 4-dimensional space-time, the classical momentum
p of a massive particle is generalized to the 4-momentum
pµ by

pµ ↔

 p
0

p1

p2

p3

 =

 E/cpxpy
pz

 , (38)

where E is the relativistic energy and p = (px, py, pz) is
the spatial momentum.

The stress-energy-momentum tensor Tµ̂ν̂ is defined to
be [? ]

Tµν ↔
dpµ

d3Vν
, (39)

which means 4-momentum per 3-volume. We specifcally

look at T 0̂0̂ =
dE

dx dy dz
, which is called the energy density

ρ. The indices µ̂, ν̂ indicates that the tensors or vectors
are normalized.

Since Rµναβ is a rank-4 tensor, we can contract it to a
rank-2 tensor. For example,

Rµν = Rαµαν (40)

and

Rµν = gµαRαν , (41)

where gµν is the inverse of the metric tensor gµν . Then
the scalar curvature R of the spacetime surface can be
obtained by

R = Rµµ. (42)

Finally, the Einstein curvature tensor Gµν is defined
to be

Gµν = Rµν −
1

2
Rgµν . (43)

Then Einstein’s equations relate the Einstein curvature
tensor Gµν and the stress-energy tensor Tµν by

Gµν =
8πG

c4
Tµν , (44)

which is a proportionality relationship. Note that Gµν
is about the curvature of the space and Tµν is about the
mass and energy present in the space. Then Einstein’s
equations suggest that spacetime is curved due to the
presence of mass and energy, and then the motion of
bodies depends on the geodesic of the curved spacetime.
This is a generalization of gravity between bodies.

In most cases, we work with the contravariant form
of the stress-energy-momentum tensor, denoted by Tµν ,
which is given by

Tµν = gµαgµβTαβ . (45)
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Then, to normalize the tensors, we have

T µ̂ν̂ =
√
|gµµgνν |Tµν . (46)

Note that there is no implied sum in Eq. (46). The equa-
tion only involves simple multiplication of elements.

The energy density ρ of the wormhole from the view of
the static observer can be found using the stress-energy
tensor by

ρ = T 0̂0̂ = − c4

8πG

b20
(b20 + l2)2

< 0, (47)

which has a negative value. From the above result, an
observer near the Morris-Thorne-wormhole will observe
negative energy density, which is unlikely to happen on
a macroscopic level. However, the quantum field theory
does allow negative energy density on a microscopic level
for a short time.

V. CONCLUSION

A wormhole is expressed in 4-D spacetime. However,
we could take a 2-D slice of the wormhole and visualize

it on a 3-D space, which is called the embedding dia-
gram. We could see from the diagram that this metric
agrees with the assumption that the wormhole connects
two asymptotically flat surface. For a free-falling particle,
the geodesic plot also showed how a free-falling particle
moves on the surface of the wormhole. A calculation of
the proper time interval showed that travelling through
a wormhole only takes a small amount of time, which
shows how beneficial wormholes are. When the parti-
cle is travelling with small velocity, the tidal force on a
particle becomes very small That means theoretically a
human can travel through the wormhole safely. How-
ever, the calculation also showed that an observer near
the wormhole will observe negative energy density, which
is very unlikely to happen, except in a microscopic level
for a short time. That also explains why we have never
observed a wormhole anywhere in space.
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