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Period doubling bifurcation and chaotic behavior were observed in a diode’s voltage connected in
series with a resistor, an inductor, and a sinusoidal function generator. The circuit’s driving voltage
was varied while the frequency is held constant to observe the evolution of the circuit’s route to
chaos which is plotted in a bifurcation logistic map. The voltages at which period doubling occurred
were recorded and used to calculate Feigenbaum’s constants. The first constant which describes the
rate at which period doubling occurs was calculated to be 4.6 ± 0.2 which is within the accepted
value of σ = 4.669 with an error percentage of only 1 %. The second constant which describes the
ratio of tines to subtines in the bifurcation map was calculated to be 2.7 ± 0.3 which is also within
the accepted value of α = 2.503 with an error percentage of 7%.

I. INTRODUCTION

Had the author of this paper chosen to drink hot choco-
late over apple cider on a cold wintry day when he was
five, this paper would have never been written. This
statement can be labelled as nothing but an outrageous
conjecture, yet it holds the essence of chaos theory. In
this example, the existence of this paper depends on a
seemingly insignificant decision made over a decade ago;
this “life” system can be described as highly sensitive to
small changes in its parameters.

The notion of chaos can be interpreted as the absence
of order and the unpredictability of outcomes in a system
highly sensitive to change. This definition of chaos chal-
lenges the fundamental axiom of causality that physics
is built upon; after all, if the cause in a deterministic
system is known so should the effect. This prompted
some physicists to attribute chaotic behavior to insuf-
ficient knowledge of the variables contributing to chaos.
Others argued that the high sensitivity of chaotic systems
make them impossible to predict and hence can only be
understood in terms of the underlying patterns that arise
in a large class of chaotic systems. Regardless of stance
on chaos, this paper explores the concept as a not fully
understood phenomenon that piques the interest.

The concept of chaos first appeared in publication
when the French theoretical physicist Henri Poincarè at-
tempted to solve three-body problem in the 1880s. This
problem seeks to determine the motion of three points
in space according to Newton’s laws of motion and the
universal laws of gravitation given all needed initial con-
ditions such as position and velocity. Poincarè showed
that the problem has no general solution as the the mo-
tion of the three bodies is non-periodic and non-repeating
except in special cases. This is an example of a determin-
istic system that exhibits chaotic behavior.

It was not until 1961, however, that the American
mathematician and meteorologist Edward Lorenz estab-
lished chaos theory. Lorenz had developed a computer
simulation to model air movement in the atmosphere to
predict weather changes. Lorenz noticed that in perform-
ing the same calculation rounding three rather than six
digits gave drastically different weather outcomes. This

gave rise to famous butterfly effect, where a butterfly flap-
ping its wings in Brazil, in analogy to the minute change
of rounding off an extra digit in the simulation, sets off
a tornado in Texas a year later.

The complete randomness of chaos was shattered in
1975 with the discovery of the period doubling route to
chaos by the American physicist Mitchell Feigenbaum.
This theory describes the transition from regular dynam-
ics to chaos with a series of period doubling responses,
known as bifurcations, to a varying driving parameter.
This theory also states that the ratio of distance between
two consecutive bifurcations is a constant, known as the
Feigenbaum constant, found in a multitude of chaotic sys-
tems. Suddenly, chaos contained some element of order
characterized in the universality of this transition. The
universality of this constant in chaotic phenomena im-
plies that there is something fundamental about chaos
irrespective of system. Understanding the deep structure
and dynamics of one chaotic system would then shed light
on chaos theory as a whole [1].

In this paper, we examine the period doubling and
chaos behavior in a simple circuit containing a resistor,
inductor, and diode. The period doubling behavior is ob-
served in the diode’s voltage response to increasing driv-
ing voltage. The driving voltages at which period dou-
bling occurs was then used to calculate the first Feigen-
baum constant. The bifurcation logistic map is also plot-
ted and the width of its tines is measured to calculate the
second Feigenbaum constant.

II. THEORY

A. Deterministic systems

A deterministic system follows the idea of causality,
where any one state is dependent of the previous state.
One can imagine snapshots in time of a set of domi-
noes falling, where the state of each snapshot is directly
caused by the previous. A non-deterministic system, on
the other hand, is characterized by the independence of
its states. Rolling a three this turn provides no insight on
the next roll. That being said, rolling a die is a determin-
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FIG. 1: Sensitivity to initial position change in a Duffing
oscillator simulation plotted on Mathematica. Original code
from [2] (modified).

istic system; After all, one can hypothetically calculate
the final state of a dice by calculating the rotation and
trajectory using kinematics assuming all parameters are
known precisely.

In our experience, we perform actions with a certain
expectation of the result; we expect a moving car to be
closer to us in the future so we move away. It is easy
then to assume that causality implies predictability, and
for the most part we would be correct. Some determinis-
tic systems, however, exhibit chaotic behavior, take the
three body problem for example. The question becomes,
how precisely can one know the initial conditions in a
system?

B. Nonlinear Systems

A nonlinear system is a system where the change in
output is not proportional to the change in input. The
volume of a sphere, given by V = 4

3πr
3, is an example of

a nonlinear equation, where doubling the radius results
in a eight-fold change in volume. Nonlinear systems are
more sensitive to change in input than linear systems are.
In most cases, an infinitesimal change in input leads to
a diverging change in output in time dependent systems.
In fact, most chaotic systems are nonlinear system.

C. Chaos Theory

To understand the level sensitivity of chaotic systems
we briefly examine the Duffing oscillator system named
after the German engineer Georg Duffing. The Duffing
oscillator is a damped and driven oscillator described by
a nonlinear second order differential equation which is
known to exhibit chaotic behavior. This system is mod-
eled by the Duffing equation given by

∂2x

∂t2
+ δ

∂x

∂t
+ αx+ βx3 = γcos(wt), (1)

where x is position, t is time. We pay no attention to the
constants α,β,γ, and δ as we only care about the chaotic

behavior. The position in time of a Duffing oscillator is
plotted twice in Fig. 1 with an infinitesimal change on
the magnitude of 10−5 to initial position. The two traces
start off the same then quickly diverge to give different
outputs. Note that a change in input of any magnitude
eventually leads to diverging outputs in a chaotic system
given enough time.

D. Diode

In this experiment, a simple resistor, inductor, and
diode (RLD) circuit is used to model chaos, with the
diode being the nonlinear part of the setup. It is then
essential to explore the structural components of a diode
to understand the reason it behaves chaotically. A diode
is an crystal containing two types of extrinsic semicon-
ductor material, namely p-type and n-type, forming a
p-n junction that allows the current to pass in only one
direction. We now proceed to explain this definition of a
diode.

1. Semiconductors

Semiconductors are materials with electrical conduc-
tivity in the middle ground between conductors and insu-
lators. In terms of band structure, intrinsic semiconduc-
tors have a filled valence band and a small gap between
valence and conduction band. When enough energy is
supplied to promote electrons to the conduction band,
these electrons can now move freely if an external field is
applied.

The promoted electrons leave holes behind, also al-
lowing electrons in the valence band to move if a field
is applied. It is more useful in this situation to keep
track of the hole movement instead of the collective elec-
tron movement. Hence, promoting an electron to the
conduction band has created an electron-hole pair that
contribute to the conductivity of the material. It is often
more useful in application to have semiconductors where
one type of charge carrier predominates. We can achieve
this by adding impurities to our intrinsic semiconductor
in a process called doping.

2. p-type

A semiconductor with the majority of charge carriers
being holes is called a p-type, “p” for positive charge
carrier. The majority of semiconductors are elements
from group IV such as silicon, hence p-type doping can
be achieved by adding an element of group III. Adding
boron to a silicon semiconductor results in a creation of a
hole as boron covalently binds to four silicon even though
boron has three valence electrons as shown in Fig. 2.a.
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FIG. 2: Doping a silicon intrinsic semiconductor with (a)
boron making it a p-type, or (b) arsenic making it an n-type.

FIG. 3: Formation of the depletion region on the interface of
a pn-junction.

3. n-type

A semiconductor with the majority of charge carri-
ers being electrons is called an n-type, “n” for negative
charge carrier. Doping silicon with an element of group
V such as arsenic creates an n-type. Arsenic has five va-
lence electrons and it binds with four silicon leaving one
electron to loosely bound to arsenic as shown in Fig. 2.b.

4. p-n junction

Now that we have both p-type and n-type semiconduc-
tors, we can combine them to form a p-n junction. Once
the interface between the two semiconductors is formed,
electrons quickly migrate from n-type to the p-type semi-
conductor. The excess electrons from arsenic annihilate
the boron holes as shown in Fig. 3 forming a depletion
region near the interface. The potential difference be-
tween the two semiconductors appears in the form of a
drop across the junction from p-type to n-type.

We will now discuss the behavior of the junction when
an external field is applied. Connecting a pn-junction to
a generator with the positive terminal attached to the
p-type is called forward bias as it allows the flow of cur-
rent through. In this case, electrons are flowing through
the n-type which decreases the potential difference across
the interface of the pn-junction. The electrons can then

FIG. 4: Schematic of a pn-junction in operation .In (a) for-
ward bias of pn-junction characterized by the depletion region
getting smaller, and (b) reverse bias of a pn-junction charac-
terized by the depletion region getting wider.

freely move through the p-type “jumping” between holes
as shown in Fig. 4.a. The charge carriers in the p-type
are holes which are the positive counterpart to the neg-
ative electron charge carriers in the n-type; an electric
field is then formed directed from the p-type to n-type.
The flow of electrons is unhindered as their direction is
opposed to that of the electric field.

Alternatively, connecting the positive terminal of the
generator to the n-type is called a reverse bias as the
current is not allowed through the junction. The elec-
trons flow through the p-type against the electric field
which hinders their movement. These electrons end up
annihilating the holes in the p-types which causes the de-
pletion region to increase in size. The potential difference
increases across the junction further blocking the flow of
electrons. In a reverse bias then, current does not pass
through a pn-junction [3].

5. Chaos in a Diode

We now know that the diode, which is the nonlinear
part of the circuit, is just a crystal containing a pn-
junction. The diode is connected with an alternating
sinusoidal signal across of which means that the diode
is alternating between its forward and reverse bias state.
In forward bias, the depletion region decreases in size
and more electrons can migrate through the diode, then
switching to reverse bias where the depletion region in-
creases in size and fewer electrons can pass through the
diode. When a high frequency signal is supplied, the
diode no longer has enough time to reach equilibrium
between forward and reverse bias. The transition from
one state to the other would then depend on the previ-
ous state. Hence, varying the driving voltage would cause
chaos in the diode’s voltage response [4].
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FIG. 5: Tree diagram showing the doubling behavior in bifur-
cation. Each branching vertex represents the point at which
bifurcation occurred.

E. Bifurcation Theory

Bifurcation theory is the study of qualitative changes
in a system with respect to a driving parameter. In a
magical world where a system described by y = x is
altered to y = x2 when a parameter is varied, we say
that the system bifurcates. Initially, the system has one
solution for every position, this is then changed to two
solutions which would correspond to period doubling be-
havior. This concept is shown in Fig. 5. In our system,
the depletion region in the diode is oscillating in a sense
as the current is varied. This causes the diode to respond
in different ways to different driving voltages.

The behavior of a nonlinear chaotic system building
up to chaos can be modeled through a bifurcation logis-
tic map. In the y = x and y = x2 example, the logistic
map would have one value that doubles to two values af-
ter a certain parameter value. This model predicts that
further doubling would occur at each of the two values
generating four, then eight, sixteen, thirty two values...
The bifurcations become so dense and are eventually in-
distinguishable from chaos

1. Feigenbaum Constants

Feigenbaum discovered universal constants that apply
to all chaotic systems that depend on only one driving
parameter. The first constant σ, called the first Feigen-
baum constant, is given by

σ = lim
n→∞

λn−1 − λn−2
λn − λn−1

≈ 4.669, (2)

where λn is the value of the driving parameter where the
n−th bifurcation occurs. This constant states that pe-
riod doubling occurs at regular intervals where the limit

FIG. 6: The RLD circuit connection used in this experiment
to model the chaotic behavior in the diode’s voltage (Modified
from ref. [6]).

of the ratio of the distance between two consecutive pe-
riod doubling approaches σ = 4.669. The parameter λ
in this experiment is the driving voltage; we can then
rewrite Eq. (2) as

σ = lim
n→∞

Vn−1 − Vn−2
Vn − Vn−1

, (3)

where V is the driving voltage.
The second constant α, called the second Feigenbaum

constant, is

α ≈ 2.503, (4)

and is a measure of the ratio of width of a tine and one
of its two subtines in the bifurcation logistic map. The
tine is the pitchfork shape of period doubling. Note only
one of the two subtines can be used for this ratio and
that this constant does not apply to the second period
doubling [5].

III. EXPERIMENT

A. Setup

The circuit used in this experiment is a simple resis-
tor, inductor, and diode circuit with the diode being the
nonlinear part exhibiting chaotic behavior. The resistor
has resistance of 4.8 Ω, the inductor has inductance of
27 mH, and the diode used is an IN5401 connected as
shown in Fig. 6. The driving voltage for this circuit is
supplied by a HP 33120A function generator. This volt-
age along with the diode’s voltage are both monitored on
a Tektronix TDS 2012B. The driving voltage is varied for
a given frequency and the period doubling in the diode’s
response voltage is observed.

B. Data acquisition

Calculating the first Feigenbaum constant requires
finding the driving voltages at which period doubling oc-
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curs. This data was collected by slowing increasing the
driving voltage and recording the voltage when period
doubling is seen on the oscilloscope. The period doubling
voltages where collected for several frequencies. Oscillo-
scope images were saved using the save/recall function
and transferred via a 1 GB flash drive.

Calculating the second Feigenbaum constant required
plotting the bifurcation logistic map. This could be done
by saving the data on the oscilloscope for several values in
the period doubling regime; the diode voltage would then
be plotted against the driving voltage. This method was
time consuming and did not provide enough resolution
for the constant to be calculated.

Alternatively, the oscilloscope was filmed while the
driving voltage was increased and the video was used
to track the voltage peaks during the period doubling
regime. The screen of the oscilloscope was aligned par-
allel the camera to avoid parallax effect. Tracking was
done using a free software called Tracker developed by
Douglas Brown [7].

IV. RESULTS & ANALYSIS

The period doubling behavior of the diode is observed
for several driving frequencies. All these runs exhibited
similar period doubling behavior and chaos at different
driving voltages. We focus our behavior description on
the frequency of 15 kHz as it showed the most resolution
and clarity.

The most significant events in diode are shown in Fig.
7, where events occurred in order from top to bottom. In
the case of multiple periods, the persist function on the
oscilloscope was used to capture all periods in the same
image. The waveform in (a) is the initial response of the
diode at low driving voltages. This response continues
to increase in amplitude gradually until it bifurcates to
the waveform shown in (b) characterized by the splitting
of the initial peak into two separate ones. A series of
bifurcations then occur giving periods 4, 8, and 16 as
shown in (c), (d), and (e). Bifurcations appear more
often as the period number increases; the voltage had to
be increased by 437 mA to get from period 2 to 4 and by
18 mA to get from period 8 to 16.

Period doubling occurs so frequently close to period
16 that the transition to period 32 (not shown) took re-
quired 4 mV increase in driving voltage. Bifurcations
then quickly accumulates a period of an immensely large
number that can no longer be distinguished from chaos
as shown in (f). The chaotic behavior then persists for a
couple millivolts then switches back to order in (h) after
increasing the driving voltage sufficiently. The waveform
in (h) appears to be period 5 with only five peaks, this
is surprising as 5 can never be obtained by doubling 2.
Increasing the driving voltage even further gives period
3 shown in (i). This is an important results as period 3
was proven to exhibit infinitely many period state [8]. In
other words, there exists period-x, where x is any num-

FIG. 7: Diode voltage response showing (a) period 1, (b)
period 2, (c) period 4, (d) period 8, (e) period 16, (f) chaos,
(h) period 5, and (i) period 3.

ber you can dream up. This makes it more plausible that
the waveform seen in (h) represents period 5.

For several frequencies, the voltage at which period
doubling occurred can be found in Table I. The individ-
ual Feigenbaum constants were then calculated using Eq.
(3) and are shown in Table II.



6

TABLE I: Driving voltages at which period doubling occurred
for various values of frequency. All voltages are in units of
volts.

Frequency

(kHz)

Period-2

(V1)

Period-4

(V2)

Period-8

(V3)

Period-16

(V4)

Period-32

(V5)

13 2.702 3.286 3.393 3.417 -

14 2.353 2.850 2.943 2.962 -

15 2.081 2.518 2.604 2.622 2.626

16 1.874 2.266 2.345 2.362 -

17 1.711 2.064 2.138 2.155 -

18 1.577 1.898 1.968 1.983 -

19 1.465 1.764 1.826 1.84 -

20 1.371 1.648 1.711 1.724 -

TABLE II: Feigenbaum’s first constant that calculated using
Eq. (3) and the data in Table I.

Frequency

(kHz)
σ3 σ4 σ5

13 5.458 4.458 -

14 5.344 4.895 -

15 5.081 4.778 4.500

16 4.962 4.647 -

17 4.770 4.353 -

18 4.586 4.667 -

19 4.823 4.429 -

20 4.397 4.846 -

Mean 4.9 ± 0.4 4.6 ± 0.2 4.5 ± 0.0

The first constant represents the limit of σn as n tends
to infinity, given by σ = 4.669; in our case periods later
than 16 can rarely be determined as shown in Table I.
We can then approximate n = 4 which corresponds to
period 16 to be infinity in this experiment. We can then
calculate the first Fiegenbaum constant to be 4.6 ± 0.2
which is well with in the accepted value of σ = 4.669 with
only 1 % error.

The oscilloscope peak tracking data was also used to
plot the bifurcation logistic map shown in Fig. 8. This
map shows the evolution of period doubling behavior
which was also previously shown in Fig. 7 (a)-(d). Zoom-
ing on the top right corner of the bifurcation map shows
its fractal nature in the repeating forking behavior as
seen in Fig. 9. We call the bifurcation shape of the plots
as tines as they resemble tines of a pitchfork. The last
plot, along with the bottom right corner of Fig. 8, can
be used to determine the widths of the tines. We use the
upper subtine in Fig. 9, to calculate the ratio in Eq. 4.
The second Feigenbaum constant was determined to be
2.7 ± 0.3 which is also well within the accepted value of
α = 2.503 with an error of 7 %.

An extended map of Fig. 8 showing period doubling
along with chaotic behavior of the diode’s voltage is
shown in Fig. 10. This plot represents the detailed evo-
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FIG. 8: Bifurcation logistic map showing the period doubling
behavior of diode.
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FIG. 9: Fractal behavior shown in the bifurcation logistic
map. This plot is obtained by zooming the top right section
of Fig. 8.

lution of the diode’s voltage that is shown in Fig. 7,
where the blank rectangles correspond to chaotic behav-
ior shown in (f). Period five occurred after chaos twice
in this system. We also observed the occurrence of pe-
riod three that bifurcates into period six in between two
chaotic phases. Finally we observed period four followed
the period halving behavior resulting back into period
one.

In general, the period of the diode’s voltage increases
when one peak splits into two. The period of the diode’s
voltage, however, decreases either as a result of peaks
merging into one, or peaks decreasing all the way to zero.
This is observed in the last section of the Fig. 10 where
three peaks merge into one and the bottom period “dies
out”, giving back period one.

The extended bifurcation map also provide some valu-
able insight on the behavior of periods right before and
after a chaotic phase. The map in Fig. 10 would look
surprisingly continuous if chaotic phases are removed. In
other words, one could hypothetically connect periods
via imaginary lines through chaos. This is yet another
fascinating property showing underlying order in chaotic
behavior.
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FIG. 10: Extended map of Fig. 8 showing the chaotic behav-
ior of diode voltage and the periods in between chaos. The
blank rectangles represent chaos.

V. CONCLUSION

The period doubling behavior of a diode in a simple
RLD circuit was examined in this experiment. Periods
up to period 32 were observed to occur in the diode’s
response voltage leading up to chaos. Period 3 and period
5 were also observed after the occurrence of chaos in what
seemed like period halving route back into order.

The rate at which the period doubling occurred was in-
creasing with the increase of the period number. This be-
havior is described by Fiegenbaum’s first constant, where
the ratio of the distance between three consecutive pe-
riod doubling approaches a constant value. This constant
was calculated to be 4.6 ± 0.2 which is well with in the
accepted value of σ = 4.669 with only 1 % error.

The bifurcation logistic map was also plotted for a driv-
ing frequency of 15 kHz showing a more detailed period
doubling and chaotic behavior. The forking behavior of
the logistic map is shown in Fig. 8, where each period
ends up branching into two more periods. The ratio of
the width of a tine and one of its two subtines is de-
scribed by Feigenbaum’s second constant. This constant
was calculated to be 2.7 ± 0.3 which is also well within
the accepted value of α = 2.503 with an error of 7%
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