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A forced, damped, nonlinear oscillator was shown to exhibit chaotic behavior at driving frequencies
slightly below its resonant frequency. Phase space diagrams that lack periodicity and show sensitivity
to initial conditions are contrasted with phase spaces in a periodic regime. Potential wells were
calculated, showing that the Duffing oscillator is bistable, regardless of whether its regime is chaotic
or periodic, but that the symmetry of the potential well is contingent upon whether the springs used
have equal stiffness. The full range of motion of the system, additionally including the angle of the
driver, is presented in cylindrical coordinates.

INTRODUCTION

In 1918, Georg Duffing published analyses of oscilla-
tory behavior and resonance in systems that had not been
previously studied [1]. The Duffing oscillator is an exam-
ple of a forced, damped, nonlinear oscillator. To unpack
these qualities, forced refers to the fact that the oscilla-
tor is driven with a constant frequency ωd, while damped
refers to a gradual decay in motion due to damping forces
like internal friction and air resistance that oppose veloc-
ity. In a driven, damped, harmonic oscillator, the system
has two qualitatively different stages, a transient regime
dominated by initial conditions and a steady state regime
dominated by the driver parameters as the transient mo-
tion dies down [2, 3]. In these harmonic systems, the po-
tential well characterizing the system is parabolic, with
only one stable equilibrium point at zero displacement,
and potential energy increases with increasing displace-
ment. However, in the Duffing oscillator, the potential
well has two stable equilibria equally spaced from a cen-
tral unstable equilibrium, which gives rise to very differ-
ent motion. The Duffing oscillator can be made to un-
dergo a transient regime and a steady driver-dominated
regime, but it could be alternatively made to undergo
chaotic motion. Chaotic systems are patterned but non-
repeating, and are extremely sensitive to slight differ-
ences in initial conditions.

THEORY

An ideal single spring is subject to Hooke’s Law,

F = −k(x− x0) , (1)

such that the magnitude of the restoring force, based on
the stiffness constant k, increases the further a spring is
stretched or compressed from its equilibrium position x0.
By Newton’s Second Law

ẍ =

(
−k
m

)
x , (2)

where here we have redefined x as a shorthand for the
displacement. Solutions to this equation are sinusoidal,

FIG. 1: Components of the apparatus pictures as follows:
(a) rotary motion sensor wheel to which the springs are at-
tached; (b) two springs; (c) the voltage generator to power
the motor; (d) the driving arm, motor and photogate.

which fits the understanding that the velocity will be
maximized when the displacement is zero, and vice versa.
Suppose then, that Hooke’s Law does not totally apply,
and instead there is an additional nonlinear term. Mate-
rials may not be ideally Hookean for a variety of reasons,
for example, if the stiffness is stress or temperature de-
pendent. With the inclusion of this nonlinear term, a
corresponding strength coefficient β, and the redefinition
of k/m = ω2

0 , we have

ẍ = −ω2
0x− βx . (3)

This equation would only hold for an object in a vacuum,
because otherwise air resistance will provide damping.
Quadratic drag is applicable to situations of relatively
high speeds and large cross-sectional areas, so I will dis-
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FIG. 2: Potential energy vs. angular displacement plots for (a) periodic and (b) chaotic data. Total energy is set at zero, such
that at the top of the plot, all energy is potential and thus none is kinetic. The points for the periodic regime trace out the
outline of the well, while the chaotic regime shows that points may be found anywhere within the well with varying likelihoods.
Horizontal bands are artifacts caused by the limited precision of measurement.

count it because the springs and wheel are small and
traveling relatively slowly, but that still leaves a linear
drag term, proportional to the velocity. We now have

ẍ = −ω2
0x− βx− δẋ , (4)

wherein the drag force opposes the direction of motion,
so this term is also negative. So far, I have derived the
equation of motion for a damped, nonlinear oscillator,
but to model the Duffing equation there must be a final
driver term. If this driver is sinusoidal, with an amplitude
γ and a frequency ωd, we can move the prior terms to the
other side to obtain

ẍ+ δẋ+ ω2
0x+ βx = γsin(ωdt) , (5)

the full second-order differential equation used by Duff-
ing.

The search for an analytic solution is outside of the
scope of this analysis. One might nevertheless look for
ways to reduce this form into something more manage-
able. When two simple harmonic oscillators are coupled,
the resulting motion gains unique properties. The mo-
tion of two coupled oscillators can be decomposed into
two normal modes, generally an in-phase and anti-phase
mode. Any observed motion can be written as a linear
combination of these two normal modes, representing a
superposition. In the language of linear algebra, it can be
equivalently stated that any n linearly independent vec-
tors will form a basis for Rn and span the plane, where
here the vectors are our two normal modes and R2 can be
considered the space of all position-velocity pairs. This
principle applies to both free and forced oscillation. How-
ever, the leap from linear motion to the nonlinear dynam-
ics in the Duffing oscillator require reconceptualizing the
notion of normal modes. Kerschen et al. lay out several
key reasons why normal modes have not historically been

considered an important tool in nonlinear analysis [4], a
few of which I will adapt here:

1. Nonlinear systems’ range of behavior is far wider
and more complex than linear systems, including
behaviors present in the Duffing system like bifur-
cations, limit cycles, and chaos.

2. Superposition, which underlies the usefulness of
normal modes to linear systems, is not applicable
to nonlinear systems.

Kerschen et al. also highlight that analyses of nonlinear
normal modes have also been limited to low-order sys-
tems, a drawback which is not relevant here because the
Duffing equation is only second-order. For these reasons,
normal modes are not nearly as applicable to the Duffing
oscillator as they are to the linear case, so it is not easily
reducible.

APPARATUS AND PROCEDURE

A prebuilt PASCO apparatus, consisting of two springs
connected via a rotary motion sensor wheel, is displayed
in Fig. 1. Power is supplied to a motor, which turns a
lever arm attached to one of the springs. This spinning
arm is a sinusoidal oscillator. The frequency of the driver
was not directly under my control, rather, I changed the
voltage input to the motor, and voltage was found to be
roughly proportional to frequency. A photogate marks
when the driver passes a certain angle, simply outputting
a blocked or unblocked status. Raw data were trans-
ferred from the apparatus for analysis through PASCO’s
Capstone data collection software. Trials lasted between
5 and 15 minutes, with data resolutions of 40 points
recorded per second. Because the Capstone interface is
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FIG. 3: Full phase space graphs from (a) a periodic trial and (b) a chaotic trial over similar timescales. Periodic conditions
are characterized by high system energy, corresponding to a driver frequency of approximately ωd = 4.1 rad s−1, while chaos is
observed at a lower frequency, approximately ωd = 3.9 rad s−1. Points that occurred sequentially in time are connected by a
line. In (a), the motion initially wobbles before settling into a steady periodic regime, while in (b) the motion does not repeat
itself, even after long time periods.

unable to simultaneously receive inputs from both the
rotary motion sensor and the photogate, slight data mas-
saging is necessary to properly align the photogate data
with the corresponding angle and angular velocity data.

By assuming that total energy is zero, it follows that

U = −K = −mv
2

2
, (6)

and thus we are able to generate a well of the poten-
tial energy U by graphing the negative kinetic energy K.
Thus, Fig. 2 shows the square of the velocity vs. the
angular displacement. The spring constants, k1 and k2,
are unknown, but they cannot be assumed to be approx-
imately equal, because the two sides of the wells in Fig.
2 are asymmetric. While the apparatus was originally
billed as symmetric [5], this observed asymmetry could
be because the spring on the right of Fig. 1 is visibly de-
formed, and this bend could be responsible for altering
the strength of its restoring force.

RESULTS

The natural frequency of the system was found to be
near ω0 = 4.2 rad s−1 because it resonates when the
driver has a period of T = 2πω−1

d = 1.5s. Closely re-
lated, the scope of the parameters available for experi-
mentation was limited. Driving frequencies below about
ωd = 3.5 rad s−1 and above ωd = 4.8 rad s−1 (periods of
1.82 s and 1.31 s, respectively) were insufficient to main-
tain long-term motion. The wheel lost energy due to
incompatibility between the driver frequency and natu-
ral frequency of the springs, and quickly became unable
to transition from one stable equilibrium to the other.
This low energy state would be represented graphically

as if the dumbbell in Fig. 3(a) was cut in half. Frequen-
cies at exactly 4.2 rad s−1 were also unsustainable for
practical reasons due to resonance, as the springs gained
too much energy and bounced loose from the grooves on
the sensor wheel. The experimental variable used to gen-
erate the stark differences between periodic and chaotic
regimes was driver frequency. The nearer the driving fre-
quency was to the natural frequency of the springs, the
higher the energy level was in the system, ensuring that
the wheel always had enough energy to crest the unsta-
ble equilibrium at the center of Figs. 2(a) and (b). When
the energy was lowered even further from the maximum,
by increasing or decreasing the driving frequency further
from resonance, chaos could be observed within a critical
range of driving frequencies.

Plots of angular velocity of the wheel vs. angle of the
wheel are given in Fig. 3. An attractor is a stable set of
points toward which a system evolves after repeated iter-
ation. For the periodic regime in Fig. 3(a), the thickest
inner loop of the dumbbell shape is a standard attrac-
tor: a set of points on the coordinate plane to which the
system is drawn in. Fig. 3(b) also depicts an attractor,
but due to its highly detailed structure it is known as a
strange attractor. Provided that data were taken with
high enough precision over a long enough duration, one
could look at a portion of the image that had been arbi-
trarily enlarged and still see the same level of fine detail.
In this context, the chaotic regime of the Duffing oscilla-
tor can be considered a fractal in that it has a dimension
that is not a whole number. Rather, prior research has
found the phase space to be roughly 1.4-dimensional [6].
My data do not have the requisite precision to verify this
fractal dimension because the data were rounded by Cap-
stone.

The phase space plots in Fig. 3 include points taken at
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FIG. 4: Poincaré plots for (a) periodic and (b) chaotic conditions. To transition from (a) to (b) the driver frequency was lowered,
thereby reducing resonance and producing chaos because the sensor wheel only had enough energy to transition between the
equilibria points some of the time. Hexagonal markers show a subset of the data for a specific driver angle, colored by time,
while black dots in background show the full data, measured at all other driver angles.

(a) (b)

FIG. 5: Poincaré sections distributed radially according the the angle of the driving arm for (a) periodic and (b) chaotic
conditions. Again, the driving frequency is closer to the resonance in (a), and unlike (b) it is able to freely and consistently
transition between equilibria. A singular path is formed in (a) due to the low spread seen in Fig. 4(a). In other words the
phase space data are constant for a given driver angle. Conversely, in chaos, the phase space data are highly varied at any
given driver angle, thus any individual section appears jumbled and their radial distribution in (b) appears like a ball of twine.
In both (a) and (b), points are colored by their z-position, with red being lowest and purple being highest, to provide a sense
of depth.

every angle of the driver arm. If we select for certain an-
gles, for example by excluding all points except when the
driver arm is parallel with the ground, we will produce
a Poincaré section. This is shown in Fig. 4 by the col-
ored dots, displayed on top of the full data in black. We
can see in Fig. 4 that when the oscillator is in a periodic

regime the section repeats itself, while the points are dis-
tributed chaotically in the aperiodic regime. In Fig. 4(a),
red hexagons give begin with a spread around the top-
left region, and over time hone in on the section covered
by dense purple hexagons, indicating an increase in peri-
odicity of the phase space. Conversely, in Fig. 4(b), no
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such increase in periodicity can be seen, as the colored
markers are equally spread out at the beginning of the
trial as it is at the end.Because each driver angle will pro-
duce a different Poincaré section, the Poincaré sections
for every angle of the driver from zero to 2π could all be
stacked atop one another to recreate the full phase space
diagram in Fig 3.

Finally, I synthesized the data shown above into one
cohesive plot. Using cylindrical coordinates where driver
angle is graphed in φ, wheel angle is graphed in r, and
wheel angular velocity is graphed in z, we obtain the
three-dimensional path plotted in Fig. 5, appearing like
a ball of twine wound around the z-axis. Because the an-
gular velocity of the driver arm is constant in time, the
path travels around the z-axis at a constant azimuthal ve-
locity, but moves freely in the r- and z- axes, like a game
of tether ball. Any radial cross-section, by which I mean
any planar cut from the z-axis outward, will produce a
Poincaré section similar to the colored markers in Fig 4,
cycling continuously through all sections before repeat-
ing. While the r- and z-axis data were measured experi-
mentally, the φ coordinate data were generated based on
the driver period. This period is not perfectly consistent
throughout time, so the point at which the photogate
was triggered was always assigned an angle of zero ra-
dians, and then the remaining 2π radians were divided
evenly between however many points were taken until the
photogate was triggered again.

CONCLUSIONS

I have successfully derived the Duffing equation, seen
in Eq. (5), and have graphically shown a set of possible
solutions given fixed parameters like the spring constants

and the viscosity of the air. These solutions can be either
periodic or chaotic. Periodic regimes are observed as a
result of resonance, when the driving frequency is very
close to the natural frequency of the oscillator, because
in this state the energy of the system is high, and the
wheel is always able to transition between the equilibria
of the potential well. Conversely, chaos is observed when
the energy of the system is slightly lower, and the mo-
tion sensor wheel can usually, but not always transition
between stable equilibria. At even lower energies, the sys-
tem can again be considered trivially periodic, because it
will be stuck in one of the sides of the well, never able to
transition. These qualitative differences have been made
clear through numerous graphical comparisons.

This experiment did not change any of the fundamental
parameters of the apparatus, such as the spring constants
or the viscosity of the environment. Further experimen-
tation could alter these parameters to observe new phase
space plots. It is known that parameters exist such that
a period-doubling route to chaos, one in which the peri-
odicity doubles at increasingly short intervals, could be
observed if the amplitude of the driver is used as the inde-
pendent variable rather than driving frequency. Likewise,
I paid little heed to the effects of the magnetic damper
that came included with the PASCO apparatus, and fur-
ther experimentation could include this second damping
term in the equation derivation.
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