Transitioning to Chaos in a Simple Mechanical Oscillator

Hwan Bae
Physics Department, The College of Wooster, Wooster, Ohio 44691, USA
(Dated: May 9, 2018)

We vary the magnetic damping, driver frequency, and driver arm of a periodically damped non-
linear oscillator to see how the oscillations transitions from periodic to chaotic. An aluminum disk
with a point mass at one edge rotates attached to two springs. A magnet was placed near the
disk to provide damping. Frequency was varied by changing the amount of voltage supplied to the
driver. The results corroborate the Hamiltonian for damped and undriven systems. We use phase
plots and Poincaré sections to analyze the behavior of the oscillator. The phase plot is a plot of the
angular velocity vs angle of the mass, and the Poincaré section is the plot of the same variables,
but exactly once per period. These plots help interpret the trajectory of the mass, and determine
whether the system is chaotic. With the introduction of driving force we conclude that the system is
highly sensitive to all of the variables that were manipulated, but is especially sensitive to magnetic

damping and driver frequency.

I. INTRODUCTION

A small mass tied to the end of a massless stick hang-
ing from a fixed point is a common example of periodic
motion. It is easy to imagine the motion of the mass once
it is displaced from its equilibrium. In absence of drag
the mass will oscillate back and forth, passing through
the lowest point at regular intervals. Whether it was dis-
placed from the left or right of the equilibrium position
does not matter. For small angles, the angle at which the
mass was displaced from the pivot also has a negligible
effect on the period.

Though the simple pendulum is a useful example we of-
ten experience systems that are sensitive to initial condi-
tions in nature. These systems are said to display chaotic
behavior. Weather is chaotic, making it difficult to pre-
dict. Honey dripping from the end of a stick can also be
chaotic. If we hold the honey stick at a certain height,
honey will coil uniformly and stacks onto itself. Raise the
stick a little higher, and now the dripping liquid rope of
honey looks like a child’s scribble, higher again, and it’s
back to the coil.!

Fluid dynamics can be very complicated, and it is diffi-
cult to predict exactly at what height the recoiling honey
changes from a uniform stack to a mass. The Duffing os-
cillator is a simple mechanical device that displays both
chaotic and non chaotic behavior. A rotating disk with
a small mass attached at the end is connected to two
springs. One end of the spring is fixed to the driver arm
and moves with the arm as it rotates. The arm can be
adjusted to vary driver amplitude. The other spring is
fixed to a stationary base. The disk is placed next to a
magnet for magnetic damping. The distance between the
magnet and the aluminum disk is adjustable.

Without magnetic damping or the driving force, the
mass oscillates back and forth on one side of the disk. The
mass will only move about the equilibrium on one side of
the disk or the other. However, if we introduce damping
and driving force, at certain parameters the pendulum
starts moving back and forth erratically with random
pauses instead of oscillating about a single well. This

is an example of a periodically forced damped nonlinear
oscillator with a bistable potential.

II. THEORY

The oscillator is bistable. It has one potential at each
side of the disk that it oscillates about, illustrated in
FIG. 1.

A. Potential Without Damping or Driving Force

In the absence of damping or forcing the we experimen-
tally determine potential using conservation of energy,
T, + Vi = T5 + V. Since we displace the mass from rest,
the initial kinetic energy T3 is zero. Then, the potential
Vo = Vi —T5. The mass is rotating on a disk so the only

Figure 1: Theoretical illustration of the bistable well.
The illustration of the apparatus superimposed on the
potential curve illustrate how the potential relates to
the position of the mass. The two wells each correspond
to a position on one side of the rotating disk that the
mass can come to rest at. The hump in the middle of
the potential curve illustrates an unstable equilibrium
located at the 12 o’clock position of the rotating disk.
Figure taken from the Junior IS lab manual.?



kinetic energy is rotational. The initial potential energy
is some constant c¢. Thus,

1
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where [ is the moment of inertia of the mass and w is the
angular velocity of the mass.

B. Potential With Damping and Driving Force

A simple bistable potential is given as
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where o > 0 is the linear constant and 8 > 0 the nonlin-
ear constant.This curve is illustrated in FIG. 2. Notice
that there are two stable equilibria, one on each side of
the rotating disk that the mass can rest at. We apply a
periodic driving force in form of f(z) = asinwt, where a
is the driving amplitude and w is the angular frequency
of 2r/T.

We can use this bistable potential to find the restora-
tive force of the system. In general, for one dimensional
conservative forces, the force is F' = —dV/dxz. We apply
this to our bistable potential to find the restorative force.
Taking the derivative of Eq. 2 we get the restorative force
of the spring,

F = az — pa®. (3)

Using Newton’s second law, we can write out the sum of
the forces,

YF =ma= —yv + (ax — f2®) + f(x), (4)

where v > 0 is the damping constant and the damp-
ing force yv opposes the motion, the spring restores with
force ar + B3, and driving force f(z) is added. Rewrit-
ing variables in terms of x, setting mass m = 1, and
rearranging we obtain,

&+t = ax — B2 + asinwt. (5)

Unlike the differential equations that illustrate the mo-
tion of a simple pendulum, Eq. 5 does not have an exact
solution. Numerical integration using methods such as
Euler-Cromer or Runge-Kutta allow the motion to be
predicted, but require computer aid. Another method
of describing the dynamics of a system is by using the
Hamiltonian, which allows insight to the system even if
the differential equations such as Eq. 5 with initial con-
ditions cannot be solved explicitly.

C. Hamiltonian

Much of the derivation in this section is from the
Duffing Equation Wiki Page® and Duffing Oscillator
Scholarpedia?.

In the case that there is no damping or driving force,
we can substitute v = 0 and f(z) = asinwt = 0 in Eq. 5.
Then, the equation simplifies to

i = ar — fa? (6)
i —az+ Br = 0. (7)

We multiply this equation by dz/dt to find the Hamilto-
nian H of the system. If the Hamiltonian is constant so
dH/dt = 0, then H is conserved and it is equivalent to
the total energy, thus H = K 4+ V where K is the kinetic
energy and V is the potential.
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Thus, the Hamiltonian for the undamped, non driven os-
cillator, the Hamﬂtonian is H = %9'62 — 2045(}2 + ﬁix‘l,
where K = Eozz V = —§o¢x + ,8 4 and energy is
conserved. The constant Hamiltonian 1mplies that in the
absence of damping or driving force the system will con-
tinue oscillating with kinetic energy K and potential U.
Note that the potential is equivalent to what was given
in Eq. 2.

We can use a similar method for the damped oscillator
to find the two stable equilibria of a bistable oscillator.
Again, the Hamiltonian is H = 1i? — 1aa? + g4, but
dH/dt is not constant. Instead we see,
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Since the damping constant v > 0, dH/dt = —yi? < 0
implies that the damped oscillator will come to rest at
one of the stable equilibrium points.

D. Equilibria

We can find the equilibrium points by finding when the
first derivative of the potential is zero. Since the deriva-
tive of the potential is the force we begin with Eq. 3,

0= oz — pz3

= 2(Bz? — ).



-_—
-—
-—
—
-_—
-—
-—
—
-_—
-_—
-—
-_—
-—

fixed point

{

photogate driver arm
Figure 2: Experimental setup. Spring icon is taken from
TheNounProject?

Thus, equilibria are located at either = 0 or =
++/a/B. Using the second derivative test we see that

x = 0 is unstable and x = ++/«a/8 are the stable equi-
libria. We can visualize this using FIG. 1. The two wells
are the stable equilibria that are symmetric about the
axis. The hump between the well illustrates the equilib-
ria where the mass is positioned the 12’0 clock position
on the rotating disk. Though it can rest there, a slight
nudge to the side will cause the mass to swing down.

III. PROCEDURE

The experimental setup is illustrated in FIG. 2. A
magnet was placed behind a rotating disk. The distance
between the disk and the magnet was adjustable using
a screw. The disk was made of aluminum and the mag-
net provided damping, which varied with the distance
between the magnet and the disk. A thin piece of plastic
was fixed to the end of a driver arm. The plastic itself
could rotate, and the spring was attached to this plastic
rather than directly to the driver arm so the spring would
not twist. A voltage supply was connected to the driver
so that it would provide constant force to the system.
The driver arm rotated about an axis that is illustrated
in FIG. 2 by a large black circle. The amplitude of the
driver arm could be adjusted by sliding the rotating axis
so that the length of the side of the arm with the plas-
tic was could vary. As the driver arm rotates it passes
through the photogate to measure driver period. Each
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Figure 3: The potential with two wells where one well is
deeper than the other. Plot generated using
V = ¢ — 1/2Iw? where constants were set to ¢ = 1 and
1 =0.003.

time the driver amplitude was changed we checked that

the driver was breaking the photogate only once per pe-
riod.

The mass was displaced from the highest point on the
disk and let go when the long side of the driver arm went
past a screw on the the stand to ensure that the initial po-
sition was consistent. We recorded the angular velocity,
angle, time, damping, and photogate state. The photo-
gate state returned 1 when the photogate was blocked by
the driver arm and 0 otherwise. These values, multiplied
with the entire dataset of angular velocity and angle were
used to plot the angular velocity and angle exactly once
per period, which produces an attractor known as the
Poincaré section. A plot of all of the data for angular
velocity vs angle is the phase plot.

A phase plot illustrates the motion of the mass as it os-
cillates about the wells. The Poincaré section illustrates
the positions that seems to attract the mass, even if the
motion is seemingly random.

IV. RESULTS & ANALYSIS
A. Potential

Though the theory predicts two wells with equal depth
for oscillations without damping or driving force, exper-
imentally the potential is deeper on one side as seen in
FIG. 3. The plot generated using Eq. 1 where constants
were set to ¢ = 1 and I = 0.003. The uneven well depth
arises from loss of energy to the surroundings in forms
such as drag and sound energy. However, the graph is

still useful for visualizing that the oscillator is a bistable
system.
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Figure 4: Graph of angle in radians VS time in seconds.
Magnet distance 3 mm without driving force. The
peaks occur at ¢t = 2.15 4+ 0.01 s, 3.35 £ 0.01 s and 4.50

£ 0.01 s.
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Figure 5: Phase plot for magnet distance of 3 mm
without driving force. Colors indicate increasing time,
starting from purple and ending at dark red as shown in
the color scale. As time increases the curve spirals into
the well as the damping opposes the motion, making it
come to rest at the equilibrium on one side of the disk.

B. Non Chaotic

FIG 4 is a graph of angle vs time without driving force
and damping of magnet distance of 3 mm. The ampli-
tude decreases as the damping force opposes the motion
of the mass and the mass comes to rest at one of the equi-
librium position. The peaks occur at t = 2.15 £0.01 s,
3.35 £0.01 s, and 4.50 + 0.01 s, which correspond to an
average frequency of 0.86+0.02 Hz, which is the resonant
frequency of the system.

The corresponding phase plot to this trial is graphed in
FIG. 5. Phase plots illustrate how the mass is physically
moving in the system. The larger loop seen from the
purple and blue markers indicate that the mass is mov-
ing through a wide angle rapidly, whereas smaller circles
marked by green to orange indicate slower oscillations of
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Figure 6: Poincaré section superimposed on the phase
plot of amplitude 4 cm, driving voltage 5.25 V, and
magnet distance of 6 mm. The red triangles indicate

one point per period, thus creating the Poincaré section.
Colors indicate increasing time, starting from purple
and ending at dark red as shown in the color scale.
Though there is a complicated swirl in the center of the
curve it is caused by the initial displacement as seen by
the purple and blue markers. The system settles into
periodic behavior as indicated by the red markers
overlapping.

smaller angles. Notice how the markers spiral inwards to
a well. This again illustrates the damping that opposes
the motion, and the damping causes the mass to come
to rest at an equilibrium. These results corroborate the
predictions using the Hamiltonian. The driven damped
oscillator has regions of non chaos as well. FIG. 6 illus-
trates one such example. The center of the concentric
loops indicate the position of the well. In the presence of
a driving force the mass does not come to rest in the well
like it does in FIG. 5. Though the motion seems compli-
cated near the center of the concentric loops, the swirl is
caused by the initial displacement of the mass and thus
only has purple and blue markers. The mass soon settles
to a periodic back and forth motion represented in the
figure by the darker red loops where the data points have
overlapped has time increased.

The red triangular markers on FIG. 6 is the Poincaré
section superimposed on the phase plot. The markers
were created by plotting exactly one point per period.
The Poincaré section illustrates the points that the mass
tend to be attracted to, also known as the attractor. The
few triangular markers we see on the blue and purple
markers are due to the initial displacement. Majority of
the markers lie in a small region around (-1.5, 4), overlap-
ping the dark red cross markers of the phase plot. This
indicates that this is periodic motion, since exactly once
per period the mass tends to have the same displacement
angle with the same angular velocity.
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Figure 7: a) the Poincaré section and b) the phase plot
for amplitude 4.0 cm, driving voltage 5 V, and magnet
distance 6 mm. Colors indicate increasing time, starting
from purple and ending at dark red as shown in the
color scale. We see that the colors are all over the place,
not settling to periodic motion with increase in time.

C. Chaotic

The oscillations become visibly chaotic for certain pa-
rameters. The mass oscillates about a well for a varying
amount of time before swinging over to the other side
of the rotating disk and continuing the random motion.
The mass also paused at random times and the amplitude
of the back and forth swings are not constant. FIG. 7b
and 7a illustrates the Poincaré section and the phase plot
for a trial of amplitude 4.0 cm, driving voltage 5 V, and
magnet distance 6 mm.

The Poincaré section FIG. 7b illustrates the attrac-
tor of the system at these specific parameters. Though
the motion of the oscillator seems very complicated and
random, there appears to be points that the mass is es-
pecially attracted to. The dense line of red markers near
the bottom right of the plot seem to be a feature of the
attractor. For varying parameters the shape of the at-
tractor changed but there always was an area that was
especially dense. However, the attractor for chaotic be-
havior is not periodic like FIG. 6. We see that in FIG. 6,
as time increases the Poincaré section converges to one
area. In FIG. 7b, although there is a clear region of dense
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Figure 8: The angular velocity vs time graph for
amplitude 4.0 cm, driving voltage 5 V, and magnet
distance 6 mm for a) a long time period of 800s, and b)
a subset of the same data at time ¢t = 440 s to 515 s.
The gaps are due to rotary motion sensor resolution.

red markers as time increased, the markers are scattered
throughout the plot without distinct correlation to time.
Though the mass clearly has certain angles and angu-
lar velocities that it prefers as the plot is not completely
random and has a unique shape, it is not a simple con-
vergence like FIG. 6.

The phase plot FIG. 7a also contrasts with FIG. 6.
FIG. 7a has two sets of concentric rings, each about a
center. The two centers are the two wells on either side
of the rotating disk and this illustrates that the mass
made it over the unstable equilibrium at the top of the
rotating disk. Also, as time increases the red markers
are again spread across the plot, instead of repeating its
motion.

FIG. 8a and 8b are plots of angular velocity vs time for
the same trial of amplitude 4.0 cm, driving voltage 5 V,
and magnet distance 6 mm. Unlike FIG. 4, FIG. 8a does
not seem periodic, again illustrating chaotic behavior of
the pendulum for these parameters, and due to a driving
force applied the mass does not come to a rest, though it
did pause occasionally. Notice that FIG. 6 and 7a have
all the same parameters except for the driving voltage
which differs by 0.25 V. This illustrates how the oscillator
is highly sensitive to driving frequency.
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Figure 9: A plot of amplitude vs frequency that
illustrates the change from non chaotic to chaotic
behavior for 6 mm magnet distance. The red triangles
indicate non chaotic behavior, and blue circles indicate
chaotic behavior.

D. Transitioning to Chaos

FIG. 9 was constructed to investigate regions of chaos.
It was difficult to decide if a behavior was exactly chaotic
as there were trials where the motion of mass would ini-
tially seem random but then the mass would settle down
to periodic back and forth motion after five minutes or
longer. Thus, the points were only considered chaotic if
the mass was still moving randomly after five minutes.
Though there does not seem to be a direct correlation
between frequency, amplitude and behavior of the oscil-
lator, we again see that it is very sensitive to driving
frequency and amplitude.

Another method of investigating the change from non
chaotic to chaotic behavior was by manipulating the mag-
net distance. All other variables were held constant.
Larger magnet distance indicates less damping. Even
just a millimeter change in the magnet distance can
change the behavior of the oscillator from non chaotic
to chaotic, and back to chaotic, as seen in Table I.

Table I: A Summary of magnet distance relating to
chaotic or non chaotic behavior for driver amplitude
3.840.1 cm and 4.25 V applied to driver. The system is
sensitive to the amount of damping.

Magnet Distance (+ 0.5 mm)| Behavior
8.0 mm Not chaotic
7.0 mm Not chaotic
6.0 mm Chaotic
5.0 mm Chaotic
4.0 mm Not chaotic

V. CONCLUSION

The Duffing oscillator is a simple mechanical system
that can display both chaotic and non chaotic behavior.
The motion of the damped, non driven oscillator seen
from FIG. 4 and 5 corroborate the motion expected by
the Hamiltonian. Varying the driving frequency, driving
amplitude, and damping all seem to indicate that the sys-
tem is highly sensitive to all of those variables. FIG. 9
seem to suggest that the oscillator is not as sensitive to
amplitude as the other variables, since as the amplitude
is increased it tends to stay chaotic or non chaotic. How-
ever, to confirm the statement the variables would need
to be varied a larger range.

The greatest weakness of the experiment was that the
mass was released by hand. Though we tried to keep the
initial conditions consistent by holding the mass at the
top and releasing it as the driver arm passed through the
lowest point, from the results it is probable that the oscil-
lator is also highly sensitive to initial conditions, just as
it is to driving amplitude, frequency, and damping. One
possible solution is to video the procedure of releasing
the mass. The video footage can be paused at the right
time to ensure that the mass was consistently released at
the same position.

Further investigations include how the initial condi-
tions of the position of the mass or the driver arm when
the mass is released affects the behavior.
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