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Laminar and turbulent flow regimes were studied with the help of a rotating spherical gyroscope
in this experiment. We spun the gyroscope and let it slow decelerate to a halt. The deceleration
occurred because of the retarding force due to the viscosity of air. By recording the frequency of
rotation of the gyroscope, we were able to observe the drag force on the gyroscope to be proportionate
to its angular velocity, raised to higher powers. These powers were in the range of 1-2. Stokes claimed
the power to be 1 for when the region experienced laminar fluid flow. Newton on the other hand
defined the power to be 2 for when the region experienced turbulent fluid flow. We determined the
power to be 1.11 + 0.12 for the case when the sphere was spun without any external resistances.
This demonstrated that viscous torque experienced by the sphere with no additional resistances is
best modeled by the torque equation derived from Stokes’s model of viscous force for objects moving
in laminar flow. In contrast, the addition of external resistances (such as paper flags) to the sphere
increased the power to 2.15 4+ 0.15. In this case the viscous torque is best modeled by Newton’s
model of viscous force for objects moving in turbulent flow. We noted that decreasing the size of
the flag decreased the the power, while the orientations of the flag did not alter the power by much.

I. INTRODUCTION

The study of the flow of matter (primarily in a liquid
state) known as Rheology began with Archimedes (~
250 BC) [1]. Several centuries later (1687 AD), Sir Isaac
Newton published his masterpiece, “Principa Mathe-
matica” [2]. In it, Newton stated that “the resistance
which arises from the lack of slipperiness originating
in a fluid is proportional to the velocity by which the
parts of the fluid are being separated for each other.”
This resistance is what we today call viscosity. In 1845
AD, after various empirical studies of the flow rate of
objects in narrow tubes, Navier and Stokes created laws
of motion for real fluids [1].

One of these laws was for the drag force, a law describ-
ing the resistive force against motion of a moving object
in a fluid (the resistive force on motion due to a fluid’s vis-
cosity). This force is proportional to the relative velocity
of the moving object and the fluid. An assumption made
to derive the law was that fluid flow is laminar (the fluid
flow’s velocity remains constant within a given region)
as seen in Figure 1. Newton on the other hand derived
an equation for the drag force assuming that fluid flow
is turbulent (the fluid flow’s velocity varies irregularly
in magnitude and direction). These two assumptions re-
sulted with two equations for the drag force. The laminar
flow assumption resulted with drag force being linearly
proportional to the relative velocity of the object and
fluid, while the turbulent flow assumption resulted with
the drag force to be proportional to the square of the rel-
ative velocity. Experiments proved both equations to be
valid for their respective fluid flow regimes (i.e. turbulent
and laminar flow regimes).

One such experiment studies the effects of laminar and
turbulent flow in rotational motion rather than linear mo-
tion. This can be done by spinning a sphere in a fluid
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FIG. 1. The turbulent and laminar regimes of fluid flow. In
laminar flow, the fluid moves more regularly than in turbulent
fluid flow. This image was taken from [3].

and studying the rotating sphere’s angular velocity and
the torque acting on the sphere due to the viscous force.
It is expected that at higher velocities, the torque will
be proportional to the square of the angular velocity (as
turbulent fluid flow is expected). Similarly, at lower ve-
locities, the torque is expected to be directly proportional
to the angular velocity (as laminar fluid flow is expected).
This report discusses results from this experiment which
we have replicated. We have also investigated the ad-
dition of extra resistance (in the form of rigid flags) to
the sphere, and its effects on the angular velocity of the
sphere.



II. THEORY
A. Viscous Drag Force

The equations for this section were obtained from [4].
To describe the viscous drag force ﬁN, acting on a sphere
of diameter d, inside a region with turbid fluid flow, we
can use the following equation created by Newton

Fy = (C’Dg pd2> 152 o
— Fy= K, |5 © (1)

in which Cp is the drag coefficient, p is the density of the
fluid and |¥] © is the relative velocity between the fluid
and the sphere. In the second line, we have combined the
constants into a single constant Ko = —Cp pg d*n /8.
This gives us an equation in terms of the viscous force
and velocity squared.

Now to describe the viscous drag force F. s, acting on a
sphere of diameter d, inside a region with laminar fluid
flow, we can use the following equation created by Stokes

Fg = (3w nd) |v] o
— Fs=K, |7] . (2)

where 7 is the fluid dynamic viscosity or its resistance to
shearing flows. Again, in the second line, we have com-
bined the constants into a single constant K1 = —37 7 d.
This gives us an equation in terms of the viscous force
and relative velocity.

As both the ﬁs and Fy equations are similar, we can
generalise them to

F=0C,|t" o (3)

where n = 1,2 and C,, = K, Ky for ﬁs and ﬁN
respectively.

B. Viscous Drag Torque

In linear motion, net force F and mass m determine
the acceleration a of an object, as described by Newton’s
Second Law: F = m a. Similarly in rotational motion,
net torque 7 and moment of inertia I determine the
angular acceleration @ of an object: 7=14a .

Similar to how we have a rotational analogy for New-
ton’s second law, we have a rotational analogy for the
equation for the viscous drag force in Eq. 3 and this is
given by

T=rxF

=-C'ld"a,
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where ¢/ = r K, and 7 is the radius of the rotating
sphere.  Figure 2 shows the viscous force and the
resultant torque on such a sphere.

Substituting in 7 = I @, taking the absolute value of
the equation and dividing the equation through by I, we
get

a=-Clol" (4)
— Zo=-clal" )
—=-C|J
dt ’
where C'= C’/I. We can solve this differential equation
for n =1 and n = 2, and we can also take the natural
logarithm of the the equation to determine the value of n.

C. Determining n

On taking the natural logarithm of Eq. 4, we get
Ina=In(-C) +nlhw (6)

Hence if we plot In « against In w, the slope of the linear
fit of the data can give us n. This value can inform exper-
imentalists if the fluid flow around the sphere is laminar
or turbulent. If n ~ 1 then the fluid flow around the
sphere is laminar as the data matches what is predicted
by Eq. 2. Similarly if n ~ 2 then the fluid flow around
the sphere is turbulent and the data matches what is
predicted by Eq. 1.

D. Solving the Differential Equation

We have a separable differential equation given by
Eq. 5. If we separate the dt and dw, Eq. 5 becomes

“_ car. (7)

w

We can now solve this equation for the two cases for n:



e Case n = 1: On integrating both sides of the Eq. 7
after setting n = 1, we get

w:woe*Ct.

On taking the natural log of both sides of the equa-
tion we get

hw=lhwy —Ct. (8)

If In w is plotted against ¢ for data that is collected
for when fluid flow is laminar, the plot should result
in a linear fit.

e Case n = 2: On integrating both sides of the Eq. 7
after setting n = 2, we get

-1 1
— 4+ —=-Ct
w wo
1 1
= —=—+Ct. (9)
w wWo

If —1/w is plotted against ¢ for data that is collected
for when fluid flow is turbulent, the plot should
result in a linear fit.

In summary the solutions for the differential equation
for n = 1 and n = 2 provide experimentalists with an
additional way to determine if the fluid flow is laminar
or turbulent. If the data collected for w and ¢ linearly
fit Eq. 8 then we know the fluid flow is laminar. If the
data linearly fits Eq. 9 then we know that the fluid flow
is turbulent.

III. PROCEDURE
A. Experimental Setup

A diagram of the experimental set up used to study
the fluid flow across the gyroscope can be seen in
Figure 3. The gyroscope was held up by a cushion of
gas and has black electrical tape along every quarter arc
of its upper hemisphere. We created this cushion of gas
by supplying Ny under the gyroscope from a compressed
nitrogen tank set at a constant 12 psi. This allowed us
to spin the gyroscope so that the only force resisting its
motion would be the drag force.

We added a laser and a light sensor as shown in
Figure 3 and positioned them such that the laser
bounced off the rotating gyroscope, into the light sensor.
The black electrical tape that had been added does not
reflect the laser. Hence when the laser is incident on the
black tape, the laser will not strike the sensor. When
the laser does strike the sensor, the light is read by the
sensor as a peak in voltage. The voltage peak is sent to
a frequency counter which counts the number of dips
in the voltage (which occurs when no light reaches the
sensor). The frequency counter we used was the Hewlet
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FIG. 3. Image of apparatus

Packard frequency counter.

The frequency counter was set to record the number
of dips in voltage per second, at 10 second intervals.
We called this the measured frequency. We then
averaged this frequency over the 10 second interval
with a LabView program. The LabView program also
converted this measured frequency to the frequency
of the gyroscope’s rotation by dividing the measured
frequency by 4 (the number of times the voltage would
dip one rotation due to each strip of black tape being 7/2
radians apart). A flowchart for the LabView program
can be found in the appendix.

B. Data Acquisition

Once the experimental setup was ready to record the
gyroscope’s frequency f, we spun the gyroscope and let
it remain spinning undisturbed until it stopped by itself.
The force which decelerated the gyroscope was the re-
treading drag force due to the viscosity of air. By record-
ing f, we were able to determine the angular velocity of
the gyroscope with w = 27 f. On numerically differenti-
ating w (after removing outliers in the data) we were able
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FIG. 4. A schematic to visualise the different flag orientations.

to calculate the gyroscope’s angular acceleration with the
central differences algorithm:

_dw
Cdt

_ YWnt1 — Wn-1 (10)

o
tn+1 - tn—l

With w and a we were able to plot In a against In w
as described by Eq 6 to obtain the value of n. We then
repeated this experiment with the addition of multiple
flags in different orientations. The different orientations
of the flags can be seen in Figure 4. We even plotted the
data with Eq. 8 and Eq. 9 to verify which regime of fluid
flow was governing the system when different flags were
attached.

IV. RESULTS AND ANALYSIS

The angular velocity w was measured for the gyroscope
without and with flags attached in different orientations
as discussed in the previous section. All the flags we
used were rectangular but with different areas. Flag 1
was the largest with its dimensions as 9 x 15 cm?. We
discovered that this flag increased the viscous torque by
such a large extent that we were unable to take more
than two seconds of data for this.

The next flag, Flag 2, was a smaller rectangle with
dimensions 7 x 11 c¢m?. As this flag was smaller than
the previous, it did not increase the viscous torque by
as large an amount as the previous flag. Hence, we were
able to take data with this flag. We discovered that at-
taching the flag in its portrait orientation (see Figure 4)
resulted with a smaller viscous torque than either of the
landscape orientations. We expected this as we know
that 7 = 7 x F and with the flag oriented horizontally,
the 7 is larger than for its vertical orientation. We were
able to observe the larger torque in our data by studying
the Flag 2’s frequency VS time plot as seen in Figure 5.
On the plot we can see that the decay of the frequency
with time for the portrait orientation takes longer than
for the landscape orientations. We concluded that this is
due to the landscape orientations experiencing a larger
torque.
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FIG. 5. Plots for Flag 2 data. The first plot is that of the
frequency of revolution of the gyroscope with and the second
plot is that of the natural log of angular acceleration plotted
against the natural log of the angular velocity. The different
colours on the graphs represent the different orientations for
Flag 2.

On this plot, the dots are the data points that remained
after we removed the outliers (data points with f
greater/smaller than the neighbouring f by more than
0.5 Hz). The data points connected with lines are the
averages of several of the dot data points neighbouring
each other. We selected the number of points to average
depending on how many data points were required to
make the graph of the data to appear as a smooth
differentiable function. This was challenging as the data
fluctuated a lot and so we took several data runs with
the same flag and same orientation to get smoothest
data set to analyse. The uncertainty of each of the
averaged f values was set to the standard deviation of
the neighbouring f points that were used to calculate
the average.

Using the smoothest frequency data from each exper-
iment, we calculated the w and then differentiated this
numerically to obtain « as described in the previous sec-
tion. On plotting In o against In w as seen in the bottom
graph of Figure 5, we were able to obtain the value of
n as described in Eq. 6 from the slopes of the graphs.
The uncertainty for g(z) = In o was calculated with the



TABLE I. The values of n for Eq. 6 for the different data
sets. The value of n helps inform us that the gyroscope must
be experiencing a net turbulent flow for the large flags and a
laminar flow for the small/no flag data sets.

Area (cm?) Slope (n)
FLAG 1 9x15 -
FLAG 2 7x11
orientation 1 2.26 £0.06
2 2.154+0.15
3 2.38 £0.28
FLAG 3 3.5 x 5.5
orientation 1 1.25+£0.01
2 1.31 £0.02
3 1.27 £ 0.04
NO FLAG 0 1.11+£0.12
following equation:
og(w) d 1 Cw"]|o
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Here, § f is the uncertainty in the frequency of revolution
of the gyroscope. Additionally, we have taken n = 2 in
the uncertainty calculations to maximise the possible
uncertainty.

The values for n that we obtained from our exper-
iments have been recorded in Table I. From the table
we can see that for Flag 2, n =~ 2 and for Flag 1 and
no flag, n ~ 1. This tells us that as we increase the
surface area for the flag, the turbulence increases. At
smaller areas, the flag has almost laminar flow (since
n & 1). For the case where there is no flag, we see that
n = 1.1140.15, a value which includes n = 1. Hence, we
can see that in normal rotation of the gyroscope in air,
the fluid flows around the gyroscope in a laminar fashion.

Note that for Flags 2 and 3, the values for n are only
approximately near n = 1 and n = 2. This might be
because the torque for which we are calculating n for may
be different for different regions of the flag and gyroscope.
The fluid flow may be laminar near the gyroscope, but
turbulent near the flag. Hence, resulting with a value
neither n = 1 nor n = 2 but inbetween.

A. Analysis with the Differential Equation
Solutions

As discussed in Section IID, if the data linearly fits
Eq 8, then we know that the data must have been
collected from a region with laminar flow. Similarly, for
data that linearly fits Eq 9, the data must have been
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FIG. 6. Plots of the data from flags 2 and 3 to determine if
the data follows the equations for viscous torque as explained
in Eq. 8 and 9.

collected in a region with turbulent fluid flow. Figure 6
contains plots for Eq 8 and Eq 9 for the data from Flags
2 and 3. From the previous section, we predicted that
the Flag 2 must have been in turbulent fluid flow, while
Flag 3 must have been in laminar fluid flow. The plots
for Flags 2 and 3 in Figure 6 confirm this. To make
our confirmation more rigorous, we took calculated the
residuals of the best fit lines, in the plots for Flags 2 and
3 in Figure 6, and compared them to each other.

After taking weighted slopes for each of the data sets
on both the plots, we created residual plots of the data as
seen in Figure 7 to help us determine which of the data
sets were more linear. We calculated the residual R with
the following formula:

R=y;—[a+bay], (11)

where the ordered pair (z;,y;) is the data we plotted,
and a and b are the intercept and slope of the fitted line
that we fitted to the plotted data. Clearly, in Figure 7
we can see that the residuals for Flag 2 are larger for
when Stokes’s n = 1 equation was used to solve the
differential equation given in Eq. 5. This tells us that
the data for Flag 2 varies a lot from its fit for this
solution of the differential equation. Hence this tells
us that the Flag 2’s data is not well explained by the
laminar flow’s torque equation. We see instead that its
residuals are smaller for Flag 2 when we use the Eq. 9
(Newton’s version of the solution to the differential
equation, Eq. 5), telling us that the data can be ex-
plained better by the turbulent flow’s torque equation.
This information can be better understood with Table II.

IT has the average residuals for each data set. We have
named the residuals for Flag 3 to be R3 and the residuals
for Flag 2 to be R2. The difference between these will
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FIG. 7. Bar graphs of the residuals obtained from the linear
fits of the flag 2 and 3 data as plotted in Figure 6. We can
clearly see that .

TABLE II. The difference of the averaged residual values ob-
tained from the fitted lines of the data in Figure 6 for Flags 3
and 2. R3 and R2 are average residual values from Flags 3 and
2 respectively. A full table of the data with the uncertainties
can be found in the appendix.

R3—R2
ORIENTATION |STOKES NEWTON
Portrait —1.83x 107 *[1.12x 1071

Landscape (bottom)|—2.00 x 107%[2.91 x 107°
Landscape (top) —1.08 x 107*|1.08 x 10~*

demonstrate how the linear fits of Eq. 8 better fit the
Flag 3 data than Flag 2’s. Similarly, the differences will
also demonstrate how the fits of Eq. 9 better fit Flag 2’s
data than Flag 3’s. As seen in the table, the first data
column is for the averaged residuals for Stokes linear fits
for laminar flow. We can see that R3 — R2 < 0, which
tells us that Flag 2 has larger residuals than R3. Hence
Flag 3 data is better fit by the Stokes model. Conversely,
R3 — R2 > 0 for turbulent flow, implying that Flag 3
has larger residuals. This means that the Flag 2 is better
fit by Newton’s model.

This hence confirmed that Flag 2’s data was modeled
well by Newton’s viscous torque equation while Flag 3’s
data was modeled well by Stokes’ viscous torque equa-

tion.

V. CONCLUSIONS

Turbulent and laminar fluid flow are both useful phys-
ical phenomenon. Laminar flow is desirable in many sit-
uations, such as in drainage systems or airplane wings,
because it is more efficient and less energy is lost. Turbu-
lent flow can be useful for causing different fluids to mix
together or for equalizing temperature. Understanding
both laminar and turbulent fluid flow and their resulting
drag forces hence is important. In this experiment, we
studied the drag forces from laminar and turbulent fluid
flow on the rotation of a sphere. We found that for a
smooth gyroscope without any additional resistance, the
viscous torque experienced by it is best modeled by the
torque equation derived from Stokes’s model of viscous
force for objects moving in laminar flow. This is expected
since the gyroscope is streamlined and hence air should
flow around it in a steady and systematic fashion. In con-
trast, we noticed that with the addition of external resis-
tance in the form of rigid flags, the viscous torque is best
modeled by Newton’s model of viscous force for objects
moving in turbulent flow. This is expected as the ad-
dition of flags makes the structure less streamlined, and
hence the air cannot move around the object as system-
atically as before. Additionally, we noted that altering
the orientation of the flags can alter the viscous torque
being experienced by the rotating body. This is because
torque depends on the distance between the axis of ro-
tation of the object and the point at which the torque is
being calculated.
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