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Stochastic resonance is demonstrated in a regenerative bistable comparator. The setup is a
variation on an experiment performed by S. Fauve and F. Heslot [1]. The data confirms that by
inputting both a noise signal and a pure sine wave to the same input of a regenerative bistable
comparator, rather than separate inputs, stochastic resonance is maintained. A peak signal to noise
ratio is located when the added noise signal has a standard deviation of � = 0.18488 V.

I. INTRODUCTION

The goal of any system of communication is to get one
thing to resonate with another. This is often achieved
by sending a signal from one object to another in hopes
that the second object will receive the signal, or resonate
with it. But sometimes the signals we send are too weak
to grab the attention of their intended audience. How-
ever, it may be possible that adding some chaotic ele-
ment to a signal could help it communicate. Stochas-
tic resonance is a phenomenon where the introduction of
random noise allows a signal to be detected by an instru-
ment or perceiver that could not detect the same signal
in the absence of extra noise. The concept was originally
suggested to explain the reoccurring cycle of the planet
earth’s ice ages [2]. The planet is thrown into glaciation
at a regular interval of around 105 years, and the only
force that acts on the earth in a similarly large period
is far too weak to cause a shift in state as large as an
ice age. In this first proposed model, short term climate
fluctuations, which we experience as weather, are taken
as the random noise that allows a very weak signal to
translate into a large scale climate shift.

To conceptualize how random noise could possibly aid
the communication of a signal, imagine you are in a
crowded social function, standing in a corner of the room,
enjoying some snacks and chatting with the people adja-
cent to you. Your friend Nick is standing at the opposite
corner of the room. Now, it happens to be that you are
standing near a window and you see that Nick’s car is
being towed outside the building. You want to get the
message to Nick so that he can exit the party and stop
the towing company before he loses his vehicle, but you
also do not want to leave your spot next to the snack
tray. So you tell the people near you that Nick’s car is
being towed, in hopes that people will pass on the mes-
sage until it reaches him. Now if this party is full of
people who are exhausted from long days at their respec-
tive jobs and don’t know each other at all, then there
is not very much conversation going on and the chances
of your message making it across the room, person-to-
person until it reaches Nick, are quite slim. However,
you can imagine another version of this gathering where
everyone in attendance is full of energy and excited to see
one another. In this state, the message will easily travel
across the room and Nick will hear the bad news about

his car. In this scenario, the weak signal is the message
you wish to send, and the noise is the energy level of the
crowded room. Without noise, the signal does not pass
through, with noise it does. We can also easily imagine
the point where the noise becomes too powerful and once
again the signal would be inhibited. If everyone in the
room was yelling top volume, there is once again very
little opportunity for Nick to learn of his poor parking
choice. This overwhelmed scenario also exists in more
nuanced systems exhibiting stochastic resonance.

Since the initial proposal relating to environmental
shifts by Benzi et al. [2], stochastic resonance has been
identified in many other systems on a much smaller level.
These systems are often bistable, meaning they can exist
in one of two states at any point. Some electronic systems
exhibit such bistable properties, to the point of blocking
weak signals [3]. Stochastic resonance can be employed to
push such signals through bistable circuits [4]. One of the
first, and maybe the simplest demonstration of stochas-
tic resonance in an electronic circuit was performed by
Fauve et al. on a simple Schmitt trigger [1]. In their
work, they directly demonstrated bistable stochastic res-
onance in an analog scenario, clearly mapping out their
circuit as a metaphor for a mechanical double potential
well. In the experiment presented here, the circuit board
setup is very similar to the one employed by Fauve et al.,
however, the input technique is modified, to show a mode
of stochastic resonance that falls somewhere between the
two current models, threshold and bistable stochastic res-
onance. This experiment bridges the gap between these
two models by inputing both the pure signal and the
noise signal to the same input. The system is bistable,
but breaking a threshold value is the method of triggering
transitions between these two states.

This experiment consists of a bistable circuit with one
input point and two separate signal generators feeding
into the same location. One signal is a weak sine wave,
the other is random Gaussian noise. Without the noise,
the sine wave does not pass through the circuit. With the
addition of noise, the output begins to display a signal.
Too much noise causes the output to return to no signal
at all. So, Fourier transform is employed to analyze the
range of noise with an active output, and a signal to noise
ratio is established across a variety of noise amplitudes
to find the peak location of stochastic resonance.

This experiment falls within the context of many other
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ongoing projects surrounding stochastic resonance. Sim-
ilar concepts have already been applied as a means of
developing night vision goggles that can detect very dim
or over-saturated light signals [5]. This particular ex-
periment comes closer to modeling an auditory regime,
as the voltage signals used herein fall into the human
hearing bandwidth, and could be easily connected to a
speaker and projected as such. This work could be di-
rectly applied to circuits within hearing aids, potentially
as a means of boosting pure tones while abandoning any
surrounding noisy environment.

II. THEORY

There are two models often used to describe stochastic
resonance in a general sense – threshold and bistable [6].
The circuit employed in this experiment exhibits bistabil-
ity, so the model I will work from is the bistable model.
This model will now be described in order to provide
ample conceptual framework for the system at hand.
Bistable stochastic resonance can be thought of in terms
of a classical particle in a quartic double potential well,
as shown in the top left corner of Fig. 1. We can imag-
ine a driving signal applied to this potential well, causing
the two divots to alternate in depth. This driving signal
takes the form

x

i

(t) = A cos(⌦t� �), (1)

where A is the amplitude of the signal, ⌦ is the frequency,
and � is the phase. Now, if this sinusoidal signal is power-
ful enough, the particle will jump between the two stable
states at a regular frequency ⌦. The resulting motion is
demonstrated in Fig. 1. However, in a situation where

FIG. 1. Classical particle in a quartic double potential well.
Here a signal is resonating with the particle, as the particle
is moved to the lower position in potential shifts. Under a
weak signal, the particle would remain in one side of the well
throughout the cycle depicted here.

the driving signal is too weak to cause the particle to
shift states, we must introduce a Gaussian noise signal,
⇠(t) with autocorrelation

h⇠(t)⇠(0)i = 2�2
⌧�(t), (2)

where � represents the spatial standard deviation of the
noise, and ⌧ is the folding time of the correlation function,
characteristic of its temporal width [7]. Angle brackets in
Eq. 2 denote a correlation function. For simplicity’s sake,
here we will define the intensity of the noise, as D = �

2
⌧ .

In this over-damped case, with the presence of Gaussian
noise, the particle is once again able to move between
the two stable states. For experimental purposes, we are
more concerned with the rate at which the particle jumps
between the two wells. In the case where the pure signal
is strong enough to drive the system alone, the rate will
simply be the driving frequency, ⌦. The weak driving sig-
nal, with the aid of stochastic resonance, will give a very
similar switching rate, but the amplitude of the promi-
nent frequency is complicated by the presence of noise.
This amplitude is dependent on the noise intensity, D,
and is given by
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here represents the amplitude of the periodic compo-
nent of the particle’s motion, and hx2

i

i
o

is the variance of
the system in the absence of the pure sine wave input [7].
There is a new and important element to this equation,
r

k

, known as Kramers rate. The Kramers rate is the rate
at which the system will switch between the two stable
states when driven only by our Gaussian noise, ⇠(t) [8].
This rate is given by

r

k

=
1p
2⇡

e

��v/D

. (4)

�V here represents the height of the barrier between the
two wells. Examining Eq. 3 in conjunction with our D-
dependent Kramers rate, Gammaitoni tells us we can see
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FIG. 2. Plot of Eq. 3 generated in Wolfram Mathematica.
This figure confirms the behavior described by Gammaitoni
et al. in their review paper on stochastic resonance [7], as we
can see that there is a peak where the pure signal is strongest.
We expect that the final result of this experiment will depict
a similar shape to the one shown here.
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that the amplitude of our desired output will be small
when D is very small, increase with D, then eventually
decrease as D once again gets large [7]. The behavior of
Eq. 3 is shown in Fig. 2. This behavior is the key element
of stochastic resonance. The goal of this experiment will
be to locate the regime in D where the output signal is
strongest.

The bistable double potential well does a good job of
eliciting the concept of stochastic resonance, but it is
not fully descriptive of this experiment. This experiment
is a demonstration of stochastic resonance specifically
in an electronic setting, so to complete the conceptual
background some information on circuitry is required.
The circuit under scrutiny here is a bistable regenera-
tive comparator, commonly referred to as a Schmitt trig-
ger. The circuit is a simple one, an operational amplifier
with a voltage divider connecting the output to the non-
inverting input, as shown in Fig. 3. The primary com-
ponent is an operational amplifier (Op-Amp) in the non-
linear regime, with driving voltage values V

d

and �V

d

.
This means the Op-Amp functions to compare the in-
verting and non-inverting inputs. If the inverting input
has a higher voltage, then the Op-Amp will output �V

d

.
If the non-inverting output has a higher voltage, the Op-
Amp will output V

d

. Given that the output is then fed
back to the non-inverting input, the circuit has two dif-
ferent threshold values. We can find these values through
simple analysis of our voltage divider,

V

t

=
V

o

R2

R1 +R2
, (5)

where V

t

is the threshold voltage, V
o

is the output volt-
age, and R1 and R2 are the two resistors that make up
the voltage divider [9]. We can see that since the Op-
Amp only has two possible output voltages, the Schmitt
trigger will only have two possible threshold voltages.

What distinguishes this circuit from other compara-
tors is the fact that it possesses a bistable regime. Given
that the feedback is connected to the non-inverting input,
a shift in output voltage opposes the sign of the input
when the threshold is crossed. This means that there is
a bistable regime when �V

t

< (input voltage V

i

) < V

t

,
the area between the two dashed lines in Fig. 4. This

V
V

i

o

R1

R2

FIG. 3. Circuit diagram of a basic Schmitt trigger. V
i

repre-
sents the input voltage, and V

o

represents the output voltage.

particular bistability is called hysteresis, and is very im-
portant to the field of electronics as it presents a natural
opportunity for memory in circuits. While the input lays
within the bistable regime, the output of a Schmitt trig-
ger is dictated by whichever non-bistable state the system
most recently occupied, this is demonstrated in Fig. 5. In
other words, the system remembers its most recent out-
put. For our purposes here, the hysteresis e↵ect simply
serves to allow the possibility of a sub-threshold signal to
enter a bistable system.
If we input a signal, V

i

(t) with the form of Eq. 1 to the
circuit with the condition A > V

t

, then the output volt-
age will be a square wave of frequency ⌦. This tracks onto
our double potential well metaphor as the case where the
signal is powerful enough to move the particle on its own.
The weak signal case also tracks back to the Schmitt trig-
ger if we input a signal with the form of Eq. 1 given the
condition A < V

t

. In this scenario, the entirety of our
signal takes place within the hysteretic regime, meaning
the output voltage will never switch. So, in order to push
the signal through the circuit, we introduce a Gaussian
noise signal, ⇠(t). The noise and the pure input add to
create a new input voltage of

V

i

(t) = A cos(⌦t� �) + ⇠(t). (6)

Following the metaphor of the double potential well,
there is a predicted range of noise intensity D where the
output voltage will display a strong square wave of fre-
quency ⌦. The strength of this output signal will vary
proportionally to the amplitude of Eq. 3.
Now, the double potential well model provides us with

a qualitative description of what sort of behavior char-
acterizes stochastic resonance, but it does not fit our
Schmitt trigger perfectly. There are a few key di↵er-
ences that stop us from simply translating the equations
from the model to the circuit. First, in a hysteretic cir-
cuit, the barrier between the two bistable states is not
smooth. The double potential well does not represent a
transition as stark as the one present in this circuit. The

Vo

Vo

Vt

Vt

FIG. 4. Theoretical prediction of the input to output rela-
tionship in a Schmitt trigger. The input is shown here in red,
the output in blue. As the input descends below the threshold
voltage, the output inverts, between two stable states, thus
the name inverting bistable comparator.
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second di↵erence is also what distinguishes this experi-
ment from the original work performed by Fauve et al.
. In their work, the pure sine wave signal is applied to
the non-inverting input of the Schmitt trigger, and the
Gaussian noise is still placed on the inverting input –
this method is slightly closer to the double well model,
as the pure sine wave raises and lowers the thresholds
rather than adding directly to the noise value [1]. The
method employed in this experiment takes the Schmitt
trigger slightly farther away from the double potential
well model, however, stochastic resonance will still take
place. This leaves us with only one further issue to re-
solve. How can we quantitatively determine if stochastic
resonance is occurring?

The solution is simply to take the Fourier transform of
the output

e
V

o

(!) =

Z 1

�1
V

o

(t)e�i!t

dt. (7)

This operator takes us from the temporal spread of the
output to the spread across frequency, ! [9]. If stochastic
resonance is occurring in the system, e

V

o

(!) will have a
distinct spike at ⌦. Once we have located this spike, we
can find the signal to noise ratio (SNR), simply defined as
the height of the peak divided by the average of the sur-
rounding frequency spectrum. By plotting SNR against
corresponding values of �2, defined as the standard devi-
ation of the voltage spread in the noise signal as before
in the double well model, we can determine if the system
is exhibiting the qualitative properties of stochastic res-
onance. �

2 is used here rather than D, as ⌧ will remain
constant over all amplitudes of noise, meaning �

2 is the
only varying aspect of D.

Vo

Vi
VtVt

Vd

Vd

FIG. 5. Theoretical prediction of output voltage as a func-
tion of input voltage. Hysteresis is the shown as a signal de-
scending from a positive input voltage to the bistable regime
maintains a negative output, while a signal ascending from a
negative input maintains a positive output.

III. PROCEDURE
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FIG. 6. Complete circuit diagram for the setup of this ex-
periment. The circle containing ⇠ represents the noise source,
the circle containing “cos” represents the pure signal source.
The two switches connecting these sources to the input show
that they are able to be connected and disconnected for ob-
servation. The two circles labeled “Osc.” represent the two
locations where the oscilloscope is connected. these readouts
are overlayed on one screen in Fig. 7. The line running from
the right oscilloscope to the computer represents the connec-
tion made to the PASCO 850 interface, depicted here as a
box.

The apparatus in use consists of two function genera-
tors connected to the input of a Schmitt trigger, as shown
in Fig 6. One generator is producing a sub threshold sig-
nal of frequency ⌦ = 400 Hz, and amplitude A = 0.79 V,
while the other is producing Gaussian noise of variable
amplitude. There is also an oscilloscope with two read-
outs, one connected from the input voltage V

i

to ground
and the other from the output voltage V

o

to ground. The
signal from V

o

is also sent to a computer running PASCO
Capstone, via a PASCO 850 Universal Interface.
The focal point of this experiment is simply a Schmitt

trigger as shown in Fig. 3. This circuit is constructed
from a 741 Op-Amp, and two resistors with resistance
R1 = 100 k⌦ and R2 = 10 k⌦. Using these values,
Eq. 5 gives a simple formula for the threshold voltage,
V

t

= 0.09V
o

. The two possible output voltages are deter-
mined by the driving voltage of the Op-Amp, in this case
that is ±15 V. This driving voltage suggests threshold
values of ±1.35 V. Examination of the circuit by vary
the input voltage reveals a slightly lower threshold of
±1.31 V. This discrepancy is most likely due to internal
resistance within the 741 Op-Amp. Knowledge of the
threshold values allows us to conclude that a signal with
a peak to peak voltage di↵erence less than 2.62 V will
not pass through the circuit.
An Aligent 33220A function generator supplies a sine

wave to the input of the Schmitt trigger with a peak to
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FIG. 7. Photos of the oscilloscope reading for three possible
scenarios within the setup. The input voltage is shown in yel-
low, the output is shown in blue. (I) depicts a signal strong
enough to trip the threshold values and cause the Schmitt
trigget to output a pure square wave of frequency ⌦. This
readout confirms that our Schmitt trigger is operating ac-
cording to the theory presented in Fig. 4. (II) depicts a clean
sub-threshold input signal, with no additional noise, meaning
the output of the circuit is a constant voltage. (III) shows
the same input signal as II with the addition of a Gaussian
noise signal, causing the circuit to once again output a square
wave, this time with a dominant frequency of ⌦. The in-
put here takes the form of Eq. 6. We can observe stochastic
resonance qualitatively in this image.

peak voltage of 1.58 V, so that the thresholds are never
tripped, and the output remains constant. A Hewlett
Packard 33120A function generator then supplies a Gaus-
sian noise signal to the same point, causing the two sig-
nals to add. The signal becomes very noisy, and the
combined input trips the threshold values, causing the
output to switch between the two possible values. Pro-
gression between these three operating modes is shown in
Fig. 7. This output waveform is recorded using PASCO
Capstone, and exported as a text file of Voltage vs time.
The output voltages were recorded at a resolution of 100
kHz, much larger than the driving frequency, ⌦ = 400
Hz. This text file is then imported into Igor Pro for
analysis. The relevant range of noise amplitude was es-
tablished before taking data, and a text file was gathered

for peak to peak noise voltages between 2.5 V and 6.5 V
at ascending increments of 0.5 V. The noise waveforms
alone were also recorded through the same interface in
order to identify values of �.

IV. DATA AND RESULTS
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FIG. 8. Graphic representations of data from a run with a
� = 0.11 V. Bottom: direct graph of 0.05 seconds of data
from the output of the circuit. Top: Fourier transform of 5
seconds of the same data set. Note that the bottom graph
shows the output ’firing’ every now and then with a width
associated the with the frequency ! = 400 Hz, and there is a
spike the Fourier transform at ! = 400 Hz.
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FIG. 9. Graphic representations of data from a run with a
� = 0.18 V. This is the data run identified as optimal for
stochastic resonance in this circuit. Bottom: direct graph
of 0.05 seconds of data from the output of the circuit. Top:
Fourier transform of 5 seconds of the same data set. Note that
the square wave on the bottom is firing regularly, appearing
almost as a pure square wave of frequency ! = 400 Hz. The
spike in the Fourier transform at ! = 400 Hz has grown very
defined.

After the data were imported into Igor Pro, the Fourier
transform was taken as in Eq. 7. Three out of the nine
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FIG. 10. Graph of SNR vs. �2. Here we can observe the be-
havior characteristic of stochastic resonance; increase in SNR
to a peak, then decrease when the noise signal becomes too
powerful.

Fourier transforms taken are displayed in Fig. 8 and
Fig. 9. This allows us to locate the peak frequency, which
as expected occurs at ⌦ = 400 Hz, our driving frequency.
The series of these graphs also allows for observation that
as � increases, the height of the peak at 400 Hz increases
as well, until it reaches a maximum, at which point it
once again falls to the level of the background noise. To
observe the process of increase and decrease character-
istic of stochastic resonance, we measure the height of
the peak and divide it by the average of the surround-
ing noise. This gives us the signal to noise ratio (SNR).
SNR is then plotted against �2 to observe the change in
resonance against the intensity of the noise signal, as dis-
played in Fig. 10. � was found using Igor Pro’s wave stats
function on a text file for the raw noise. Fig. 10 does not
include a fit of the form in Eq. 3, given that the theory
for a double well potential does not track perfectly to

this electronic scenario–The main di↵erence being that
the decay tail after the peak dips much lower on the ex-
perimental plot than the tail in Fig. 2 does.

V. CONCLUSIONS

The graph of SNR vs. �

2 shown in Fig. 10 allows us
to observe that stochastic resonance is in fact occurring.
Just as in our theoretical double well model, there is a
regime in which the addition of noise allows a signal to
pass through the bistable system. This regime also be-
haves according to the predictions of Eq. 3, increasing at
first, then decreasing [7]. This structure means we can
locate a peak value, with a corresponding � that shows
us the optimal noise input for stochastic resonance in this
system given a driving frequency of ⌦ = 400 Hz. This
peak value is located at � = 0.18488 V. These observa-
tions confirm that stochastic resonance is occurring even
in an augmented version of Fauve and Heslot’s first ex-
periment. This augmentation doesn’t necessarily adhere
to the gold standard of bistable stochastic resonance set
out in the double well model, but nonetheless stochastic
resonance is observed
A system like this could be employed in further work

developing hearing aids that listen for pure frequencies
that may be sub threshold, or precise data collection de-
vices that involve detecting very minimal signals. An-
other interesting extension of this work is as a model of
a neuron. Similar to the behavior shown in the bottom
half of Fig. 8, a neuron has a baseline energy level and
fires in short bursts to a higher energy level when stimu-
lated. If a large quantity of these hysteretic circuits was
gathered, and placed in some sort of medium allowing
feedback between the nodes, they could potentially be
used as an electronic simulation of brain activity.
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