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A simulation was created to solve the Navier-Stokes equations for a moving object accelerated by
a fluid. The program expanded upon a previously written program that solved the Navier-Stokes
equation for stationary boundary conditions using an imported inverse Lagrangian matrix. The new
program inverts the Lagrangian numerically, using a freely available c++ library that enables fast
and efficient large sparse square matrix inversion. The acceleration of the object by the the fluid is
calculated by summing up the pressures around the object and calculating the acceleration due to
this net pressure. The Lagrangian is then recalculated every time the object moves. The physical
validity of the simulation was confirmed by constraining a circular object to movement in the y-
direction pulled by a spring, which modeled a 2-D cross section of a telephone wire in the wind. The
simulation reproduced the experimental results of the wire being forced into sinusoidal-like motion

transverse to the wind velocity.

I. INTRODUCTION

The study of fluids is both complex and highly im-
portant. Unlike solids, which maintain their shape and
move somewhat predictably when pushed or pulled, flu-
ids change their shape and even their density in complex
ways. Additionally, if a solid is moving in a given di-
rection, then each of it’s parts is moving with the same
velocity. A fluid, on the other hand, may be moving as a
whole in a given direction with parts of it moving in op-
posite directions or transverse directions [1]. Because of
their complexity, fluids lead to some very interesting and
important phenomena when coming into contact with
solids, including lift and vortex shedding. Vortex shed-
ding is a phenomenon in which, for fluids with Reynolds
numbers between 40 and 300 [2], the development of sym-
metric vortices directly behind the object is followed by
vortices periodically swirling off of either side of a cylin-
der in a fluid flow, as seen in Fig. 1. These phenomena
are vital to explaining many important things, including
windmills, airplanes, race cars, weather, and the eerie
tone sometimes generated by telephone wires “singing in
the wind” [1-4].

This work continues the work done by Danielle Shep-
herd in which a computer program which numerically
solved the Navier-Stokes equations for fixed boundary
conditions was written from the ground up [4]. With the
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FIG. 1: Vortices alternately shedding off of a circular object
in a fluid flow. This figure is reproduced from reference [3].

completion of her program, it was verified that the sim-
ulation did indeed reproduce experimental results by the
observation of vortex shedding around a fixed approx-
imate circle in a fluid flow. However, in her program
this object was fixed in place, unable to respond to the
forces produced by the interaction between the object
and the fluid. This restriction therefore severely limited
the application of the program, as it could not model a
system in which the object could move if blown by the
wind. The obvious next step in the development of the
program, then, was to allow for the object to move in
response to the forces on it by the fluid. To confirm that
the program was correctly simulating physical phenom-
ena, a known scenario, that of a telephone wire oscillating
transversely to the wind, was simulated for. The motion
of the simulated telephone wire was then compared to
the motion of a physical one, and it was verified that the
motions matched each other.

This report will first discuss the incompressible Navier-
Stokes equations in conservation form. Then it will ad-
dress the importance of the inverse Laplacian in solv-
ing for the pressures of the system simultaneously. Also
discussed will be the calculation of the acceleration of
the object due to a pressure gradient. Subsequently, the
methodology of the simulation will be discussed, first ad-
dressing the need for large sparse matrix inversion and
then addressing the method in which the object was
moved and tracked. Finally, the results will be discussed
in which the simulation was validated by correctly simu-
lating a 2-D cross section of a telephone wire oscillating
transversely to the wind.

II. THEORY
A. Navier-Stokes Equations

The Navier-Stokes equations are a pair of coupled
equations of motion for an isotropic Newtonian fluid [4].
They rely on three physical principles: (1) Newton’s sec-



ond law, (2) conservation of energy, and (3) conservation
of mass [1]. In addition, they assume a continuum model
of a fluid in which the fluid is infinitely divisible into
small parts with equal properties [5]. The incompressible
Navier-Stokes equations in conservation form are [1, 4, 7]
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where ¥ is the velocity of the fluid, p is the density, P is
the pressure, and v is the kinematic viscosity. The first
equation relates the local change in velocity with time to
three terms. The second term relates it to the pressure
gradient, an alternate form of Newton’s second law. The
first term then subtracts out the non-local change in ve-
locity, or the change in velocity of the fluid based solely
on the movement of the fluid element from one location
to another. Finally the third term is a frictional term,
accounting for an acceleration opposite the divergence
of the velocity, based on the kinematic viscosity v, the
fluid equivalent of the coefficient of friction. The second
equation is considerably simpler: because the fluid is in-
compressible, the change in density of the fluid must be
zero, and thus the divergence of the velocity of the fluid
must also be zero.

B. The Laplacian

In observing the Navier-Stokes equations, it is clear
that there are two unknowns that we are solving for: the
change in velocity with time and the pressure gradient.
To solve for the updated velocity at time ¢ + dt, we take
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The local acceleration (00/0t) of the fluid is solved for in
the first of the Navier-Stokes equations (Eq. 1a). Thus,
substituting this in to Eq. 2 yields
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where @; = #(t) — (7 V)@ dt + vV2F dt can be thought
of as an intermediate velocity term. In computing the
updated pressure values, the second of the Navier-Stokes
equations (Eq. 1b), namely that the velocity field must
not diverge, must be satisfied simultaneously. Thus, by

applying this principle and solving for P, it follows
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Thus, in order to solve for the pressure, the inverse Lapla-
cian must be calculated. This is discussed further in the
methodology section.

C. Acceleration of the Object Due to a Pressure
Gradient

The acceleration of the object due to a net pressure
difference on its sides needs to be calculated in order to
be able to calculate the motion of the object. From New-
ton’s second law F = m@ and the definition of pressure
P = F/A. it can be shown that
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Thus, by simply summing up the pressures around the
object, the acceleration of the object due to a pressure
gradient can be obtained.

III. METHODOLOGY

In solving the Navier-Stokes equations, the Laplacian,
a very large sparse square matrix that describes the
boundary conditions, must be inverted to then solve si-
multaneously for the pressures at all cells using Eq. 5.
Shepherd’s program implemented a novel technique: she
solved exactly for the inverted Laplacian using Mathe-
matica, and then imported the inverted Laplacian into
her program [4]. This was unique to the field, because
other programs numerically invert the Laplacian using a
method such as LU Decomposition rather then exactly
invert it in Mathematica.

Because the Laplacian describes the boundary con-
ditions, for fixed boundary conditions it stays constant
throughout the simulation and only needs to be inverted
once. For movable boundary conditions, however, it
must be recalculated every time the boundary condi-
tions change. Thus, the new program needed to be able



to solve a large sparse square matrix automatically and
quickly. While it would have been possible to continue
with Shepherd’s use of Mathematica to invert the Lapla-
cian if correctly automated, due to the overhead in start-
ing and running a separate program every time the Lapla-
cian needed to be inverted, it was decided to implement
an available c++ matrix solver especially optimized to
rapidly solve particularly sparse matrices. The chosen
solver was Eigen, a free c++ template library for linear
algebra [6]. The code was then modified to use the syntax
and structures native to Eigen.

A method was then written to calculate the movement
of the object. This method is rather simple. First, it
scans through every fluid cell that is not on the outside
border. If the fluid cell is adjacent to an object cell,
the pressure of the fluid cell is added (with the correct
direction) to the pressure vector that is the sum of all
pressures on the object. Using Eq. 6 to calculate the
acceleration of the object due to the pressure, an FEuler-
Cromer algorithm is then implemented to calculate the
displacement.

There are two location grids in the simulation: the
fluid grid and the simulation grid. The fluid grid is the
grid of fluid cells, where the Navier-Stokes equations are
used to calculate the pressure and velocity of the fluid
in each cell. This grid is actually a staggered grid made
up of a primary and secondary grid that are offset from
each other, with the pressure calculated on the primary
grid and the velocity calculated on the secondary grid.
(See references [4] and [7] for more information on the
importance and on the implementation of a staggered
grid.) The simulation grid, on the other hand, can be
thought of as one with spacings down to double precision
which keeps track of the position, velocity, and accelera-
tion of the object. Because the fluid grid is so much more
coarse than the simulation grid, the position of the object
can change notably in the simulation grid without hav-
ing moved enough to change in the position grid. Thus,
the position, velocity and acceleration of the object are
all summed up over multiple iterations in the simulation
grid. Then, only once the object has moved by more then
half of a cell in the cell space does the cell grid get up-
dated, the Laplacian recomputed, and the Navier-Stokes
equations applied to the new boundary conditions.

IV. RESULTS

A preliminary set of images from the completed sim-
ulation is displayed in Fig. 2. In the figure, the circular
object (black) is constrained to motion by a spring in the
y-direction, simulating a 2-D cross section of a telephone
wire in the wind which has been shown to move in an
oscillatory motion transverse to the wind [2, 3]. To sim-
plify and speed up the simulation, it was assumed that in
the x-direction, a steady state had already been reached
where the force in the x-direction on the wire by the wind
was equal to the force in the opposite direction from the

tension in the wire. The motion that was allowed for then
was the motion transverse to the wind. This motion has
been explained theoretically by an oscillatory force due
to vortices shedding alternately off either side of the disk
12, 3.

The motion in Fig. 2 is indeed that described by al-
ternate vortex shedding. The velocity vectors are color
coded according to the legend in Fig. 3. Frame (a) of
Fig. 2 is just as the fluid starts to flow around the ob-
ject. In frame (b), early, symmetric vortices are formed.
Frame (c) shows the vortices shedding off the bottom of
the cylinder take over, and the object is forced down-
ward. In frame (d), the object has slowed and the devel-
opment of a vortex shedding off of the top of the object is
seen in the blue/purple at top/right of the object. These
top-shedding vortices are further developed in frames (e)
and (f) and push the object upward. Frame (g) shows
a little “blip,” where the object is slowed by a vortex
developing on the bottom of the object. This vortex
is short lived, and the object continues in an upward
motion being forced by the vortices shedding off of the
top of the object in frames (h) and (i). In frame (j),
the object reaches the top of it’s displacement and turns
around, as the development of a bottom-shedding vortex
is seen in yellow at the bottom right of the object. This
bottom-shedding vortex takes over in (k) and forces the
object downwards in (1) and (m). In frame (n), the object
reaches the bottom of its displacement as top-shedding
vortices develop in blue at the top right of the object.
These top-shedding vortices take over and start forcing
the object upward again in frame (o).

It is interesting to note that, in Fig. 2, while the object
is in motion in a particular direction, the motion seems to
encourage the type of vortex shedding that increases that
direction of motion. For example, as the object moves
upward, the vortex forming that is encouraged is the top-
shedding which continues to force the object upward until
it is pulled to a top by the spring. While moving, then,
the vortex shedding doesn’t seem to alternate as it does
while the object is stationary as in Fig. 4.

These alternating shedding vortices can be seen with-
out the movement of the disk in Fig. 4. In this simulation
the spring was stiff enough (with k& = 3 x 108 in arbitrary
units) for the object not to move more than half a fluid
cell (and thus change the boundary conditions), yet the
pressures and movement of the center of the disk on the
simulation grid were recorded. Fig. 5 shows the position
of the disk (red) with a fitted sinusoidal wave (blue). It
can be seen that the displacement and thus the forcing by
the shedding vortices for a stationary object (as far as the
fluid was concerned, the object was stationary because it
didn’t move on the fluid grid because it wasn’t displaced
by more than half of a cell length) is quite sinusoidal.

Fig. 6 shows the displacement (red) in the y-direction
of the center of the object over time for the disk attached
to a spring with £ = 2x 108 in arbitrary units. The begin-
ning and the “blip” described in Fig. 2 are readily visible,
however later the motion is largely sinusoidal. The blue



FIG. 2: The fluid flow around and motion of a circular object (black) constrained to motion in the y-direction by a spring of
k=2 x 10% a.u. After the development of symmetric vortices in frame (b), the vortices alternately shed off the top and the

bottom of the object, forcing it to oscillate up and down.

FIG. 3: The color coded velocity legend. The colors describe
the direction of the velocity of the fluid while the saturation
describes the magnitude. For example, the aqua blue color
is fluid moving to the right and the red is fluid moving back-
wards, with the darker red fluid moving at a greater velocity
than the paler red.

curve shows a sinusoidal curve fit to the displacement
from about ¢ = 733 a.u., the point at which the displace-

ment appears to start being sinusoidal. These results
make physical sense: at the parameters in which a tele-
phone wire starts “singing” a mostly pure tone, we would
expect the motion of the wire to be sinusoidal, similar to
a vibrating violin string. Thus, the sinusoidal behavior
of the shedding vortex-forced disk suggests that we are
in the parameter regime of singing wires, that the wire is
indeed singing, and thus that our simulation is qualita-
tively reproducing known physical effects of a wire in an
airflow!

V. CONCLUSION

The sinusoidal motion in time of the disk confirm that
it is correctly simulating physical phenomena. However,
there is still much to be done before the simulation can
be used to gain real insight into physical scenarios. First,
the relationship between simulation units and real units



FIG. 4: The fluid flow around a circular object constrained to
motion in the y-direction by a spring of & = 3 x 10°. During
the time period shown with the given spring stiffness, the
vortices alternate too rapidly to do enough work on the object
to move it by more then one fluid cell. Thus, on the fluid
grid, the object is stationary. Frames (a) through (f) show
the alternating vortices shedding off the top and bottom of
the object.
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FIG. 5: Y Position vs Time for a Stationary Object. In this
plot, “stationary” is in the view of the fluid grid, in which the
object never moves because it is never displaced by more then
half of the width of one cell. Yet the position of the center
on the simulation grid (shown) is always calculated. Because
the position is sinusoidal with time, as it compares very well
to the sine curve fit to the function (blue), it implies that the
acceleration too is sinusoidal in time, and thus the sum of the
forces by the alternately shedding vortices is periodic in time.

needs to be established. Second, while the simulation
does simulate the effect of the fluid on the motion of
the object, the simulation currently ignores the effect of
the motion of the object on the fluid. Moving an object
through a fluid certainly creates disturbance, such as a
cone of separating water in front of the disk or the wake
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FIG. 6: Y Position vs Time for a Movable Object. After the
first blip, the displacement aligns closely to the calculated
sinusoidal fit curve (blue). This suggests harmonic motion
and a basis for the “singing” telephone wires.

behind the moving object, yet this is not yet accounted
for in the simulation. Given that, in this scenario, the
velocity of the object is very slow relative to the velocity
of the wind around it, this effect is probably relatively
negligible. However, in a scenario where the object is
moving faster relative to the velocity of the wind, these
effects will need to be taken into account. Third, the cur-
rent method of calculating the force on the object is to
calculate the pressures of the fluid cells around it. How-
ever, the pressure values are the pressures for the center
of the fluid cell, not the border of the cell touching the
object. Indeed, it was for the very reason that these bor-
dering pressures are not known that a staggered grid was
used [4, 7]. Thus, it is uncertain for what regime this
method of calculating the net force on the object will
remain accurate.

An eventual goal of this project might be the simu-
lation of vertical axis wind turbines. However, if this
is to be accomplished, the interaction between the wind
and the turbine blade must be very accurate in order to
be able to predict the efficiency of certain blade designs
in comparison to others. Yet the current resolution is
very far from affording this accuracy, especially since the
current simulation uses a square grid, and blades that
create lift are far from square. In the future, it would
be worth looking into different types of grids, such as
a non-rectangular boundary fitted Eulerian (fixed) grid
[1] or possibly an arbitrary Lagrangian-Eulerian grid: a
boundary fitted grid that moves with the boundary in
question [8, 9].

VI. ACKNOWLEDGMENTS

The author wishes to thank Dr. John Lindner and
Dr. Susan Lehman for all of their guidance and expertise



throughout the project. He also wishes to thank Danielle
Shepherd for allowing him to expand upon her work, for
her great introduction to the Navier-Stokes equations,
and for her ample code comments. He wishes to extend
special thanks to Jackie Middleton for all of her work that

makes the physics program run smoothly. Finally, he
wishes to thank all of the staff at the College of Wooster
who work tirelessly in order to allow him to pursue his
education.

[1] J.F. Wendt et al, Computational Fluid Dynamics: An
Introduction, 3rd Ed. (Springer-Verlag, Berlin, Germany,
2009), pp. 15-51.

[2] R.D. Belvins, J. Sound Vib. 92(4), 455 (1984).

[3] S.C. Frautschi, R.P. Olenick, T.M. Apostol, and D.L.
Goodstein, The Mechanical Universe: Mechanics and
Heat, Advanced Edition, (Cambridge University Press,
New York, NY, 2008), pp. 326.

[4] D. Shepherd, Go With the Flow: Developing Compu-
tational Fluid Dynamics Simulations According to the
Navier-Stokes FEquations, (OpenWorks, The College of
Wooster, Wooster, OH, 2014).

[5] G.K. Batchelor, An Introduction to Fluid Dynamics,
(Cambridge University Press, New York, NY, 2000), pp.

4.

[6] G. Guennebaud, B. Jacob, and others, C++ Library Eigen
v3, (http://eigen.tuxfamily.org, 2010).

[7] D. Cline, D. Cardon, and P.K. Egbert, Fluid Flow for the
Rest of Us: Tutorial of the Marker and Cell Method in
Computer Graphics, (Technical Report, Brigham Young
University, 2013).

[8] F. Alouges and B. Maury, Variational Methods for Com-
putational Fluid Dynamics (n.d.).

[9] C.W. Hirt, A.A. Amsden, and J.L. Cook, An Arbi-
trary Lagrangian-FEulerian Computing Method for All Flow
Speeds, J. Comput. Phys. 14, 227 (1974).



