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When an object moves through a fluid it will experience a drag force, the relationship for which is
understood for linear motion. Experimentally we can show that these relationships can be extended
to include rotational motion. This is done by spinning a steel rotor ball and allowing it to slow down
as a result of the drag force created by air. Using graphical methods and applying a power law fit we
can determine the power to which velocity is raised in the proportionality between the drag force and
the velocity. The sphere is smooth so the flow of air around it should be laminar, and as expected
the force was found to be proportional to angular velocity to the 1.03± 0.01 power, analogous with
the translational model. By adding flags to the sphere we can try to create turbulence, doing so
produced values between 1.5 and 2 for the power of angular velocity. This suggests the presence of
varying degrees of turbulence analogous with the translational model. Thus we experimentally have
demonstrated that there is a rotational extension for an object moving in a fluid.

I. INTRODUCTION

An object moving through a fluid will experience resis-
tance in the form of a drag force. This force was described
by both Sir George Gabriel Stokes and Sir Isaac New-
ton for different fluid cases. Sir George Gabriel Stokes,
who is famous for his contributions to the Navier-Stokes
fluid equations, formulated equations to describe the re-
sistive force exhibited on a sphere moving in one direction
through a fluid. These equations approximate the force
to be proportional to the velocity of the object, but these
equations assume the fluid to be laminar. Fluid flow is
laminar if it is regular and smooth, not turbulent. This
assumption is significant because Newton later showed
that if the fluid is turbulent the drag force will be pro-
portional to the velocity squared.

Through experimentation this project aimed to see if
there was a rotational analogy to the translational equa-
tions put forward by Stokes and Newton. Would the ro-
tational drag force behave as velocity, velocity squared,
or some higher order of velocity? This was tested exper-
imentally by using a rotating steel sphere and measuring
the decay of it’s angular velocity over time due to the drag
force of the air surrounding it. If we plot the change in
angular velocity against the angular velocity and apply a
power law fit, the power of the resulting fit line will be the
power velocity is raised to in the proportionality. Thus
the power law fit should produce a power of one when we
spin the rotor ball because the flow of the air should be
laminar around the smooth ball. However if we add flags
to the rotor ball the air flow may become turbulent and
then the power law fit should produce a value of two. If
either of these scenarios are not seen then the rotational
system is not analogous with the translational models.

II. THEORY

The models describing the resistive force created by a
fluid put forward by Sir George Gabriel Stoke and Sir
Isaac Newton are the most generally accepted. Stokes’

equation for a sphere traveling in one direction through
a fluid takes the form

~F = −c~v, (1)

where ~F is the drag force and c is a constant which is
dependent on the shape of the object and the viscosity of
the fluid. The force is negative because the drag force is a
vector, and it opposes the motion of the object. Newton’s
equation for when the flow is turbulent describes the force
as proportional to the square of velocity so his equation
has an additional factor of v and is written as

~F = −cv2v̂. (2)

Assuming that there is a rotational analogy to these
equations we can find them by replacing the transla-
tional variables with their rotational counterparts. The

translational force ~F would be replaced with ~τ , which is
the torque or rotational force due to the fluid, and the
translational velocity v would be replaced with angular
velocity ω. However, we do not know what order the de-
pendence on ω will be, so we will simply use n as a place
holder and our rotational analogy becomes

~τ = −cωnω̂. (3)

For simplicity the vector notation will now be dropped
and all values will be scalars since we know the direction
of the drag force will be opposite the direction of motion.
Now we will make Eq. 3 of more use for our experiment by
substituting I(dω/dt) for τ since τ = Iα and α = dω/dt.
Then we can solve the resulting equation for dω/dt and
find that

dω

dt
= − c

I
ωn = −λωn, (4)

where (c / I) is a new, rotational constant which we will
call λ. The final form of this equation,

dω

dt
= −λωn, (5)
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is a differential equation, but to solve it we must assign
a value to n. If we assume laminar flow as Stokes did we
can use n = 1 to form the first order differential equation

dω

dt
= −λω, (6)

which can be solved easily. The only function which re-
turns itself after a derivative is taken is an exponential
function, and to acquire the factor of −λ the exponent
must be of the form −λt since the derivative is taken with
respect to t. Thus the solution to Eq. 6 is

ω = ω0e
−λt. (7)

However if we use Newton’s approximation for turbulent
flow and set n = 2 the differential equation which results
is

dω

dt
= −ω0ω

2. (8)

This is a separable first order differential equation, but
solving it is not as trivial as the previous equation. When
Eq. 8 is solved the result is

ω =

(
1

ω0
+ λt

)−1

. (9)

III. PROCEDURE

This experiment was conducted using an Ealing air gy-
roscope, which consists of a 10cm steel rotor ball with a
rod extending from it and a base to hold the ball. The
base is connected to a compressed nitrogen gas source
which creates a cushion of air for the rotor ball to sit
on so that the only source of friction on the rotor ball
is from the air. The rotor ball is positioned such that
a laser will reflect off of the surface of it’s upper hemi-
sphere, be focused through a lens, and be incident on a
fast photodiode. The upper hemisphere of the rotor ball
is divided into four equally sized and shaped quadrants
by black electrical tape. When the rotor ball rotates the
laser will not reflect off of the tape and the photodiode
will thus only receive a signal when the laser is incident
on the shiny surface of the rotor ball and not when the
laser is incident on the tape.

The photodiode will turn the laser signal into high and
low voltages depending on if the laser is incident on the
shiny surface of the rotor ball or the black tape respec-
tively. This voltage signal is then sent to a Schmitt Trig-
ger which shapes the signal into a sharp square wave.
This square wave can be read by the Hewlett Packard
5385A Frequency Counter which is also connected to a
computer. The computer then records the data using
LabView. LabView will take the frequency data and cal-
culate the angular velocity ω of the rotor ball. LabView
averages the frequency over a 10 second period and mul-
tiplies it by π/2 since ω = f × 2π for each data point.

FIG. 1: The Top down and profile schematics for each flag
a. TailFeatherFlag b. OnionSliceFlag c. DoubleWindsockFlag
d. MassiveFlag

The reason why LabView multiplies by π/2 instead of 2π
is because the frequency sent from the frequency counter
will be four times larger than the actual frequency since
the tape is seen four times per revolution. This process
was repeated with the addition of multiple different flags,
shown in Fig. 1, to the rod of the rotor ball.

IV. DATA PRESENTATION & ANALYSIS

The angular velocity was measured for the rotor ball
spinning with and without the addition of multiple
different flags. Fig. 2 displays the data collected for
seven runs with four different flags plotted as the angular
velocity ω versus time on a semi-log plot. In this graph
the general trends can be seen but the graph is not
conducive to further analysis because the paths all
appear to be somewhat linear. To gain further insight
into the system we can plot dω/dt versus ω on a log-log
plot. Graphing the data in this way is useful because we
can apply power law fits to the data, and the exponent
of the fit will be the value for n in Eq. 5. Thus the power
law fit has given us the power for relationship between
the rotational drag force τ and angular velocity ω for
each run. Fig. 3 and Fig. 4 below are plotted in this
manner with the power law fits shown in black.

The runs displayed in Fig. 3 are all of the clockwise
runs, and they can be seen to have similar trends. The
n value calculated from the power law fit for each run
is shown in Table I below and range from 1.52 to 1.90.
Fig. 4 shows the clockwise and counterclockwise runs for
the OnionSlice and the DoubleWindSock flags, a total of
four runs. The values found for these runs were somewhat
surprising. Both flags produced a value of n ≈ 1.8 when
spun clockwise and n ≈ 1.6 when spun counterclockwise.
We would expect to see a small change in the n value since
the flags are asymmetrical, but it is difficult to judge how
large of a change 0.2 is. Also the fact that the values
are so similar for two very different flags suggests that
there could be something else controlling or affecting the
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TABLE I: Graph Identifiers and the calculated n values with
one standard deviation for each data run. An * denotes coun-
terclockwise spin

Flag Used
Graphical

Identifier
Fit Slope (n)

NoFlag
Pink Rhombus

(Horizontal)
1.03 ± 0.01

TailFeatherFlag
Orange Rhombus

(Vertical)
1.52 ± 0.03

OnionSliceFlag
Blue Square

(Outline)
1.86 ± 0.06

OnionSliceFlag*
Blue Square

(Filled)
1.64 ± 0.03

DoubleWindSockFlag
Red Triangle

(Outline)
1.85 ± 0.05

DoubleWindSockFlag*
Red Triangle

(Filled)
1.60 ± 0.05

MassiveFlag Green Circle 1.9 ± 0.3

motion, but to draw a definitive conclusion far more data
would need to be recorded.

When observing the data from Table I we see that the
NoFlag run produced a value of 1.03 ± 0.01 for n. This
result aligns with the theory since laminar flow should
produce a linear relationship between drag and veloc-
ity. This suggests that our rotational analogy to Stokes’
translational model is true, and if the analogy continues
we should see values of n ≈ 2 if the presence of the flags
creates turbulence. Looking at the remaining calculated
n values in Table I we see that all of the values fall be-
tween n = 1 and n = 2. The most likely explanation for
the values which are in this range but are neither 1 or 2
is that the flag for that run did not cause consistent tur-

FIG. 2: Angular Velocity ω versus time. See Table I for a list
of flag identifiers.

FIG. 3: Angular Acceleration dω/dt versus ω. See Table I for
a list of flag identifiers. This graph only displays the clockwise
runs for the OnionSliceFlag and DoubleWindSockFlag.

FIG. 4: Angular Acceleration dω/dt versus ω for the Onion-
SliceFlag and DoubleWindSockFlag. The solid identifiers cor-
respond to counter clockwise rotation as specified in Table I.

bulence or strong enough turbulence to match Newton’s
ideal model. However these results are still supportive of
our rotational analogy for the translational models.

V. CONCLUSION

The viscous drag force on an object moving through
a fluid is typically modeled by either Newton or Stokes’
equations. If the flow is laminar it is modeled by Stokes’
equation which predicts the drag force to be proportional
to the velocity. If the flow is turbulent then it is mod-
eled by Newton’s equations which predict the drag force
to be proportional to velocity squared. However both
of these models are for translational movement, and we
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have shown through this lab that there are rotational
analogies.

Using a rotating steel rotor ball with no flags the drag
force was found to be proportional to the angular ve-
locity, analogous to Stokes’ model, as we predicted since
the flow off of the smooth ball and rod would be lami-
nar. By adding flags to the rod we were able to disturb
the air flow, and by varying the size and shape of the
flags we saw the drag force become proportionate to the
angular velocity raised to higher powers. These powers

fell between 1 and 2, which represent the classical lam-
inar and turbulent regimes respectively. This range can
be accounted for by considering that the turbulence cre-
ated by the flags will be subject to fluctuations, but the
presence of the turbulence undeniably causes an increase
in n towards n = 2. Thus we have correctly predicted
and shown the existence of the rotational analogy for vis-
cous drag from the translational equations put forward
by Newton and Stokes.


