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The parameters of acoustic traps were analysed to determine,the minimum requirements a acoustic
trap to successfully contain a particle. This analysis was done computationally with C code, to allow
thousands of configurations of the trap to be run and simulated all together. A three dimensional
sample space was then analysed with dimensions in frequency of the trapping waves, amplitude
thereof, and speed of sound of the medium. The results confirmed the mathematical results that
predicted that the average trapping force is proportional to many factors including, the amplitude
squared, square of the frequency and inversely proportional to the speed of sound of the medium
raised to the fourth power when responding to a displacement from the origin. When responding
to a initial velocity the average force is proportional to the amplitude,the frequency and inversely
proportional to the speed of sound of the medium squared.

I. INTRODUCTION

An acoustic trap is a device which can use sonic pres-
sure to manipulate and control small objects within a
particular region. It is found to be particularly useful in
medicine and other fields, where small objects need to
be suspended in a particular region for study. It uses a
number of transducers in order to generate a standing
wave in the direction it wishes to trap the object. This
can be achieved with a variety of different designs that
format the locations of the key elements differently, but
fundamentally use the same principle, of using a stand-
ing wave to generate an effective low point in potential
energy.

This device is related to another device known as an ion
trap, which is used to study individual ions. Even though
these devices seem very different, they share many prop-
erties in that they use waves in order to keep a particle
contained at a particular point. In spite of this though,
there are still significant differences between acoustic an
ion trap. Most significantly, ion traps, mostly, do not
use waves in space, but rather time [4]. Acoustic traps
use standing waves, in contrast, which oscillate in both
space and time [1]. They use standing waves, and trap
particles inside the node of a particular standing wave.
Additionally, they can also reflect the sound waves of
the transducer off a curved surface to provide a trapping
effect both in both the direction along the travelling di-
rection of the wave, and also perpendicular to that [1] [2].
Alternatively traps can use a fluid flowing in one direc-
tion, with a sound wave travelling perpendicular to it in
order to establish a standing wave, which can also have
objects inserted into it through the flow. An example is
shown in Fig. 1.

The most simple model for an acoustic trap has a sim-
ple standing wave, which a particle gets trapped in the
node thereof. This design is demonstrated in two di-
mensions of Fig. 2. This design is the most basic, and
provides a basis from which some of the other designs
are evaluated. The core of this model is a standing wave

FIG. 1: Example of a flow based acoustic trap. This is an
image from [1].

generated by two transducers on each side of the cen-
ter of the trap. This basic idea forms the base for most
of my models, though the other designs rely on similar
principles.
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FIG. 2: A Simple two dimensional trap. This is an image
from [5].

FIG. 3: A trap using two curved transducers. This is an
image from [1].

FIG. 4: A trap using a single curved transducer, and flow
controls. This is an image from [1].

FIG. 5: An oscillating cosine function. The function repre-
sents the deviation from normal pressure due to the sound
wave.

II. THEORY

A. One dimensional simple model

Consider a particle confined to one dimension of space
in a fluid. If two transducers are placed on either side
of the particle, emitting the same frequency, a standing
wave forms between them. If near the center of the two
transducers, near where the particle sits, the two sides
emit sound waves that have approximately the same am-
plitude A, angular frequency ω, and speed of sound c.
The pressure of the fluid relative to background pressure
is

p(x, t) = A(cos(ωx/c+ ωt) + cos(ωx/c− ωt)). (1)

Note that while the amplitude of the wave decreases as
a function of distance from the transducer, but every-
thing that takes place, takes place within a narrow re-
gion, where the amplitude is approximately constant. In
addition, ω/c is in use rather than the standard variable
k for the wave number, since the frequency, and speed
of sound of the medium are what the experimenter has
control over, to some extent. This also reduces the num-
ber of variables in use. In some cases, where plane waves
in a confined space are applied, the amplitude does not
significantly decrease across the distance, as in Fig. 2.
Equation 1 then simplifies to

p(x, t) = 2A cos(ωx/c) cos(ωt). (2)

Now we must consider how much force is applied to
a particle if exposed to this pressure gradient. If this
particle has some width and area exposed to the x axis
where the pressure varies, then a difference in pressure
between the two sides of a particle will mean that a force
is acting on the particle. If there is a spherical particle
then the force applied by the air pressure on one side is

Fside(x, t) = −
∫∫

S

p(x+ δx, t)~ndA, (3)
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where R is the radius of the particle, and ~n is the vector
normal to the surface particle. More explicitly,

Fside(x, t) = −
∫ 2π

0

∫ π/2

0

p(x+R cos(θ), t)R2 cos(θ)dθdφ,

(4)
If it is assumed that the pressure in the region is approx-
imately linear, and the force along the x̂ is considered,
then

Fside(x, t) = −
∫ 2π

0

∫ π/2

0

(p(x, t) +
dp

dx
(x, t)R cos(θ))

R2 cos(θ)dθdφ (5)

This simplifies to

Fside(x, t) = −p(x, t)πR2 − 2πR3 dp

dx

∫ π/2

0

cos2(θ)dθ,

(6)
or

Fside(x, t) = −p(x, t)πR2 − π2R3 dp

dx
/2. (7)

If we factor in the pressure applied from the other side
of the particle then the net force is

Fnet(x, t) = Fside1 + Fside2 = −π2R3 dp

dx
. (8)

Let α = π2R3, to simplify further calculations.
Using the equations 2, and 8, the motion of a particle

adding a drag term β can be derived, yielding

mẍ = −βẋ− 2αAω/c sin(ωx/c) cos(ωt). (9)

So far as I can tell, this equation does not have a sim-
ple solution that can be applied, either directly through
elementary functions, power series, or Fourier transfor-
mations. However, numerically integrating the solution
did lead to a possible solution, or at least approxima-
tion. Notice that this equation of motion is very similar
damped driven oscillations. If this equation of motion
is integrated for high values of ω, it resembles damped
oscillations. Therefore there may be solutions, or approx-
imations in the form of x(t) = Ae−γt cos(ψt + δ), where
γ, and ψ are some constants. Note that k << ω for large
ω. This acts as a damped harmonic oscillator, and the
motion during individual cycles of the sound wave are
ignored. The whole system acts as a mass on a spring.
Fig. 15 seems to support this, as the sound wave oscil-
lates 1024 times, in the time it takes the particle to move
back and forth 12 times.

B. Basic analysis of the simple model

If the particle is allowed to move freely in this po-
tential, then it may seem that the particle should not
receive any significant force in any particular direction.

The particle should seem to receive an average of zero
force, and be allowed to move approximately in any di-
rection it was set in. This preliminary, however, does not
reflect the whole situation when the particle is moving
slowly enough near a node in the pressure or anti node
in the force that a particle will become trapped there.

Let it be assumed that the particle is moving near
x = 0 such that |x| << λ = 2πc/ω. Also let the ve-
locity be |v| << c. Lastly assume β << 2αAω2/c2 and
can be ignored. If it is assumed that the velocity during
a single cycle is approximately constant, and the small
angle approximation applies to the equation of motion 9,
then the average force on the particle during half a cycle
is

F̄ = ω/π

∫ 3π/2ω

π/2ω

2αA(ω/c)2(x0 + vt) cos(ωt)dt. (10)

These particular limits of integration were chosen so that
they would align with the pressure gradient always hav-
ing a negative value. Solving equation 10 gives

F̄ =
2Aαω3

πc2
(x0

∫ 3π/2ω

π/2ω

cos(ωt)dt

+ v

∫ 3π/2ω

π/2ω

t cos(ωt)dt). (11)

Finally:

F̄ =
4Aαω2x0
πc2

− 4Aαωv

c2
(12)

This relation (equation 12) is the basis for this experi-
ment. It should be noted that the sign difference between
the two terms of 12 are unimportant as during the next
half cycle the situation is reversed resulting in the oppo-
site result. This does not, however mean that there is
zero net force over a whole cycle. If the net force during
half a cycle pushes a particle outward, then during the
next half cycle it is pushed inward, and since the first half
cycle pushes the particle outward, x, and v are greater
resulting in a larger push inward.

Now it must be considered, how much stronger the
push in the opposite direction is going to be. The average
force translates into a amount of impulse. This linearly
increases the velocity (F̄ /m = ∆v), but the displacement
is increased a different factor. If the force on the particle
is approximated as constant over the period then ∆x =
F̄ (∆t)2/(2m). This is not strictly true, but it provides a
simple enough approximation to explain the rest of the
experiment. Now, notice that for the x direction, the
average force over a complete cycle will be proportional to
A(ω2/c2)∆x(∆t)2 ∝ A2(ω4/c4)(∆t)2x. But notice that
∆t = π/ω, which means that F̄second half ∝ A2ω2x/c4.
Now consider the difference between the force out and
the force in.

F̄full cycle ∝ Aω2(x+ ∆x)/c2 +Aω(v + ∆v)/c2

−Aω2x/c2 −Aωv/c2 (13)
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Putting that all together:

F̄full cycle = ηA2ω2x/c4 + ζAωv/c2, (14)

where η and ζ are positive real numbers.

C. More Dimensions

Expanding this model into more dimensions is as sim-
ple as arranging for standing waves in each of the other
dimensions. If the standing waves in two dimensions have
the equation:

p(x, y, t) = 2A(cos(ωx/c) cos(ωt) + cos(ωy/c) cos(ωt)),
(15)

then it is possible to trap a particle within a two dimen-
sional confined space. It is important to note that the two
dimensions act independently of one another, and thus, in
spite of the fact that this is very similar to an ion trap in
many ways, there is a substantial difference. The electric
field lines of the Coulomb force need to have a net flux of
zero through the middle of the ion trap, but compressible
fluids have no such requirement, though incompressible
fluids do. This experiment concentrates mainly on com-
pressible fluids, however the same method that makes ion
traps possible, also makes acoustic traps in incompress-
ible fluids possible, which is to put the standing waves
in the two directions 90◦ out of phase to one another so
that there in never any net flux in or out of the center of
the trap. In both cases, adding additional dimensions is
irrelevant, and the predictions for the proportionality of
the system stay about the same.

D. Curved transducers, and Multidimensional
Control with One Transducer Set

I have previously claimed that the same mathematics
applies to multiple directions even with the vast variety
of models that exist. With the case of the design in
Fig. 2, that is obvious. It is less so with the curved
transducers. If we consider a pair of point sound sources
spaced the same distance from the center of a trap, we
get the following pressure pattern:

r1 =
√

(x+ a)2 + y2 + z2, (16)

r2 =
√

(x− a)2 + y2 + z2, (17)

p(x, y, z, t) =

2∑
i=1

A(ri) cos(ωri/c± ωt). (18)

At the center of the trap A(r1) = A(r2) and are approx-
imately constant. It is clear that along the x axis the
same standing wave as described in equation 2 results. If
the wave is analysed along the y or z axes, similar results
occur:

p(0, y, 0, t) = 2A cos(ω
√
a2 + y2/c) cos(ωt). (19)
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FIG. 6: Example of a potential perpendicular to the direction
of the main standing wave, in arbitrary units.

This is a distorted version of the original potential in
equation 2. Note that this function becomes more linear
as y becomes larger, and even though it may not have the
same containment ability when |y| < a it still functions
as a trap. This is demonstrated in Fig. 6.

III. PROCEDURE

In order to evaluate the approximations that allow it
to be assumed that the trap will work, it can be modelled
in a few different manners. Ideally one would build an
actual acoustic trap, but there are limits to what I could
build. Unfortunately, a functioning acoustic trap is be-
yond my materials constraints. However, I was able to
develop a couple of computer models that allow for the
simulation of the system.

This computer model used the C programming lan-
guage for its efficiency and its simplicity. The C code
numerically integrated the equation of motion Eq. 9 for
many values of A, ω, and c. The values chosen are largely
arbitrary, but they do have some basis on reality. The
values for A started at 1024, and increased by a multiple
of
√

2 each step. Sixteen values of A were sampled. These
values absorb the constant α, an inverse factor of m, and
a factor of two. The values for ω start at 256, and again
increase by

√
2 each cycle. Again, sixteen values were

sampled. these values extend from very low frequencies
in the audible range, to ones that actual acoustic traps
use. Finally, c starts at 86, and again increments by two
every two cycles, or

√
2 every cycle. Eight cycles of these

were sampled, and the values were chosen to center the
sampling around 344, the actual speed of sound in air.
Later in the analysis phase, using Igor Pro, the results
are compared for proportionally to the predictions made
in equation 12. To do so the program cycled through
a range of values for A, ω, and c. Each frame of the
numerical integration the force on the particle is evalu-
ated then the values are averaged to assess the trapping
force of the trap. This evaluation was done twice. Once
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with the initial conditions such that there is a small ini-
tial displacement, and no initial velocity, and the other
such that there was no initial displacement, and a small
initial velocity. This is done because the dependence on
frequency changes depending on if the system is reacting
to an initial velocity or displacement. Note that apply-
ing this to more dimensions is not helpful, since the forces
in each dimension act entirely independently of one an-
other. Moreover, the basic mathematics that applies to
the acoustic trap in this case, also applies to the other
designs. Once the average force over 220 = 1 048 576
cycles was evaluated, the Igor Pro analysis could start.

Powers of two were selected throughout this process, so
that the floating point format could calculate them more
accurately. This works the same way as powers of ten
in a decimal system (just as multiplying by 1000 is easy
in decimal, multiplying by 210 = 1024 is easy in binary).
Floating point is a common format to represent large
and small numbers that effectively works like scientific
notation in base two. This is especially important in the
time step.

Firstly the data was imported from a comma separated
file into “Igor Pro.” All of the data for which the particle
escaped the well were not considered in the evaluation.
Next one dimensional cross sections of the data was taken
through the center of each axis, to compare the results
on a logarithmic plot. This allowed for evaluation of a
power relation between each independent variable, and
the average force applied. Lastly the data for each of the
runs was compared with A2ω2x/c4 or Aωv/c2 respec-
tively. The quotient of the actual result and these values
were then averaged, and a standard deviation evaluated,
to get values for η and ζ.

IV. RESULTS

As the data are three dimensional, and including the
force values four dimensional, displaying the data can be
accomplished by taking two dimensional cross sections.
The cross sections are shown in the following three sets of
two graphs, with data from the displacement start sim-
ulation with square data points, and circular for the ve-
locity start simulation. Each of the sets represents, de-
pendence on amplitude, dependence on frequency, and
dependence on speed of sound.

When the amplitude is compared against the trapping
force the power law that relates them is:

F̄ ∝ AkA . (20)

The results for the displacement based simulation are
shown in Fig. 7. The power kA was found to be 2.08 ±
0.03, where the simplified mathematics predicts that it
should be exactly two. For the velocity based simulation
kA = 1.06± 0.02, where exactly one was predicted. This
is shown in Fig. 8.
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FIG. 7: The logarithm of the amplitude versus the logarithm
of the trapping force, with starting displacement.
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FIG. 8: The amplitude, and the logarithm of the trapping
force, with starting velocity.

For the angular frequency comparison, we use kω for
the exponent. The results for the displacement based
experiment are displayed in Fig. 9., kω = 2.017 ± 0.008
with an expected value of exactly two. In the other case,
kω = 1.04 ± 0.01 with an expected value of exactly one.
Results displayed in Fig. 10.

In the case of speed of sound comparison, both re-
sults again are near, but have slightly larger magnitude
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FIG. 9: The logarithm of the angular frequency versus the
logarithm of the trapping force, with starting displacement.

FIG. 10: The logarithm of the angular frequency, and the
logarithm of the trapping force, with starting velocity.

than the predicted values. For the displacement based
experiment, kc = −4.11 ± 0.04, with an expected value
of exactly negative four. Results displayed in Fig. 11. In
the velocity based experiment, kc = −2.07±0.03, with an
expected value of exactly negative two. Results displayed
in Fig. 12.

Assembling all 2048 data points, the actual data points
were compared with the value of A2ω2/c4, or Aω/c2. The
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FIG. 11: The logarithm of the speed of sound of the medium,
and the logarithm of the trapping force, with starting dis-
placement
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FIG. 12: The logarithm of the speed of sound of the medium,
and the logarithm of the trapping force, with starting velocity.

TABLE I: The results for the displacement, velocity starts.
“Pre.” means predicted, “Disp.” is initial displacement start,
and “Vel.” initial velocity start.

Disp. Pre Measured Vel. Pre Measured

A 2 2.08 ± 0.03 A 1 1.06 ± 0.02

ω 2 2.017 ± 0.008 ω 1 1.04 ± 0.01

c -4 −4.11 ± 0.04 c -2 −2.07 ± 0.03

results are displayed in Fig. 13, and 14. Using that data,
and factoring in initial values for x |t=0= 2−16 in the
case of the displacement based experiment, and ẋ |t=0=
2−20 for the velocity based experiment, values for η and
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ζ could be determined. As a result, η = 0.04± 0.01 and
ζ = 0.5± 0.1

V. ANALYSIS

The first major thing of note about the results of this
are that there seem to be systematic patterns by which
each of the values for the data vary from the fits. This
is not entirely unexpected as, there were many approxi-
mations that went into equation 14. Additionally there
seems to be a surprising result in that the system re-
sponds differently to a displacement from the node, as
opposed to the velocity just in the initial conditions. Dur-
ing each run, the particles do oscillate about the trap, but
when the displacement initial condition is selected, they
oscillate much more slowly. It is important to notice that
the period of oscillation for the waveform is not the os-
cillations about the trap, changing in both velocity and
displacement. This is demonstrated in Fig. 15. This
difference is likely what makes the initial conditions pro-
duce different results. In general, the term due to the
velocity acts much more strongly on the particle due to
the fact that ζ is about ten times larger than η. How-
ever, the velocities involved when the particle is let free
from a displaced location are so low that the displace-
ment term overpowers the other term. Note also that
the dependence on each independent variable is slightly
larger than that which would be expected. This could be
due to the fact that there are in fact two terms always
involved, but one dominates, due to the initial conditions.

VI. CONCLUSION

In conclusion, the most any of the predictions that the
power of a particular value deviates from the expected
value is 0.11. This experiment however lacks, in that it
did not test an actual acoustic trap. This could possibly
be an area of future research In addition other possible
methods of further study on this topic include, more ac-
curate approximation of the trapping force, as well as
exploring how the size of the particle influences the trap.
Moreover, there were a number of other factors that I did
not examine closely. For nearly all of my computations,
I assumed there was very little drag. This could be ex-
plored, and how drag influences the trap. Moreover the
equation of motion may have a solution, in that it oscil-
lates quickly and with very little amplitude with respect
to the overarching motion, and also has a larger oscilla-
tion that mimics damped oscillations. In addition, one
could look at adding gravity to the simulation, as some
very strong acoustic traps can fight the force of gravity.
Lastly the effect the curved potential, whose potential is
Eq. 19 could be more closely examined. In summary, the
influence that amplitude of a waveform, frequency, and
speed of sound in the medium were verified to within 10
percent, but there are still many more factors that can
be explored.

VII. ACKNOWLEDGEMENTS

I would like to thank my professor Dr. Lehman for
providing advice on the project. I would like to also
thank Dr. Lindner for advising me on the building of the
computer simulation.

[1] Evander, M., and J. Nilsson, 2012, Lab Chip 12, 4667,
URL http://dx.doi.org/10.1039/C2LC40999B.

[2] Hertz, H. M., 1995, Journal of Applied Physics 78(8),
4845, ISSN 00218979, URL http://search.ebscohost.

com/login.aspx?direct=true&db=iih&AN=7663811&

site=ehost-live.
[3] Mechel, F. P., 2002, Formulas Of Acoustics (Springer,,

Landhausstrasse 12 71120 Grafenau Germany), 8 edition,
ISBN 3540425489.

[4] Schwartz, J. C., M. W. Senko, and J. E. Syka, 2002, Jour-
nal of the American Society for Mass Spectrometry 13(6),
659 , ISSN 1044-0305, URL http://www.sciencedirect.

com/science/article/pii/S1044030502003847.
[5] Tran, S. B. Q., P. Marmottant, and P. Thibault,

2012, Applied Physics Letters 101(11), 114103, URL
http://scitation.aip.org/content/aip/journal/apl/

101/11/10.1063/1.4751348.



8

FIG. 13: The comparison of the of estimated proportional value for the trapping force, and the trapping force, with starting
displacement. η = 0.04 ± 0.01
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FIG. 14: The comparison of the of estimated proportional value for the trapping force, and the trapping force, with starting
velocity. ζ = 0.5 ± 0.1
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FIG. 15: Example of actual particle motion. Note this represents 1024 oscillations in the sound wave. The Y axis represents
the displacement of the particle in arbitrary units


