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In this experiment, the motion of an oscillator similar to the Duffing oscillator was analyzed to
determine how it varied from the original Duffing oscillator. In order to modify the oscillator, an
additional motor was added onto the oscillator. The dual motor oscillator was then run at several
different speeds, with different initial conditions. This was compared to the results obtained from
the oscillator when the second motor was turned off. These tests were done, varying the multiple
initial conditions, and the results were plotted in phase space plots, as well as Poincare plots. The
vibrational motor prompted some interesting changes in the motion of the oscillator. There was a
distinct pattern in the Poincare plots as the frequency of the second motor was increased. This pat-
tern was something completely new, as previously there had been no correlation between frequency
and motion. The rotary motor was also varied, while the vibrational motor stayed constant, however
there was not a clear correlation between the motion and the frequency. Changing the amplitude of
the rotary motor had the same effect on the motion of the oscillator as it did in the original Duffing
oscillator. Once again there was no clear correlation between changing the amplitude of the driving

force, and the motion of the system.

I. INTRODUCTION

Often, the motion of an oscillator follows a distinct
pattern, with its future movements easily predicted. For
example, take a simple pendulum, as shown in Fig. 1,
whose motion is simply an oscillation between two ar-
bitrary points. The motion of the pendulum is easily
predicted, due to the fact that there will be no change
in how the pendulum moves. This motion is described
by the pendulum’s equation of motion. An equation of
motion is directly dependent on the kinetic and potential
energies of the system. In order to derive the equation of
motion from the kinetic and potential energies, the La-
grangian is used. The Lagrangian is a mathematical way
of explaining the dynamics of a system. By using La-
grangian analysis, a differential equation, of varying or-
der is obtained. This differential equation, when solved,
results in the equation of motion. As stated earlier, this
equation describes the motion of the system being stud-
ied, however there are cases where the equation of mo-
tion for a system does not accurately predict the motion
of the system. This type of motion is said to be chaotic.
Chaotic motion is a small piece of an overarching theory
called Chaos Theory.

Chaos Theory is a field of mathematics that focuses on
dynamical systems, specifically ones that are very sensi-
tive to initial conditions. The sensitivity to initial con-
ditions is colloquially known as the butterfly effect. The
butterfly effect states that a butterfly flapping its wings
could manifest itself into a hurricane somewhere across
the world.[1] This means that a slight change in a seem-
ingly irrelevant factor drastically changes the overall sys-
tem. Applying this idea to a mechanical oscillator, we
see that a small change in one of the initial conditions of
the oscillator will drastically change the motion. When a
change is made to an initial condition, the motion of the
oscillator can become chaotic. When a system’s motion
is said to be chaotic, there is no order to the system. This

FIG. 1: The simple pendulum superimposed onto the Carte-
sian plane.[2]

means that the motion of the system is completely ran-
domized. Despite the fact that the motion of the system
is random, some interesting phenomena occur.

In order to visualize some of these phenomena, a few
different plots are used. First, a phase space plot, which
is a plot of the angular velocity vs. the angular position,
is used. The phase space plot shows how the oscilla-
tor is moving around its equilibrium points. Equilibrium
points are positions that the oscillator can be at rest.
There are two types of equilibrium, stable and unsta-
ble. A stable equilibrium point is a point that the os-
cillator will naturally fall into. An unstable equilibrium
point is a point where the oscillator can be at rest, but
will not naturally go to that point. For example, take a
clock pendulum and imagine it swinging back and forth.
If there is no added force, the pendulum will naturally
hang straight down. This is the stable equilibrium point,
because the oscillator can have almost any amount of en-
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FIG. 2: A graph of the double-well potential. Note the two
stable equilibria, shown as valleys and the unstable equilibria
shown as a hill. This figure was taken from the unpublished
lecture notes of Dr. Nelia Mann.[2]

ergy and still come to rest at the bottom. The unstable
equilibrium point in this model would be if the pendu-
lum were standing straight up. If the pendulum is even
a little bit off center, then it will return to the stable
equilibrium point. The second type of plot used to vi-
sualize the motion of the pendulum is the Poincare plot.
A Poincare plot has the same axes as the phase space
plot, however a point is only plotted once every period of
rotation. When an oscillator is moving chaotically, the
Poincare plot draws a phenomena called an attractor.[3]

An attractor is an underlying characteristic of chaotic
motion. The attractor shows that there are certain points
on the phase space plot that seemingly attract points on
the Poincare plot. For different systems, there are differ-
ent attractors. A system’s attractor also changes based
on the initial conditions. Generally, the basic design of
the attractor will not change, but certain aspects of it
will be modified. A plot of the potential energy vs. the
displacement provides insight into the motion. The po-
tential is found by taking the negative squared velocity.
In order to see how a plot of the potential is useful in an-
alyzing the motion of the oscillator, the example of the
bistable potential is used. A bistable potential is spe-
cific to certain systems, and is another way to describe
the motion of system. A bistable potential is commonly
called a double-well potential. This comes from the shape
of the potential, as shown in Fig. 2. The bistable poten-
tial of an oscillator clearly shows where the equilibria are
relative to the displacement. These three types of plots
provide a decent snapshot of how the oscillator is moving.

II. THEORY
A. Apparatus

This experiment was performed using a mechanical os-
cillator similar to the one shown in Fig. 3. The only dif-
ference was that instead of having one spring tied down,
it was attached to a vibrational motor, that oscillated up
and down. The rest of the oscillator shown in the figure
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FIG. 3: This is a schematic of the apparatus used to observe
and analyze chaotic motion in a mechanical oscillator. Two
springs are attached to either side of the pulley. However in
the system studied in this experiment, the spring that was
tied down, was attached to a secondary vibrational motor.
The other spring moves in relation to a rotating rod. The rod
is attached to a motor, which is driven by a constant voltage.
Not shown are the PASCO Rotary Motion Sensor, PASCO
interface box, and voltage source. This figure is taken from
Robert DeSerio’s work on chaotic pendulums.[4]

consisted of a pulley system, with a spring attached to
each side. One spring was threaded through a pinhole,
and attached to a rotary motor. This motor was con-
trolled by a constant voltage source, ensuring that there
would be no acceleration. The other spring was tied off
to a fixed point. Doing this ensured that the only force
applied to the system would be from the motor. Ad-
ditionally, a circular disk with a larger radius than the
pulley was fixed parallel to the pulley. This disk was alu-
minum, and had a mass attached to its outer portion. A
magnet was placed in close proximity to the disk, pro-
viding a damping force.



B. Derivations

Much of this derivation is aided in part by G. Baker[5],
N. Mann[2], and S. Kellert.[6]

In order to derive the equation of motion necessary
to describe the modified Duffing oscillator, it is useful
for clarity’s sake to start with a simpler model. Take
the simple pendulum described earlier, and as shown in
Fig. 1.

The position of the pendulum bob is described by the
coordinates (z,y). By writing each coordinate in terms
of the angle 6, the position coordinates become

xr=1[sinf

(1)

y = —lcosb,

where 6 is the angle through which the pendulum swings,
as shown in Fig. 1. Using these newly defined coordi-
nates, both the kinetic and potential energies are easily
found. The kinetic energy of any object, moving with
velocity v, is known to be equal to

T= 1m1)2. (2)

2

From this, it is evident that the velocity of the pendulum
bob is needed. The units of velocity is the change in
position over the change in time, so a derivative of the
position of the object with respect to time yields the
velocity of the object. This is written as

i =10 cosf

. 3
y=10sin6. ®)

The term 6 is the derivative of 6 (t) with respect to time.
With this knowledge, the velocity of the pendulum bob
is set as

'U2 — (:L_Q _,_yQ)

= <10 cos 9) ’ + (w sin 9) ’
= 22 (cos2 6 + sin® 9)
= 1262,

(4)

where & and g are the time derivatives of the position of
the pendulum bob, as derived earlier. Taking this, and
substituting it into Eq. 2, the kinetic energy of the pendu-
lum bob is found. The potential energy of the pendulum
bob is simply

v (5)

= —mgl cos .

Both the kinetic and potential energies derived previ-
ously are used to determine the equation of motion of
the pendulum. The method of solving for the equation
of motion when the total energy of the system is known

requires a mathematical function called the Lagrangian.
The Lagrangian is defined as the kinetic energy minus
the potential energy, and is a way of summarizing the
overall dynamics of the system. The Lagrangian of the
simple pendulum stated earlier is equal to

1 )
L= 5m1292 + mgl cos 6. (6)

In order to derive the equation of motion from the La-
grangian, a differential equation, known as the Euler-
Lagrange equation must be found. The Euler-Lagrange
equation is as follows,

oL d (0L
o0 =t (50 "

In the particular example of the simple pendulum, each
derivative is dependent on either € or #. This particular
case has the variable 6 in it, however in general, whatever
variable changes with respect to time is used. Taking
the Euler-Lagrange equation of the Lagrangian in Eq. 6,
yields

0= —%sin@. (8)

This is the differential equation that describes the equa-
tion of motion for the simple pendulum.

C. Applying to the Mechanical Oscillator

Now that the equation of motion for a simple case, like
the one outlined earlier, has been derived, these methods
are applied to the oscillator in this experiment. Once
again, we need to determine the kinetic and potential
energies. First, the kinetic energy of the oscillator must
be found. While it would be possible to find the kinetic
energy by defining x and y coordinates, the math gets
more difficult than is necessary. Instead, the kinetic en-
ergy of the oscillator is defined in terms of its moment of
inertia. This yields

1 .
T = §192, (9)

where I is the moment of inertia.

The potential energy of this oscillator is dependent
upon three different components. There are the two
spring potentials, which come from each of the springs
attached to either side of the oscillator. There is also the
gravitational potential energy due to the weighted mass
on the edge of the cylindrical disk. First, the potential
energy of each spring is calculated to be

1
V, = ikidf, (10)

where k; is the spring constant for each of the two springs
and d; is the distance that the spring expands or com-
presses. The gravitational potential energy due to the
mass is equal to

Vg = Rmg (1 — cos ), (11)



where R is the radius of the disk attached to the pulley,
m is the mass, and ¢ is the acceleration due to gravity.
Now, putting all three potential energy terms together,
an expression for the total potential energy of the system
is given as

1 1
Viot = ikuﬁ + 5kadz + Rimg (1 —cosb). (12)

While this is an accurate representation of the potential
energy, it is not particularly useful experimentally. This
is because the distance that the springs stretch, d;, is de-
pendent on the driving frequencies of each motor. Both
of the two motors do essentially the same thing, oscillat-
ing at some frequency and amplitude. Because of this,
the expressions for both springs take on a similar form.
By deriving the first distance, the second can be found
with ease.

Looking at the first spring, it is evident that there are
two main forces pulling on it. One is due to the driving
motor, and the other is due to the tension of the string
around the pulley at the apex of the oscillator. In order
to determine the total distance the spring is stretched,
one of the forces must be held constant, while the other
varies. First, the total change in length due to the driving
motor is varied, while the change in length due to the
pulley is held constant. In order to obtain an expression
for the distance the spring expands, the Law of Cosines
is used. The resulting equation is written as

Ady = \/(h + r0)2 + 72— 2r, (h+1,)coswAt—h, (13)

where Ad; is the distance the spring expands or com-
presses, h is the distance that the motor displaces the
string. As is evident from this equation, the potential
energy of the spring will be dependent upon the driving
frequency w.

Through some algebraic manipulations as well as sim-
plification, the equation outlined is written as

Ady =h

(14)
With this new expression, setting r, << h allows for
most of the terms to go to zero. This assumption is
allowed, because the amplitude of the driving force is
much less than the length of the string. Doing this yields
the equation

Ady =1, (1 — coswAt) . (15)

In order to get the full picture of the forces acting on the
spring, distance that the spring changes due to the pulley
is needed. This is much easier to derive than the previous
derivation. Taking into account that there is little to no
slippage of the string on the pulley, the amount the string
moves is equal to

Ady = —r,Ab. (16)

\/(1+7;:)2+:§27;: (1+7;)CoswAt11.

It is important to note that r, is the radius of the pulley
and not the driving amplitude.

In order to obtain the net change in the spring, the
two terms must be summed. The reason that the terms
can simply be summed is that when the string is pulled
in one direction due to the driving motor, the pulley will
follow suit. Doing this, the net change in the length of
the spring is equal to

dy =d, + 7, (1 — coswt) —ré. (17)

The term d, is added to the end of the equation as a
correction factor due to the fact that the spring does not
start from its equilibrium point each time.

Taking the methods used to define the displacement of
the first spring and drawing from it, we can get

dy =do + s(1 —coswt) + rpb, (18)

where s is the amplitude of the second motor, and @ is the
frequency of the second motor. This looks very similar to
Eq. 17, as it should due to the symmetry of the system.
Both of the equations for the displacement of each spring
are substituted into the total potential energy equation,
Eq. 12. This provides an equation for the total potential
energy in terms of easily measurable quantities. Finding
the Euler-Lagrange equations using this newly derived
potential energy, the equation of motion is found to be

I6 = —mgRsin — 2]()7“1276 + rpkscoswt — rpkr, coswt.
(19)
This equation describes the motion of the oscillator as it
rotates.

III. PROCEDURE

The analysis of the modified Duffing oscillator required
some adjustments to be made to the original Duffing os-
cillator. The original Duffing oscillator consisted of a
pulley with string wrapped around it, and two springs
coming off of each side, as shown in Fig. 3. One of the
springs was attached to a driving motor, while the other
was tied down. The driving motor was a rotational mo-
tor, with variable frequency and amplitude. Once every
period, the driving motor would pass through a photo-
gate and record the position of the oscillator. A damp-
ing magnet was attached behind the aluminum disk. The
distance between the damping magnet and the aluminum
disk was variable. Finally, the initial position of the point
mass on the pulley was movable. Each of these conditions
had been studied previously in lab, so in order to analyze
the chaotic motion of the oscillator, some changes were
made.

In order to modify the oscillator, the spring that was
fastened down was attached to a vibrational motor. The
vibrational motor moved the string up and down by a
total of 1 cm. The frequency with which the motor os-
cillated was variable, ranging from 0 Hz to 3 Hz. In
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FIG. 4: Phase space and Poincare plot comparison for the
apparatus, with one spring fixed (left), and also the same ap-
paratus with the spring vibrating (right). This slight change
must have been enough to vary the motion of the oscillator.

order make the modified oscillator similar to the origi-
nal oscillator, the entire oscillator was raised off of the
table so that the vibrational motor sat at approximately
where the spring was tied off. The vibrational motor
was attached to a function generator, and attached up
to an oscilloscope. The oscilloscope provided a way to
view the voltage of the second motor, while the function
generator provided the frequency of oscillation. A Pasco
box was set up with a computer, and had inputs com-
ing from the motor, rotary wheel, and photogate. When
the motor was set to the off position, a clamp was placed
around it so that there would be no additional movement
due to string tension. The effect of the second motor on
the motion of the oscillator was recorded in two different
plots. The first plot, the phase space plot, was used to
observe the change in angle vs the change in frequency,
or {0,w}. The other plot that was used was the Poincare
plot, which had the same parameters as the phase space
plot, however a point is recorded once every period.

IV. RESULTS AND ANALYSIS

In order to see how the modifications changed the mo-
tion of the oscillator, the second motor was turned off
and clamped. The voltage of the first motor was set to
one of the voltages observed in previous runs. The orig-
inal motor was then turned on, and data was collected
for an hour. This was then compared to the mentioned
previous data set, as shown in Fig. 4. For the most part,
the phase space diagrams will be left out of the report,
as the differences in them are quite subtle. The Poincare
plots show the differences in motion much more clearly.

Once a baseline was established, the damping magnet
was looked at. At first, it seemed like a good idea to
detach the magnet entirely. This is due to the fact that
the damping magnet merely slowed the oscillators move-
ment, and made the motion periodic. The magnet was
ultimately left on the oscillator, as it is controllable. The
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FIG. 5: Poincare plots for varying frequency of vibration. The
frequency of the motor was increased as the plots go from top
left to bottom right. As is evident from these graphs, there
is a patterned shift in the plots. This patterned shift clearly
shows how the Poincare plot changes over time. The voltage
of the rotary motor was held constant at 6.05 V, while the
frequency of the vibrational motor was varied from 0.00 Hz
to 3.00 Hz.

friction of the pulley is nearly impossible to measure in
this case and will not be uniform over the entire surface
of the pulley. The damping magnet’s use in this case
is that of minimizing the effect of friction. The damp-
ing magnet’s force is so much greater than the force due
to friction, that the effect of friction essentially goes to
zero.[7]

The next step was to increase the frequency of the
additional motor, while holding the original motor con-
stant. After taking the first data run with the second
motor on, an immediate change was seen. The motion
of the oscillator changed from periodic to chaotic. This
clearly shows that the additional motor did indeed affect
the motion of the oscillator. It makes sense that there
would be a change in motion, because chaotic motion is
extremely sensitive to changes in initial conditions. The
original motor was held at 6.05 V, while the frequency
of the second was increased in fairly similar intervals.
As the frequency of the additional motor increased, the
Poincare plot slowly began to shift. This can be seen in
Fig. 5.

The gradual change in the attractor pictured is much
different than the changes that occurred in attractors,



when just one motor was active. The results from pre-
vious trials showed that there seemed to be no easily
seen correlation between increasing the frequency of the
motor. This new insight is interesting, because rough
predictions of how the oscillator will move can be made.
Now while the predictions will be very primitive and lim-
ited to the Poincare plot, there is some level of order
to the system. Long term accurate predictions are still
impossible to create, as is the case for all chaotic sys-
tems. Comparing both the previous Poincare plots to
the new Poincare plots, the difference between the two
is clear. While they look drastically different from each
other, there are some underlying similarities. It seems as
though the left side of the plot shrunk once the additional
motor was added, while the right side of the plot seemed
to grow. These similarities are due to the fact that the
oscillator is still very similar to the Duffing oscillator, so
it makes sense that the motion would at the very least
be similar. In order to determine if it the correlation was
due to the addition of a second motor, or if it was simply
due to how the vibrational motor worked, the frequency
of the rotary motor was varied while the frequency of
the vibrational motor was held constant. The resulting
Poincare plots did not show a clear correlation like the
vibrational motor did. This means that the reason for
the correlation was due to the technicalities of the vi-
brational motor. One reason that this would happen is
that the vibrational motor moves such a small distance,
that a change in the frequency of the motor would have
very little effect on the overall motion of the system. It
would, however, have just enough of an effect to alter the
Poincare plot.

The fact that attaching the vibrational motor to
the oscillator immediately changed the Poincare plot,
prompted some observations into how the angle of the
spring affects motion. The angle of the spring was
changed three different times, and data was taken for
each. The resulting Poincare plots show that changing
the angle of the spring has a noticeable effect on the mo-
tion of the oscillator. The change in the motion of the
oscillator due to varying angles is shown in Fig. 6. The
fact that the angle that the spring is at changes how the
system behaves is an important fact. This means that
the derivation from earlier is not going to be exact. The
derivation assumes that both springs are hanging straight
down, whereas in reality neither of them are vertical.
The initial starting point for the mass was not changed
due to the high variability of starting angles. It would
have been near impossible to ensure accurate drop loca-
tions for each run. There are also endless possibilities for
starting angles.

Finally, the derivation from earlier was used to attempt
to simulate one of these data runs. In order to simulate
the system, Mathematica was used. The equation of mo-
tion was entered into Mathematica’s NDSolve function,
however due to the numerous constants, no result was ob-
tained. To remedy this, all of the measurable constants
were found, and substituted into the equation of motion
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FIG. 6: This figure shows the different Poincare plots for
varying spring angles. The second graph in this figure looks
very similar to some of the graphs observed from the original
Dulffing oscillator. This variance in plots is due to both the
changing angle as well as the different tensions put on the
spring. There is no real correlation or pattern between the
angles, however with such a small sample size it is impossible
to draw any in depth conclusions. The plots are read from
top to bottom, and are placed in order of increasing angle.

so that there were constants of only the angle of rota-
tion, 6, and the elapsed time, ¢. Doing this left a second
order differential equation, that was fairly easy for Math-
ematica to solve. The resulting phase space diagram is
shown in Fig. 7. From this, it is evident that the phase
space diagram is does not exactly match up with the one
shown in Fig. 4. What can be drawn from the theoreti-
cal phase space diagram is that the general shape of the
phase space is the same, so we are at least on the right
track. The phase plot also shows that the system unpre-
dictably oscillates between the two equilibrium points

A. Error Analysis

In this experiment, there were several sources for er-
ror. First, as stated earlier, the springs were not exactly
vertical. This meant that the system could not be mod-
eled perfectly. The springs were also assumed to be the



FIG. 7: This is a theoretical phase space plot based upon
the equation of motion derived in the Theory. It is not com-
pletely accurate due to assumptions that had to be made,
but nonetheless it is still useful as a rough guide for the phase
space.

exact same, which they were not, as it is experimentally
impossible to ensure both springs are perfectly symmet-
rical. This would have skewed the experimental values
found for the spring constant, as only one was measured.
Another source of error was the fact that the vibrational
motor was not a precise tool. While the motor was run-
ning, the oscillations were not smooth. As the motor
moved up and down, there were slight vibrations that
were not in line with the smooth oscillations assumed.

The motor also moved the spring further away from be-
ing vertical. Had there been more time, a hole could
have been cut into the platform, and the vibrational mo-
tor placed under the hole, so as to minimize the angle
off of the vertical. Another cause of error was the fact
that both the voltage source and the function generator
were not very accurate. When hooking a voltmeter up to
the voltage source, fluctuations in voltage were common,
thus skewing the results. The function generator was also
not entirely accurate, however there was not a great way
to numerically determine how off it actually was.

V. CONCLUSION

This lab allowed for further analysis of the Duffing os-
cillator with an additional motor. It was found that the
additional motor caused some interesting behavior in the
oscillator. When the frequency of the additional motor
was increased, the Poincare plot seemed to morph into a
new plot. Had there been more precise tools, a time-lapse
of the Poincare plot could have been developed for each
frequency. Despite this, we also found that the angle of
the spring changes the motion of the oscillator. This was
interesting because even in the original Duffing oscilla-
tor, there was some angle off the vertical as well. Finally,
it was discovered that changing the amplitude of either
of the motors reacted in the same way as in the original
Duffing oscillator. There was seemingly no pattern as to
why or when the motion would change. One thing is for
sure, the motion of the oscillator is extremely sensitive
to initial conditions.
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