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The purpose of this lab was to determine the effect that various damping and periodic driving
parameters have on a Duffing mechanical oscillator with two different potential wells. This was done
by experimenting with variations in the system and deriving the equation of motion for the system,
ẍ + γẋ = αx − βx3 + a sin (ωt), which describes the general motion of the system. The equation
of motion includes definition of the initial parameters of the system, making it possible to make
reasonable predictions about the motion of the system over time. Conclusively, two stable fixed
points were identified and one unstable fixed point was identified. At these points the system is
able to stay at rest when under particular initial conditions and without the influence of an exterior
force actively driving the system. I discovered that when the amplitude of this specific system is
increased from 4.84 V to 5.27 V the range of velocities and positions also increased for the system.
Also, increasing the damping parameter of the system from 2.35 cm to 1.30 cm caused the system
to reach a non chaotic limit. The initial parameters of the system caused large variations in motion
that included changing in velocity around the equilibrium points and changing in the position limits.

I. INTRODUCTION

Chaos occurs in a mechanical system when the motion,
energy, and force that a system is subject to are con-
stantly fluctuating, causing non-repetitive behavior over
a long period of time. Even in chaotic systems it is very
possible to predict the motion of the system for finite pe-
riods of time given the initial parameters and conditions
of the system. However reasonable prediction of motion,
energy, and force within the system becomes exponen-
tially harder to predict as the limits of time increase to
infinity. Henri Poincare was one of the first scientists
to explain chaos around 1900. He postulated that the
natural curvature of orbits could be described geomet-
rically using the idea of constantly evolving state vari-
ables; state variables being periodically changing vari-
ables. Poincare was able to give further intuition into
the matter by showing that reasonable approximations
of these variables could be investigated at a reoccurring
position [2]. At a successive point, a reasonable predic-
tion of condition values can be made using the equation
of motion to calculate from a previously known value.
Other than its application to orbitals, chaotic motion can
describe other nonlinear phenomenon applicable to nat-
ural systems. German electrical engineer Georg Duffing
constructed one of the most widely used nonlinear motion
equation in 1918, the Duffing Equation [2]. His equation
takes into account the effects upon a simple harmonic os-
cillator when manipulated by an periodic driving force, a
continuous damping or drag force, and a nonlinear term,
as well as initial parameters associated to these terms.
Depending on the given conditions the system may act
chaotic over discrete intervals and periodic over other in-
tervals. In 1963, Edward Lorenz noticed that when he
simulated a weather pattern on separate occasions using
the same model he obtained vastly different results [4].
He concluded that his initial conditions in each instance
were slightly different. This idea, known as the butterfly

effect, says that the behavior of a chaotic system, where
values are obtained with a certain systematic random-
ness, changes substantially even with slight changes in
initial conditions. It is important to analyze chaos in or-
der to find patterns within a systematically random set
of conditional variables that allow us to weed out and
predict particular variable values as time processes. The
predictions that we are able to make are useful in predict-
ing expectations for economic patterns, weather patterns,
and mechanical systems such as the oscillator studied in
this experiment.

II. THEORY

It is necessary to derive the equation of motion of the
system from the kinetic and potential energy equations in
order to consider the the motion of the bistable mechani-
cal oscillator and its dependence on the initial conditions
of the system. Just like in any other mechanical system,
finding the Lagrangian by taking the difference between
the kinetic and potential energies allows us to solve for
the second-order Euler-Lagrange equation to obtain Duff-
ing’s historic equation for the damped, driven nonlinear
oscillator [3]. Following this logic we get

L = T − V ;
d

dt

∂L

∂ẋ
=
∂L

∂x
, (1)

which, for this particular set of variables and initial con-
ditions, implies

ẍ+ γẋ = αx− βx3 + a sin(ωt), (2)

where x is angular displacement, α is a linear elastic con-
stant related to the spring constants of the oscillator, β
is a non-linear elastic constant related to the force the
springs exert as they stretch, a is the amplitude of the
force dependent on the length of the mechanical arm (see
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Figure 1, label 10), ω is the frequency of the force given
by 2π of the period T that it take the arm to make one
rotation, and finally γ is the damping coefficient propor-
tional to the velocity of the system. In this particular
experiment I manipulated a, ω, and γ to change the be-
havior of the system [1]. Here we can also say that if
there was no damping parameter γ, our equation of mo-
tion would look like

ẍ = αx− βx3 + a sin(ωt), (3)

and the natural frequency of the system would we of the
form

ωo =

√
βx2 + α

m
(4)

where the frequency of the system is going to be chaotic
even in the absence of damping since β is affected by the
position of the non inform mass of the disc and and ran-
domized position of x. Under particular conditions the
system can behave predictably or chaotically. Chaotic
behavior displays that even slight manipulation of the
initial conditions can lead to drastically different results.
When the system is underdamped the system will satisfy
ωo¿γ, where we will see the system act chaotically, as in
most cases explored in this experiment suggest. When
the system is overdamped the system will satisfy ωo=γ,
where we will see the system reach a limit of motion as
time progresses. We can see this sort of motion in Fig-
ure 2 in the middle graph. When the system is critically
damped the system will satisfy ωo < γ, where we will
see the damping parameter outweigh the elasticity of the
system and the driving force will be too strong [2]. This
final case was not explored to its fullest extent, when the
motion of the system flatlines to fixed point over a small
period of time, even at large initial conditions of poten-
tial and velocity. We do see semblance of this in Figure
2 in the bottom graph since the motion is restricted over
time.

Initially looking at the position versus time of the non-
linear oscillator helps to understand the motion of the
system. Looking at Figure 2 we can see that under cer-
tain parameters and time constraints the system can act
periodically, chaotically, or some combination of both. In
certain instances we see period doubling, where a motion
is repeated upon consecutive intervals, where the oscilla-
tor only moves close to one fixed point.

Next, to understand the energy related to the system
we can look at the potential energy curve as displayed in
Figure 3. The general form of the potential equation is

V = −αx
2

2
+ β

x4

4
, (5)

where V is a function of position x and α and β are
parameters.

We can study the behavior of chaotic motion under two
separate conditions, over a discrete intervals of time or

FIG. 1: Displayed is a comprehensive diagram of the bistable
mechanical oscillator used in this experiment. Each key com-
ponent of the system is annotated by a number. The mass
attached to the metal wheel (1) is free to rotate about a Pasco
SmartPulley (2). The springs (5) that manipulate the motion
of the system are attached to a string that can rotate the
pulley in two directions. Next, there is a power supply (3)
with a variable voltage (4) that can be measured by the volt-
meter (7). The Pasco Mechanical Oscillator (6) is driven by
the power supply and has a variable amplitude (10). The me-
chanical arm (10) of the Oscillator passes through the Pasco
Photogate (8), in order to measure the frequency. Finally,
there is a damping magnet (9) behind the metal disc that can
move closer to the disc to increase the damping effect.

over a continuous period of time. Over a continuous in-
terval we talk about the phase space of the system where
we relate velocity and position over a related time inter-
val. As shown in Figure 3 we observe an eight-shaped
curve, called a separatrix, representing the phase space
relationship between velocity and position. Each phase
begins and ends at a similar position on the graph and
continually revolves. The phases create a concentric pat-
tern and no successive phase is identical. If we changed
the sampling of the phases in Figure 3 we would see dif-
ferent spacing and behaviors between phases. Each phase
gives us the range of velocities and positions over contin-
uous, but periodic intervals of time. We can easily see
where the fixed points of the system are located. At the
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FIG. 2: The graphs depicted are position vs. time plots
for different initial parameters of four separate data runs.
The parameters being manipulated correspond to the driv-
ing frequency, driving amplitude, and damping position. The
top plot (blue) has initial parameter of 3.40 cm amplitude,
5.27V frequency, and 1.30 cm damping position. The mid-
dle plot (red) has parameters of 4.15 cm amplitude, 5.27V
frequency, and 2.35 cm damping position. Finally, the bot-
tom plot (green) has parameters of 4.15 cm Amplitude, 4.84V
frequency, and 1.30 cm damping position.

stable fixed points the velocity is converging to zero and
the phase lines are moving towards a particular position.
These are shown by the holes of the eights. The unstable
fixed point is shown where the phase lines are deflecting
away from a particular position near the center of the
eight. At the unstable point the potential energy reaches
a local maximum. Under particular initial conditions it
is possible for the oscillator to rest at the unstable fixed
point. For certain initial conditions the oscillator can
also move about a single stable fixed point with a limited
angular position.

The other useful type of analysis for a phase space plot
is a Poincare map, over a discrete and periodic interval.
The idea of a Poincare plot is that particular trends for
velocity and position tend to occur over a periodic in-
terval. If we think about the phase space as constructed
concentrically outward about a center phase, you can cre-
ate a cross sectional sample by cutting a line perpendicu-
larly through all the phases at a particular junction. We
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FIG. 3: The graphs depicted show phase space plots of the
different initial values for four separate runs, corresponding to
the driving frequency, driving amplitude, and damping posi-
tion. The top left (red) has parameters of 4.15 cm amplitude,
5.27 V frequency, and 2.35 cm damping position. The top
right (black) has parameters of 4.15 cm amplitude, 5.27 V
frequency, and 1.30 cm damping position. The bottom right
plot(green) has parameters of 4.15 cm amplitude, 4.84 V fre-
quency, and 2.35 cm damping position. Lastly, the bottom
right (blue) has initial parameter of 4.15 cm amplitude, 4.84
V frequency, and 1.30 cm damping position. The phase was
plotted for each run for identical time intervals of 40 seconds.
Each behavior has slightly different patterns due to the inter-
vals of time chosen and the starting position of the oscillator.
The most different plot was the blue plot which moved in
a non chaotic fashion around a single fixed point within the
system.

can see this concept by observing the colored dotted lines
intersecting through the phase spaces in Figure 3. How-
ever, it would be possible to receive a slightly different
Poincare map pattern by choosing a different position of
the driving force at which to record the velocity verses
the position, as shown by the grey intersection in Figure
3. In this instance their would be different fractal pat-
terns, within the Poincare map that would limit particu-
lar velocity and position combinations. Fractal patterns
are continuously repeating patterns that rotate about the
fixed points. Shifting the position at which the velocities
and positions are recorded will rotate the fractal patterns
toward the fixed points but will keep similar shape un-
der the same initial conditions. By changing the initial
conditions the fractal patterns can rotate, distort and ex-
pand, however the fixed points will still remain the most
dense regions of the map. In these maps each successive
point depends on the previous point, creating a type of
chain reaction that can distinctively change the behavior
of these maps.
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III. PROCEDURE

This lab was conducted using DataStudio for data col-
lection. The equipment used is displayed in Figure 1
with detail. In the bistable oscillator, there is a disc of
nonuniform weight suspended above a flat surface and
attached to a SmartPulley. The pulley and the disc are
able to radially move by the way of a configuration of two
strings. Both strings are attached to two springs; one is
stationary and the other is attached to a mechanical os-
cillator. The mechanical oscillator rotates, changing the
driving force upon the pulley system.The Pasco Smart-
Pulley and the Pasco Photogate are connected to the
Pasco Interface box that transmits data to the DataStu-
dio software for Macintosh. The software records several
different measurements to create the Poincare, the phase
space, the position vs. time, and the potential energy di-
agrams. Variations of initial parameters were established
for five separate runs. The changing parameters included
the amplitude of the driving force (3.40 cm and 4.15 cm),
period of the driving force (5.27 V and 4.84 V), and posi-
tion of the damping magnet (2.35 cm and .30 cm). These
parameters are summarized in Table 1.

TABLE I: This is a summary of the data runs performed in
this experiment. Five data runs were collected using various
parameters, as specified.

Run Drv. Amp. (cm) Freq. (V) Dmp. Pos. (cm)

1 4.15 4.84 2.35

2 4.15 4.84 1.30

3 4.15 5.27 2.35

4 4.15 5.27 1.30

5 3.40 5.27 1.30

Data was collected in 1:30hr increments. In order to
create the position verses time diagram the interface sim-
ply tracked the angular position of the smart pulley,
at 0.01s per measurement. The phase space plot gave
the angular velocity verses the angular position and was
measured over a continuous interval. In contrast, the
Poincare map plotted the angular velocity verses the an-
gular position at the discrete interval of time when the
mechanical oscillator crossed the path of the Photogate.
Finally, the potential energy curve plotted the potential
energy of the system as the angular position of the os-
cillator changed. All the data collected was exported to
Igor Pro for analysis and manipulation. All figures were
constructed using Igor Pro, excluding Figure 1 and Table
1.

IV. DATA AND ANALYSIS

Figure 2 gives the angular positions verses time graphs.
The last graph shows us an example of, not chaotic, but
periodic motion when the oscillator is constrained to a

small interval with a repeating pattern of motion. This is
the simplest case where position over time is predictable.
The first graph displayed has a larger frequency and a
smaller amplitude with a damping magnet. We see that
the system oscillates around the two fixed points with
occasional oscillations between the fixed points and fre-
quent consecutive oscillations around a single fixed point.
The second graph shows a transition between chaotic and
periodic motion. This occurs because the damping driv-
ing force drives the system when it is at various positions
and directions for the first 60s, but it eventually reached
a predictable pattern when the motion of the oscillator
was in a small interval.

The next set of plots, Figure 3, shows the phase spaces
of four different parameter sets. The red and black phase
spaces have different damping parameters as well as the
green and blue phase spaces. The black and blue have dif-
ferent driving frequencies as well as the red and the green.
First, we see as the damping parameter increases there is
more amplitude of motion around the fixed points shown
from red to black. In other words the oscillations become
larger since the damping parameter forces the system to
take on a smaller range of velocities and positions. Be-
tween the green and the blue we see that as the damping
increases the motion of the system tends to center around
a single fixed point with a smaller range of velocities and
positions. This same occurrence happens between the
black and the blue when the frequency is decreased. It
is observed that a particular fixed point, represented by
the larger circular pattern on the left, created a larger
range of position and velocity, with the exception of the
bottom right phase plot, which had a discrete range of
motion, considering it was non chaotic.

In Figure 4 we see the Poincare maps for 4 separate
parameter sets. The black and the blue plots now differ
in the amplitude of the driving force. We see that the
range of velocities and positions expands slightly as the
amplitude increased. There also seems to be a shift in
the fractal patterns as the amplitude increased. The dif-
ference shows more empty spaces where the velocity and
the position are not expected to be, within the range of
values for the blue map. In sum the green map covers
a wider range of values then the blue, which has lesser
amplitude. The red and the black differ in damping pa-
rameters. As the damping increases we see that there is
more empty space near the fixed points even though the
patterns seem to be very similar in shape. This was a
similar observation in the phase plot for a similar change
in damping.

To give a sense for how the Poincare plots are devel-
oped over a period of time refer to Figure 5, showing the
progression of the point values for a particular parame-
ter set. Figure 6 shows the Poincare plots for a system
with damping and without damping. This shows that the
bottom right plot, that includes damping, reaches a more
discrete range of values for position and velocity, based
on the complexity of the fractal patterns and the smaller
dispersion of points. The green plot covers a wide range
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FIG. 4: The graphs depicted show Poincare plots for the dif-
ferent initial values of four separate data runs, corresponding
to the driving frequency, driving amplitude, and damping po-
sition. The top left (red) has parameters of 4.15 cm ampli-
tude, 5.27 V frequency, and 2.35 cm damping position. The
top right (black) has parameters of 4.15 cm amplitude, 5.27 V
frequency, and 1.30 cm damping position. The bottom right
plot(green) has parameters of 4.15 cm Amplitude, 4.84 V fre-
quency, and 2.35 cm damping position. Lastly, the bottom
right (blue) has initial parameter of 3.40 cm amplitude, 5.27
V frequency, and 1.30 cm damping position. The fractal pat-
terns tend to move around the known stable fixed points and
have slight distortion under changing parameters. Each plot
contains 7 500 data points which varies in time scale for the
two different frequency values.
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FIG. 5: This shows the succession of the Poincare map at
10 points, 100 points, 1000 points, and 10 000 points. The
parameters for this data set are; 4.15 cm Amplitude, 4.84 V
frequency, 2.35 cm damping position
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FIG. 6: The graphs depicted show Poincare plots of two dif-
ferent initial values for damping position.The bottom plot
(green) has parameters of 4.15 cm amplitude, 4.84 V fre-
quency, and 2.35 cm damping position. The top plot (blue)
has initial parameter of 4.15 cm amplitude, 4.84 V frequency,
and 1.30 cm damping position. The bottom was plotted over
7 500 data points while the top was plotted over only 1000
data points because it had a very small range of velocity and
position values as time passed.

of values but we can see that the most dense populations
occur at stable fixed points with a probable velocity at
the fixed points.

Figure 8 displays a potential energy plot and best fit for
a large amplitude low frequency system without damp-
ing. We see that the expected potential energy equation
does not hold true because the double potential wells
were not exactly equal in position and the spring con-
stants of the oscillator were not exactly equal. We do
however get a sense for where the two stable and the un-
stable points should occur at. Setting the derivative of
the potential function equal to zero and solving for the
minimum and local maximum values gives us a rough
idea of where the critical points of the system occur. The
potential function for every parameter set was approxi-
mately equal since the fixed points did not change.
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FIG. 7: This graph displays the potential plot for the pa-
rameters; 4.15 cm amplitude, 4.84 V frequency, and 2.35 cm
damping position. The figure also includes an approxima-
tion fit that shows the stable and unstable fixed points when
the slope of the fit line approaches zero. The green potential
curve-fit has the form of V (x) = −k1(x−xo)2+k2(x−xo)4+ko,
where ko=-223± 6, k1= (6.6± 0.8)× 10−3, k2= (1.9± 0.2)×
10−7, and xo= -220. The value ko corresponds to a shift in
the y-axis and the value xo corresponds to a shift in the x-axis
related to the position of the unstable fixed point.

V. CONCLUSIONS

Albert Einstein once said, ”As far as the laws of math-
ematics refer to reality, they are not certain, and as far

as they are certain, they do not refer to reality [3].” This
statement give us a sense of what chaotic motion tells us,
which is that we can explore different forms of the data in
a system such as the one we explored in this experiment,
but we cannot rigorously define the motion in a mathe-
matical sense. By using data analysis, such as the phase
plot (continuous velocity vs. position), the Poincare plot
(periodic velocity vs. position), and the potential energy
plot (energy vs. position), we can make reasonable pre-
dictions about how a system will act by observing the
patterns of motion around the fixed points. The motion
of the bistable oscillator that was analyzed in this exper-
iment gave us some sense of the relative patterns that
occur when the parameters of the system are changed.
We know that the non-linear changing of the elastic con-
stant β and the linear elastic constant α directly affect
the magnitude of the potential energy for the system at
various angular positions of x. Also we found that the
natural frequency ωo could be compared to the damping
parameter γ in order to explain the conditions of the sys-
tem. This comparison gave a reasonable explanation for
the non chaotic behavior of the oscillator of amplitude
4.15 cm, frequency of 4.84 V, and 1.30 damping position.
The motion of the system was not chaotic over all pa-
rameter sets. Subtle changes in the parameters gave us
noticeably different behavior. There were distinctive dis-
tortions of the Poincare plots as the parameters changed
that allowed us to make inferences on how the parameters
changed the motion of the system.
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