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The purpose of this lab was to determine the order of the proportionality between temperature
and radiated power from an approximate black body. A tungsten filament was heated using a direct
current source. Using my experimentally observed values for current and voltage, and data provided
by PASCO Scientific relating relative resistivity to temperature of my filament, an experimental
replication of the original experiment by Joseph Stefan was performed in order to estimate the
order of the equation of radiated power as a function of temperature. A final value of 3.724 for the
power of temperature in my proportionality equation between radiated power and temperature was
received, which differs from the accepted value of 4 by 6.9 %.

I. INTRODUCTION

In 1879, at the University of Vienna, Josef Stefan observed the heat transfer between two independent bodies, and
noted that the heat exchange did not happen in a linear fashion [1]. He was able to experimentally deduce that the
rate of the radiated heat exchange was directionally proportional to the fourth power of its temperature. The results
tended to agree more with this proportionality when the system mimicked a black body, or a body that absorbs
all incident radiation regardless of wavelength, then re-radiates energy in quanta characteristic to the substance’s
properties. Prior to this discovery, it was known that the linear model of temperature and heat transfer fell apart at
higher temperatures. However, this quartic relation still seemed to come as a shock. Five years after Josef Stefan’s
discovery, former student of his Ludwig Boltzmann was able to confirm Stefan’s hypothesis through a theoretical
derivation. His derivation considered the heat radiated from a system to be fluid, however later derivations confirmed
the same relation when the energy released is assumed to be in a collection of discrete quanta. This discovery came
slowly, as a result of the difficulty in measuring or achieving high temperatures, and its sensitivity. However, this
conclusion was a turning point in the field of physics. It is fundamental in the analysis of high temperature, radiative
objects, such as celestial bodies, or even simple circuits.

II. THEORY

Electromagnetic radiation from a black body is released in discrete quanta [2]. The average energy released in
a single quantum, multiplied by the density of quantum energy radiated gives the total energy density, in terms of
wavelength, A, as

p(v) = S (1)

Multiplying this equation by the quantity he/A(e*-1), where 2 = he/AkT, the energy per unit volume of this quanta
with respect to the radiation wavelength is achieved in the following form
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This equation is known as the Plank radiation formula, where T refers to the temperature of the body, ¢ to the
speed of light, and & to the wave number [3]. Multiplying this formula by a factor of 0.25¢,
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is received.
Noting that the speed of light, ¢, has units of length over time, non-dimensionalizing the entire equation and
considering only the units yields the relation
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where Energyy and Volumey refer to the energy and volume of one discrete quanta. Recalling that the units of power
are energy per unit time, the term Energy/Time can be considered the power for a single, more or less infinitesimally
small quanta. Thus, the power for the entire system can be described as
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where a refers to the area.
Since z= hc/(\ kT), dz = -hc/(A\2kT)d). Integrating over all wavelengths
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is obtained.
The solution this equation gives us the Stefan-Boltzmann law for black bodies:
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The constants (27°k*)/(15h3¢c?) can be combined in to a single variable o. Because the area a is derived from the
assumption of an ideal black body, for experiments sake, it makes sense to add a correction, or an emissivity factor, €,
to take in to account imperfect black bodies, where e = 1 for an ideal body, and less than one for a non-ideal system.

The correction applied to another area term, A, so that the new approximated energy is described as a = Ae.
The final equation is received

P = o AT* (8)

for the power radiated from my black body.
A tungsten filament in a bulb is considered a non-ideal black body system, or a gray body, where € is less than one.
The power of the electric circuit is classically

Pelec = I‘/7 (9)

where I and V refer to my current and voltage values respectively. However, this non-ideal circuit must be described
in terms of my radiated power and power lost by conduction, minus a term for the power lost due to the radiation
absorbed from my ambient temperature. One then receives the equality

Pelec = Pradiated + Pconducted - Pabsorbed7 (10)

such that

Pejec = €0 AT} + kl(Ty — Ty) — €0 AT}, (11)

where T refers to my filament temperature, T,, to my ambient temperature, x to the conductivity of my filament,
and [ as a characteristic length scale. Because my filament has the potential to reach temperatures as high as 3000°
C, T is arbitrarily small compared to T;}, so that it can be ignored in the final analysis.



In order to prove that the power radiated by the system is more or less proportional to the fourth power of my
temperature, as in Equation 6, one can calculate the power radiated from my filament at different temperatures from
a series of currents and voltages.

One can estimate the radiated power from the classical power calculation seen in in Equation 7. Considering the
general equation of P as a function of T without the small correction factor, the approximation can be made that

P =~ ec AT} + l(Ty — To,). (12)
Multiplying both sides by the linear term, the equation can be rearranged to read
eorATJil P
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Noting that my linear term is less than 1, making P/xl(Ty —Ty,) > P,

Kl(Ty —To) — wl(Ty —Ta)

such that

P = ea AT*. (15)

Though this approximation is not ideal, it is considered for the sake of analysis; taking the natural logarithm of
both sides allows the utilization of logarithm rules in a convenient way.

In(P) = In(ec AT™) = 4In(T) + ln(ec A). (16)

It is shown then that the graph of the natural logarithm of the power versus the natural logarithm of the temper-
ature should yield a slope of approximately 4, agreeing with Equation 6 and exhibiting the power relation between
temperature and power.

III. PROCEDURE

The Stefan-Boltzmann lamp containing my tungsten filament was connected to a direct current power supply, and
then attached to an ammeter and voltmeter, as seen in Figure 1. Voltage data were collected at values between 0.5
and 16 V, and respective current data were recorded at values between 2 and 3 pA. There was approximately one
minute between each data point collection where there was no current running through my filament, allowing it to
cool off, ensuring that the data were recorded at approximately room temperature.

The current and voltage was then increased by a factor of 107®. The current values ranged between two and
three amps, and the respective voltage values were less than 11 volts. Similar data was collected as taken at room
temperature, however, this time the intention was to heat my filament, so the power supply was not turned off between
data point collection. Data collection was done over a series of five separate trials in order to gain ideal results.

IV. DATA AND RESULTS

The graph of the data collected at room temperature can be seen in Figure 2. The uncertainty values of + 0.01 A
for current and £ 0.01 V for voltage were experimentally observed, and most likely due to either an oscillatory power
supply, or imperfect measurements from my voltmeter and ammeter.

I used the relation R = V/I, where R refers to the resistance, to find R,y given by the slope, which turned out to
be 0.297 Q.

Dividing the values of resistance taken at higher temperatures, Rt by R,.; gives the relative resistance, or relative
resistivity. Though resistance is a calculated property, and resistivity is a fundamental property of the tungsten
filament, because I am again taking a ratio, they turn out to be equal.



FIG. 1: Stefan-Boltzmann circuit schematic replicated from FIG. 17.2 in Lab Manual [? |.
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FIG. 2: Graph of voltage vs. current, with a linear fit of slope, or R,c¢, 0.297 &+ 0.007, and y-intercept -2.363 £+ 0.251.

Consulting a chart provided by PASCO Scientific for the temperatures of the filament at different relative resistance
values, I graphed values of relative resistance vs. temperature of the filament, using only data that was similar to the
data I experimentally received, so that the temperature values graphed from my PASCO provided chart were similar
to the temperature values I received. This ensured the closest fit from the PASCO data graph to my data. From a
linear fit of this graph, seen in Figure 3, I received an equation from which one could estimate the temperature of the
filament form my relative resistance data. From this fit, I received the equation
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FIG. 3: Graph of relative resistivity vs. temperature, with a linear fit yielding an equation of y = 163z + 365.3, and an R?
value of 0.999.

f(x) = 163z + 365.3. (17)

where the function f(x) refers to the temperature as a function of the relative resistance, x, which was used to calculate
a new data set for temperature.

I then used the classical statement for power as seen in Equation 9 to determine the power radiated from my relative
resistivity, using the values for current and voltage from the heated filament. The natural logarithm of my new power
data was then graphed against the natural logarithm of the temperature data, and can be seen in Figure 4.

From Equation 13, one can see that the slope in this case approximates the order of the function of power with
respect to temperature, and is approximately 3.724.

V. UNCERTAINTY AND ERROR ANALYSIS

The uncertainty values for the current and voltage were determined by observing oscillations in my ammeter and
voltmeter data from my power supply. The uncertainty for voltage, § V, was 0.01 V, and uncertainty for current, §
I, and came to be £0.01 A. This value was used to calculate the power uncertainty, P, and the uncertainty values
used in my natural log graph in Figure 4.

I gain an uncertainty propagation for power from the equation

()« (7) (7))

Inserting the § P value in to the natural log for my uncertainty values for Figure 4 poses a problem, since the
natural log operation will give a large result for small uncertainty values. Instead, one must consider the derivative
of the natural log of power values,

(19)
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FIG. 4: Graph of the natural logarithm of power vs. the natural logarithm of temperature, with a linear fit of slope 3.724 +
0.01 and y-intercept of -26.05 £ 0.12. Both power and temperature as seen on my axes have been non-dementionalized due to
the natural log function.

The values for my ¢ P uncertainty averaged to around 0.08 watts, so that 6 P/0.08 W ~ 1. Multiplying the natural
log uncertainty propagation by this experimentally determined factor yields

opP

oln(P) = 0.03P

(20)
which I used for my point uncertainties in Figure 4. The uncertainties were smaller than the values I received for the
natural log of the power by an order of magnitude of 1072.

The experimentally derived value for the order of the equation of power as a function of temperature was 3.724.
The percent error was calculated by the following function:

|Experimer1ta1 Value - Accepted Value‘

P t Diff = 1 . 21
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724 - 4

Percent Difference = %100% = 6.9%. (22)

Because I received low uncertainty values, and had a pretty direct correlation with the data in the graph in Figure
4, one can deduce that the majority of my error was not due to a mis-calculation, or a single faulty data point, but
rather a uniform error throughout my data collection. Referring back to Equation 8, it may be valid to say that some
of the power radiated was lost or absorbed in to the ambient surroundings, such that my 7 wasn’t entirely negligible.
Because my system was not ideal, and not done in a perfect vacuum, energy was also lost to the surroundings.

It is also likely that some of the error came from my T;..y calculation. It could be that the bulb heated slightly
during calculation, so that the filament was not in thermal equilibrium with the room temperature, or that the bulb
was not given adequate time to cool off. Error could have also came from a uniform miscallibration of my ammeter
or voltmeter.



VI. CONCLUSION

The purpose of this lab was to determine the order of the equation of power radiated from an approximate black
body as a function of its temperature. It is ideal to use a black body system, as it ideally absorbs all incident
radiation. The discovery of the Stefan-Boltzmann power and temperature relation was revolutionary in the field of
quantum mechanics. In order to improve my results, one may attempt to measure the power absorbed by the ambient
surroundings, and factor that in to my total power radiated results. However, because we used a filament in a circuit,
the system lost less energy to its surroundings than if I were heat the filament with some outside source of energy.
After five trials, I received a data set that yielded a percent error of 6.9 %, with a value of 3.724 for my exponential
proportionality, differing from the accepted value of 4 by only 0.1 order of magnitude. The error was uniform and
most likely experimental, due to an idealization of my non-ideal system.
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