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Using a function generator to drive a circuit consisting of a resistor, inductor, and diode, the period
doubling route to chaos was observed. Through varying the frequency of the function generator at
a constant voltage, both chaotic and periodic regimes were found. By determining the frequencies
at which period bifurcations occurred and averaging the results of several trials, the Feigenbaum
constant § was determined to be 4.6 & 0.3, which is within 1.5% of the known value.

I. INTRODUCTION

A chaotic system is one that evolves deterministically,
is non-linear, and exhibits both aperiodic behavior and
a high sensitivity to initial conditions. These sorts of
systems are commonplace and can be found in systems
ranging from shell growth to weather patterns to the or-
bits of gravitating astronomical bodies. Although all
chaotic systems are non-linear, since linear systems do
not possess enough degrees of freedom, nonlinearity is
not enough in itself for a system to be chaotic. Funda-
mental to chaos is the sensitivity to initial conditions, also
known as the butterfly effect, a term coined by Edward
Lorenz, an early pioneer of what would become Chaos
Theory. Although the long-term behavior of chaotic sys-
tems is impossible to determine, chaotic systems are not
random themselves and are strictly deterministic. Lorenz
characterized this behavior in his definition of a chaotic
system, a system wherein “the present determines the
future, but the approximate present does not approxi-
mately determine the future” [1].

The principle of causality states that “every event has
a cause,” and lies as the cornerstone of natural science.
Throughout the development of physics from Johannes
Kepler’s three laws of planetary motion to Newton’s dif-
ferential calculus, the notion that the universe’s behavior
could be precisely predicted (given sufficiently accurate
data) remained central. Phenomena for which it is im-
possible to predict the behavior, such as Brownian mo-
tion, were attributed to insufficient information either
about initial conditions, the laws governing the systems’
evolution, or both. Doubt that the future may be inher-
ently unpredictable did not arise in the scientific commu-
nity until extreme sensitivity to initial conditions was dis-
covered by Henri Poincaré. When studying the n-body
problem wherein the famous two-body problem (where
behavior is determined by gravitational attraction) is ex-
tended to an arbitrary number of bodies, Poincaré found
that the set of possible orbits or phase space of the sys-
tem varied such that an arbitrarily small change in initial
conditions could have an immense impact on the behav-
ior of the system, making predictions of long term be-
havior inaccurate. Unlike linear systems wherein a small
change in initial conditions creates a small change in re-
sultant behavior on the same order of magnitude of the
initial change, nonlinear systems are capable of exhibit-

ing changes in resultant behavior many orders of magni-
tude greater than the small change in initial conditions.
Although far from a formal theory of chaos, and despite
going ignored for many years, this discovery of sensitiv-
ity to initial conditions in nonlinear systems was the first
major step in the development of chaos theory [2].

Sensitivity to initial conditions was rediscovered by
Lorenz in 1963 while he was attempting to simulate
weather patterns. He found that changing the round-
ing in his program from occurring after three digits to
six digits resulted in highly divergent results. Through
the use of iterative processes such as those used in com-
puting, these tiny differences are amplified, resulting in
long term behavior that can vary drastically. This am-
plification is what is famously referred to as the butterfly
effect, a name that comes from Lorenz’s talk in 1972 ti-
tled, “Predictability: does the flap of a butterfly’s wing
in Brazil set off a tornado in Texas?” Lorenz went on to
discover that sometimes there also exist attractors in the
phase spaces of chaotic systems: sets of chaotic solutions
that tend towards certain behaviors [2]. These attractors
were further studied and categorized by David Ruelle,
who went on to describe them mathematically as geo-
metric behaviors and tendencies in phase space. Further-
more, Ruelle found that these attractors could be fixed
points in phase space, where multiple trajectories would
tend towards the same long term behavior, limit cycles
and toruses, where certain periodic and quasi-periodic
cycles are tended towards, or strange attractors, which
have fractal structure and dimension, and were the type
discovered by Lorenz in his simulation of weather pat-
terns [3].

The contribution that unified individual chaotic phe-
nomena as a greater category of phenomena with certain
characteristic behaviors, making chaos theory a universal
theory instead of a collection of predictions, was made by
Mitchell Jay Feigenbaum in 1975. A major part of this
contribution was the scenario of period doubling, which
was based on the logistic map of biologist Robert May.
This period doubling is a route to chaos, wherein the
number of possible behaviors exhibited by the system bi-
furcates repeatedly, doubling the period of the system,
until the behavior of the system is chaotic and without
repetition (aperiodic). The development of the bifurca-
tion diagram of the logistic map allowed for a visualiza-
tion of an important route to chaos, applicable to a wide



range of natural phenomena, from population growth
to the swinging of a driven pendulum. Feigenbaum’s
biggest contribution to unifying chaotic phenomena was
the discovery of a mathematical constant fundamental to
chaotic systems, now known as Feigenbaum’s first con-
stant or Feigenbaum’s §. This constant is the ratio of the
values where successive bifurcations occur, and holds for
any system with a quadratic maxima in its logistic map,
which includes the majority of systems that occur in the
natural world. Feigenbaum went on to discover that in
the set of fractals known as the Mandelbrot set, Feigen-
baum’s constant is also the ratio of successive diameters
of the circles. These developments allowed Feigenbaum
to develop new cartographical methods to draw maps
computationally, and brought chaos theory up to a new
level of applicability and generality [4].

II. THEORY

Nonlinear systems are common in the real world, and
a very simple one is the driven RLD circuit, consisting of
a resistor, an inductor, and a diode connected to a sig-
nal generator. In this system, there are multiple degrees
of freedom due to the presence of the diode, which is a
non-linear element that controls thue direction in which
current can flow. This is because diodes have an asym-
metric conductivity due to being composed of two doped
semiconductors, one with an excess of negative charges
and one with an excess of positively charged holes. The
diode prevents current from traveling in one direction as
electrons are attracted to the positively charged holes,
filling them and creating a depletion zone in the middle,
while allowing the current to flow in the other direction as
electrons are repelled through the depletion zone, filling
holes on the other side. Because of this, the resistance
across the diode varies and depends non-linearly based

FIG. 1: Bifurcation diagram of the logistics map from the
Wikipedia page on Mitchell Feigenbaum [4]. The parameter
r is used instead of A.

on the positive and negative charge build up. This non-
linear element ensures nonlinear behavior in the circuit
[5].

Another key element of the circuit is the inductor,
which has an effective capacitance and creates a potential
the electrons must overcome that increases with amount
of the current passing through the inductor. At suffi-
ciently high frequencies, the inductor’s capacitance in-
terferes with its behavior, and the inductor becomes self-
resonant [7]. This resonance acts to amplify the signal,
making the period doubling of the non-linear RLD circuit
easier to observe and record.

The logistics map is a simple, nonlinear model of pop-
ulation with linear birth and quadratic death [6]. This
means that the maxima is quadratic, and that bifurca-
tions should occur with a ratio equal to Feigenbaum’s
constant, § = 4.6692.... If x, is the normalized popula-
tion of the n'" generation, then the normalized popula-
tion of the n + 1% generation is given by

Tnyl = )\xn(]- - xn)a (1)

where A is an input parameter that corresponds to a phys-
ical input. Varying A between zero and four yields long-
term behavior that can vary widely. By mapping the
possible long term behaviors of x as a function of ), it
is possible to create a bifurcation diagram of the logis-
tics map, which illustrates how period doubling occurs
at specific values of A, and can be seen in Fig. 1.

Feigenbaum’s delta is defined to be the ratio of distance
in X\ of successive bifurcations, and is given by

Apr1 — Ny

(2)

0 bligolo )\b+2 — )\b+1’
where A\p, Ap11, and A\pyo are the locations of successive
bifurcations. Note that § is a dimensionless quantity and
that as long as the units of Ay, Ap41, and A\pyo are the
same, they will cancel, making the equation extremely
versatile in describing a wide range of phenomena. As

FIG. 2: Diagram for a nonlinear, driven circuit from the Jr.
L.S. Manual [6].



FIG. 3: Plot of voltage versus time for the sine wave generated
by the signal generator (blue) compared to the signal from
the RLD circuit (red) at a frequency of 206 kHz, illustrating
period 1 behavior. A dashed box indicates a single period of
the signal from the RLD circuit (green).

the generations of the bifurcations b approach infinity,
the ratio approaches §. Thus, by recording at least three
values of A at which bifurcations occur, it is possible to
approximate Feigenbaum’s constant ¢ by taking it to be

AN
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with the approximation becoming asymptotically more
accurate for later bifurcations.

III. PROCEDURE

In order to create a nonlinear, driven circuit, a 100 uH
inductor, a diode, and a 3.9 () resistor were attached to
a grounded signal generator, which can be seen in Fig.
2. In order to view the periodicity of the circuit, this
was in turn attached to a oscilloscope. A direct input
from the signal generator was also attached to the oscil-
loscope, so the circuit’s behavior could be compared to
a consistent signal. By increasing the frequency of the
signal generator while holding the voltage constant, the
periodicity of the circuit changed, exhibiting period dou-
bling until it was indistinguishable from random noise
and was truly chaotic. To determine at what frequencies
the period doubling was occurring, the signal from the
circuit was observed both as a waveform (versus time)
and in phase space (versus the sine wave from the signal
generator). The phase space plot is more useful for deter-
mining when period doubling occurred as the difference
was more distinct visually.

FIG. 4: Plot of voltage versus time for the sine wave generated
by the signal generator (blue) compared to the signal from
the RLD circuit (red) at a frequency of 207 kHz, illustrating
period 2 behavior. A dashed box indicates a single period of
the signal from the RLD circuit (green).

IV. RESULTS & ANALYSIS

The period doubling route to chaos was observed for
the driven RLD circuit, through increasing the frequency
of the signal generator from 100 kHz to 700 kHz while
holding the voltage constant at 14 V. This resulted in
observable bifurcations through the period doubling four
times before the system became chaotic. The highest fre-
quency found with period 1 in the first period-doubling
regime was 206 kHz, and a comparison of the signal from
the signal generator to that of the RLD circuit can be
seen in Fig. 3. Increasing the frequency by a single kHz
to 207 kHz drastically changed the behavior of the sys-
tem, making it suddenly period 2, as can be seen in Fig.
4. This extreme sensitivity to small changes in initial

FIG. 5: Plot of voltage versus time for the sine wave generated
by the signal generator (blue) compared to the signal from
the RLD circuit (red) at a frequency of 393 kHz, illustrating
period 4 behavior. A dashed box indicates a single period of
the signal from the RLD circuit (green).



FIG. 6: Plot of voltage versus time for the sine wave generated
by the signal generator (blue) compared to the signal from
the RLD circuit (red) at a frequency of 425 kHz, illustrating
period 8 behavior. A dashed box indicates a single period of
the signal from the RLD circuit (green).

conditions is characteristic of chaotic systems. The next
bifurcation occurred at a frequency of 393 kHz, result-
ing in period 4 behavior which can be seen in Fig. 5.
This behavior bifurcated again at 425 kHz to period 8
behavior, which can be seen in Fig. 6. The final visible
bifurcation occurred at a frequency of 431 kHz, resulting
in period 16 behavior which can be seen in Fig. 7. Sub-
sequent bifurcations yielded behavior indiscernible from
chaos, as can be seen in Fig. 8 for a frequency of 472
kHz. In this plot, there is no visible repeating pattern
to the behavior of the RLD circuit, indicating that its
behavior is truly chaotic.

Note that at all frequencies there are visible inconsis-
tencies in the amplitude of the sine wave generated by
the function generator, which may have been a source of
error. Due to the period increasing by multiples of two,

FIG. 7: Plot of voltage versus time for the sine wave generated
by the signal generator (blue) compared to the signal from
the RLD circuit (red) at a frequency of 431 kHz, illustrating
period 16 behavior. A dashed box indicates a single period of
the signal from the RLD circuit (green).

there existed regions where the period of the circuit was
twice or four times that of the sine wave but none where
it was three times that of the sine wave. Further increas-
ing the frequency through the chaotic region eventually
resulted in a non-chaotic region, wherein the period dou-
bling behavior eventually started anew.

Using Eq. 3 and the measured frequencies at which
bifurcations occurred, Feigenbaum’s constant was calcu-
lated to be § = 4.6 £ 0.3. Because the period sixteen
bifurcation was observed and the frequency at which it
occurred was recorded, it was possible to compare two
approximations of Feigenbaum’s constant to see if they
were approaching the known value as b,, increased, as is
suggested by Eq. 2. From the first through third bi-
furcation using Eq. 3, Feigenbaum’s constant was calcu-
lated to be § = 7.6, and from the second through fourth
bifurcation using the same equation, Feigenbaum’s con-
stant was calculated to be § = 4.9. This second value
was substantially closer to the known value of 4.6692. ..
and indicates that it is possible that the ratio of bifurca-
tions approaches Feigenbaum’s constant asymptotically
as b, — oo, but significantly more bifurcations would
need to be recorded to more substantially support this
theoretical prediction.

V. CONCLUSIONS

The transition from normal periodic behavior to chaos
through period doubling was observed in a driven RLD
circuit by varying the parameter of frequency of the forc-
ing function generator. By increasing the frequency with
a constant voltage and recording where the period dou-
blings or bifurcations occurred, Feigenbaum’s constant
was found to be § = 4.6 & 0.3, which is within 1.5%
of the known value of 4.6692.... The theoretically pre-
dicted approaching of the actual value of Feigenbaum’s
constant was observed for two calculations of §, but more
bifurcations would need to have been observed before

FIG. 8: Plot of voltage versus time for the sine wave generated
by the signal generator (blue) compared to the signal from
the RLD circuit (red) at a frequency of 472 kHz, illustrating
chaotic behavior.



the system transitioned to chaos to show that the ap-
proaching of 4.6692 ... was truly asymptotic. Nonethe-
less, this result supports the theoretical predictions of
Eq. 2, along with the experimentally determined value
for § of 4.6 +0.3. In future iterations of this experiment,
an oscilloscope should be used with a larger display and
higher resolution, as this may allow for observing bifur-
cations beyond the fifth, allowing for better verification
of the asymptotic approaching of the approximation of
0 towards the true value Feigenbaum’s constant. Addi-
tionally, it would be smart to implement a simulation of
the RLD circuit in the analysis of chaos, as it would al-
low for quick production of bifurcation diagrams specific
to the experimental setup, and would have been a nice
qualitative means of analyzing the period doubling route
to chaos. It would also be wise to determine the source
of the slight variations in the amplitude of the sine wave

produced by the signal generator, which might lay in the
connections between the signal generator and the oscillo-
scope or might be internal to the signal generator itself.
If the function generator was producing oscillations of
varying amplitude, this would definitely throw off results,
and would be testable by running the function generator
without the circuit and measuring the output voltage,
looking for inconsistencies in the sine wave produced. If
this is the case, then despite calculating Feigenbaum’s
constant with high accuracy, it is undoubtable that the
behavior observed was changed by this variation in what
should be a uniform sine wave. After all, the characteris-
tic feature of chaotic systems is high-sensitivity to initial
conditions, and unaccounted variation in the forcing fre-
quency or amplitude (voltage) would change long-term
behavior in a manner that may be impossible to repro-
duce in later experiments.
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