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The e↵ect of the spin-orbit interaction on the wave function of a low energy electron traveling
through a cylindrical potential was explored using perturbation theory. The equations of the first
order corrections to the wave functions |nm�i and wave propagation constants �n |m| due to the
the spin-orbit interaction were determined for the electron. The form of the unperturbed solution
was found to fit that of the Bessel equation. Non-degenerate perturbation theory was successfully
used to calculate the first order perturbations |nm�i1 to the wave functions due to the spin-orbit
interaction.

I. INTRODUCTION

The solutions for the wave function of an electron in
a spherically symmetric potential (or known by some as
the hydrogen atom), have been known for a good part
of the twentieth century. Surprisingly, the solutions cor-
responding to an electron in a cylindrically symmetric
potential are not as well known. An example of a cylin-
drically symmetric potential for an electron could be a
very thin wire or a carbon nanotube such as rolled up
graphene. One problem with this system is that its com-
plexity hampers our ability to solve for exact solutions,
which is why an approximation method such as pertur-
bation theory can be used to calculate the final solution.
Perturbation theory can be thought of as a tool similar to
spectral decomposition in linear algebra or Taylor series
in introductory calculus – it approximates solutions to a
system to an arbitrary order of precision k, which in this
paper is one.

One pitfall of the Schrödinger-Pauli equation is that
it ignores the small changes or “corrections” to the wave
function due to relativistic mass increase, the zitterbwe-
gung, and the spin-orbit interaction. The first of these
e↵ects is well understood as the relativistic mass in-
crease of the electron as it approaches the speed of light
[1]. The second term, zitterbewegung, first proposed by
Schrödinger [2] and first computed by Darwin [3], is Ger-
man for “trembling motion” on the order of the reduced
Compton wavelength �c. The third and final term rep-
resents the interplay between the electron spin angular
momentum and orbital angular momentum [4], which is
what we will focus on in this paper.

II. THEORY

The overarching goal of this paper is to calculate the
allowed perturbed wave propagation constants �0 due to
spin-orbit interaction and to determine the perturbed
wave functions  0 that result from these constants. The
Schrödinger-Pauli equation in cylindrical coordinates is

Ĥ0 0

! n |m|�(⇢,�, z, t) = E! 
0

! n |m|�(⇢,�, z, t), (1)

where  0

n |m|�(⇢,�, z, t) is the unperturbed wave function
in cylindrical coordinates and En |m| is the energy associ-
ated with the angular frequency ! by E! = ~!n |m| where
~ is reduced Planck’s constant. “Unperturbed” in this
case means that the wave function does not yet account
for the relativistic/zitterbewegung/spin-orbit corrections.
It is important to note that, throughout this paper, the
superscripts 0 and 1 are not powers but are orders. In
this system, the eigenvalues are the wave propagation
constants �0

n |m|, given by �0

n |m| = ~/p̂z, where p̂z is the
azimuthal component of the momentum. The nature of
�0

n |m| is the same as that of k (spring constant), or any
other wave propagation constant. The nth energy state
is n, the azimuthal orbital angular momentum quantum
number is m, and the spin angular momentum quantum
number (or “spin”) is �. In this project, the main contri-
butions to the perturbation come from m and �, hence
the name “spin-orbit interaction.” The angular compo-
nent is � and the azimuthal component is z. The operator
Ĥ0 of the unperturbed state can be written

Ĥ0 = mc2 +
p̂2

2m
� eV (⇢), (2)

where p̂ = �i~r is the momentum operator, r2 = @2x +
@2y + @2z is the gradient/Laplacian, m is the mass of the
electron, e is the charge of the electron, and V (⇢) is the
potential at a normalized radius ⇢ = r/a. Here, r is
the radial distance and a is the radius of the wave-guide
(or the “cylinder”). This non-dimensionalizes the radial
direction such that ⇢ is between zero and one within the
cylinder and greater than one outside, which is something
that proves to be useful throughout the calculations.
Since energy is given by E0 = ~!, we can set ! as

an experimental parameter. This means that for a given
electron, we have a known ! because we chose it. Thus,
! can be eliminated from the subscript of  0. Using
separation of variables, the unperturbed wave function
can be rewritten as

 0

nm�(⇢,�, z, t) =  0

nm(⇢,�)ei(�
0
n |m|z�!t)ê�, (3)

where �0

n |m| is the wave propagation constant. Noting
that the Laplacian is comprised of a sum of squares of
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derivatives (which are hidden in Ĥ0), taking the z deriva-
tive of the wave function twice pulls down a factor of
�(�0

n |m|)
2 times the same wave function, making �0

n |m|
a handy parameter of the wave function’s behavior as
it travels through the potential. To make the notation
more convenient, we set (�0

n |m|)
2 = B0

n |m|. Furthermore,
since this quantity is proportional to the wave function’s
azimuthal momentum, it is a good indicator of the wave
front’s speed down the tube. The function of the spin is
simply to an add a two-ness to the system.

Multiplying both sides of Eq. 1 by �2m/~2 produces
eigenvalues B0

n |m|, making the equation fit the form of a

Bessel equation [Appendix A]. The two solutions to this
equation are called Bessel functions, Bessel J and Bessel
K. This imposes a boundary condition equation,

Un |m|J|m|+1

(Un |m|)

J|m|(Un |m|)
=

q
R2 � U2

n |m|K|m|+1

(
q

R2 � U2

n |m|)

K|m|(
q
R2 � U2

n |m|)
, (4)

where Un |m| = a
q

k2(0)�B0

n |m| and the experimental

parameter R = (a/�c)
p
2�, and �c = ~/(mc) is the re-

duced Compton wavelength. The constant k(0) is given
by

k(0) =
2

�2c

~!
mc2

. (5)

The unperturbed wave function can now be expressed
as

 0

nm�(⇢,�, z, t) =
N

a
Z|m|(Un |m|⇢)e

im�ei(�
0
n |m|z�!t)ê�,

(6)
where Z|m|(Un |m|⇢) is the general form of the Bessel J
and Bessel K functions, since we do not yet know what
⇢ the function will be evaluated at.

Now that we have a workable form of the unperturbed
wave function, we can focus on the bigger picture of the
paper. The actual perturbed Hamiltonian for the system
is given,

Ĥ = Ĥ0 + ĤRel + ĤDar + ĤSO, (7)

where Ĥ0 is the original unperturbed Hamiltonian, ĤRel

is the perturbation to the Hamiltonian due to relativistic
e↵ects, ĤDar is the perturbation to the Hamiltonian due
to zitterbewegung, and ĤSO is the perturbation to the
Hamiltonian due to the spin-orbit interaction. The last
of these perturbations is given by

ĤSO =
e

2m2c2
Ŝ · (E⇥ p̂), (8)

where Ŝ ⌘ (~/2)~̂� is the spin vector operator of 2 ⇥ 2
Pauli spin matrices, ~E is the vector representing the elec-
tric field of the electron, and p̂ ⌘ �i~r is the momentum
operator. Multiplying by �2m/~2 and doing some ma-
nipulation (shown in Appendix B), we get

ĤSO =
���0(⇢)

2a2⇢
(�̂z l̂z + ⇢N̂@z), (9)

where � is a constant representing the normalized height
of the potential, �(⇢) is a dimensionless function that in-
creases monotonically from 0 to 1. The number operator
is given by N̂ ⌘ �̂

+

l̂� � �̂� l̂+, where �̂± and l̂± are the
raising and lowering operators of the z components of
spin and orbital angular momentum respectively.
From non-degenrate perturbation theory, we know

that perturbed energies E1

n and wave functions
��n1

↵
are

given by

E1

n =
⌦
n0

�� Ĥ 0
SO

��n0

↵
, (10)

and

��n1

↵
=
X

n0 6=n

hn0| Ĥ 0
SO |ni

E0

n � E0

n0
|n0i , (11)

where the primed quantum numbers represent all possi-
ble arbitrary quantum numbers up to n

max

. It is impor-
tant to note that these equations are for non-degenerate
perturbation theory, which does not work for our pur-
poses because unperturbed states with di↵ering quantum
numbers that can have the same B0

n |m| and the equation
would end up being divided by zero. Thus, we must use
degenerate perturbation theory, which generates a per-
turbation B1

n |m| as opposed to E1

n |m|. Because of this,
we get

B1

n |m| =
0hnm�| ĤSO |nm�i0 , (12)

and

|nm�i1 =
n
maxX

n0 6=n

m
maxX

m0
n

6=m
n

�
maxX

�0
n

6=�
n

0hn0 m0 �0| ĤSO |nm�i0

B0

n |m| �B0

n0 |m0|
|n0 m0 �0i ,

(13)

where the inner product is

0hn0 m0 �0| Ĥ 0 |nm�i0

=

Z
2⇡

0

Z 1

0

 0

n0 m0 �0
†ĤSO 

0

nm� rdrd�. (14)
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Evaluating the inner product in Eq. 12 yields the result

B1

n |m| =
�2�⇡

a2
N2

n |m|J
2

|m|(Un |m|1), (15)

which can be solved by inserting the calculated values of
Un |m|. The first order correction to �nm is approximated
by

�1

n |m| ⇡
1

2

B1

n |m|

�0

n |m|
,

for v<<c [6]. Knowing �1

n |m| allows us to determine the
perturbed allowed wave propagation constants corrected
to the first order, which are given by

�0
n |m| = �0

n |m| + �1

n |m|.

In its most abstract form, the inner product from Eq.
14 can be written as

hn0 m0 �0| ĤSO |nm�i =
D
n0 m0 �0

���

���

0

2a2⇢

✓
2�m

���nm�
E
0

+⇢@z
⇣���n, m�1, �+1

E
0

��,� 1
2
+
���n, m+1, ��1

E
0

��,+ 1
2

⌘◆�
,

which evaluates to

hn0 m0 �0| ĤSO |nm�i =
Z

2⇡

0

Z 1

0

Nn0 |m0|

a
Zn0 |m0|(Un0 |m0|⇢)e

�im0�e�i(�0
n

0 |m0|z�!t)ê†�0


� ��0

2a2⇢

✓
2�m

Nn |m|

a
Zn |m|(Un |m|⇢)e

im�ei(�
0
n |m|z�!t)ê�

+ ⇢@z

⇣Nn |m�1|

a
Zn |m�1|(Un |m�1|⇢)e

i(m�1)�ei(�
0
n |m�1|z�!t)ê�+1

��,� 1
2

+
Nn |m+1|

a
Zn |m+1|(Un |m+1|⇢)e

i(m+1)�ei(�
0
n |m+1|z�!t)ê��1

��,+ 1
2

⌘◆�
rdrd�, (16)

After extensive manipulation, Eq. 16 is found to be
equal to

hn0 m0 �0| ĤSO |nm�i = ��⇡
a2

Nn0 |m0|J|m0|(Un0 |m0|1)
h
2Nn |m|�mm0�� �0J|m|(Un |m|1)

+ iNn |m�1|�(m�1),m0�
+

1
2 �0�0

n |m�1|J|m�1|(Un |m�1|1)

+iNn |m+1|�|m+1|,m0�� 1
2 �0�0

n |m+1|J|m+1|(Un |m+1|)1)
i
.

Inserting this into Eq. 13 cancels the m and � sums
making the new equation for the first order perturbation
to the wave function,

|nm�i1 = ��⇡
a2

n
maxX

n0 6=n

"
2Nn0 |m|Nn |m|J|m|(Un0 |m|1)J|m|(Un |m|1)

B0

n |m| �B0

n0 |m|

���n0 m�
E

+
i��,+ 1

2
�0

n |m�1|Nn0 |m�1|Nn |m�1|J|m�1|(Un0 |m�1|1)J|m�1|(Un |m�1|1)

B0

n |m| �B0

n0 |m�1|

����n,
0 m� 1, +

1

2

�

+
i��,� 1

2
�0

n |m+1|Nn0 |m+1|Nn |m+1|J|m+1|(Un0 |m+1|1)J|m+1|(Un |m+1|1)

B0

n |m| �B0

n0 |m+1|

����n,
0 m+ 1, �1

2

�#
. (17)

Thus, we get a first order perturbation |nm�i1 by adding to the unperturbed wave function |nm�i0,

|nm�i0 = |nm�i0 + |nm�i1 . (18)
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FIG. 1: Perturbed and unperturbed wave functions - The
plot represents the probability of finding an electron along
the radial direction ⇢ from the center of the waveguide for
unperturbed and perturbed

��3, 2, � 1
2

↵
eigenstates.

FIG. 2: Di↵erence of the perturbed and unperturbed wave
functions - The plot represents the di↵erence of the perturbed
and unperturbed wave functions along the radial direction ⇢
from the center of the waveguide for unperturbed and per-
turbed

��6, 2, � 1
2

↵
eigenstates.

III. APPLICATION AND RESULTS

The electron waveguide parameter was chosen to be
R = 20 and ! = 3.88172⇥ 1016 Hz. The new perturbed
wave functions were generated by adding the small per-
turbations due to spin-orbit to the unperturbed wave
functions, as shown in Fig. 1. The plot is based on��3, 2, � 1

2

↵
perturbed and unperturbed eigenstates. The

perturbed eigenstate is just slightly di↵erent from the un-
perturbed one, as expected. The initial downward curve
in Fig. 2 indicates that the perturbed wave function is
just slightly larger than the unperturbed one. The sec-
ond part of the curve indicates exactly the opposite. This
can be thought of as a “breathing” change, where the ex-
pectation expands or contracts. In this particular case, it
means the the energy is pulled more towards the center of

the waveguide. For di↵erent values of n, the probabilities
of finding the electron at the origin were di↵erent.

IV. CONCLUSION

The e↵ect of the spin-orbit interaction on the wave
function of a low energy electron traveling through a
cylindrical potential calculated successfully. The form
of the unperturbed solution was found to fit that of the
Bessel equation. Unfortunately, not enough plots were
obtained due to bugs in the Mathematica code that mod-
eled the system. We hope to obtain more plots once the
code is fixed.
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Appendix A: Unperturbed Solutions

Substituting Eq. 2 into Eq. 1 and multiplying both
sides of the resulting equation by �2m/~2 produces

✓
�p̂2

~2 +
2m

~2 eV (⇢)

◆
 0

n |m|�(⇢,�, z, t)

=
�2m

~2 E
0

 0

n |m|�(⇢,�, z, t). (A1)

Here, we define the zero-point energy to be mc2 and
��(⇢) ⌘ �eV (⇢)/mc2 where � is the dimensionless nor-
malized di↵erence in potential at the radius and at the
center of the potential. Since p̂ = �i~r, we can rewrite
this to be p̂2 = �~2(@2x+@2y +@2z ) = �~2(r2

T +@2z ) where
r2

T is the transverse Laplacian. Using this and rearrang-
ing the equation produces

✓
r2

T +
2m

~2 E
0

� 2m2c2

~2 ��(⇢)

◆
 0

n |m|�(⇢,�, z, t)

= �@2z  0

n(⇢,�) e
i(�0

n |m|z�!t), (A2)

where the partial derivative brings down a factor of
�(�0

n |m|)
2 and makes a more condensed eigenvalue equa-

tion

⇥
r2

T + k2(⇢)
⇤
 0

n |m|�(⇢,�, z, t) = B0

n |m| 
0

n |m|�(⇢,�, z, t),
(A3)

making B0

n |m| the new eigenvalue of the equation with

k2(⇢) ⌘ 2

�2c

✓
~!
mc2

���(⇢)
◆
. (A4)

where � is the reduced Compton wavelength. We define
�(⇢) such that it is 0 at ⇢ = 0 and 1 at ⇢ = 1 so that, after
converting the transverse Laplacian to cylindrical Lapla-
cian and a good deal of manipulation, we can rewrite Eq.
A3 as

✓
@2⇢ +

1

⇢
@⇢ + U2

n |m|(⇢)�
m2

⇢2

◆
 n|m|(⇢) = 0, (A5)

where U2

n |m|(⇢) = a2[k2(⇢)�B0

n |m|] is found numerically
and the equation fits the form of the Bessel equation,
which has known solutions [10].

The physical boundary conditions limit these Bessel
functions to those that go to 0 at infinity, are continu-
ous and have a continuous derivative at ⇢ = 1. These
conditions impose the following equation that must be
satisfied

UJ|m|+1

(U)

J|m|(U)
=

p
R2 � U2K|m|+1

(
p
R2 � U2)

K|m|(
p
R2 � U2)

, (A6)

where U ⌘ a
q
k2(0)�B0

n |m| and R ⌘ (a/�)
p
2�. This

equation can be solved numerically using Mathematica
by picking values for !, a, and �, and generating a set of
values of Un |m|. After this, each B0

n |m| can be computed
by using the definition of Un |m|.

Appendix B: First-Order Perturbed Spin-Orbit
Hamiltonian

The perturbation to the Hamiltonian corresponding to
energy of an electron in a cylindrically symmetric poten-
tial is

Ĥ 0 = �
 

1

2mc2

✓
p̂2

2m

◆
2

+
e~2

8m2c2
r ·E� e

2m2c2
Ŝ · (E⇥ p̂)

!
,

(B1)
which makes the expression for the spin-orbit Hamilto-
nian

ĤSO =
e

2m2c2
Ŝ · (E⇥ p̂). (B2)

Multiplying both sides of Eq. B2 by �2m/~2 and
defining the zero point energy eV (0) = mc2 forces the
Hamiltonian to have the same units as B1

n |m|. This yields

ĤSO = �@r��(⇢)
�̂

2
·

r̂⇥ p̂

~

�
, (B3)

given that the momentum operator p̂ ⌘ �i~r, E =
�@r V (⇢)r̂, and ⇢ = r/a, where Ŝ is comprised of Pauli
spin matrices

�̂ =

2

4
�̂x

�̂y

�̂z

3

5

where

�̂x =


0 1
1 0

�
, �̂y =


0 �i
i 0

�
, and �̂z =


1 �0
0 �1

�
,

such that Ŝ = ~�̂/2. Using these matrices and evaluating
the dot and cross products in Eq. B3 gives the final form
of the spin-orbit Hamiltonian

ĤSO =
��0(⇢)

2a2⇢

⇣
�̂z ˆ̀z + ⇢N̂@z

⌘
, (B4)

where N̂ ⌘ �̂
+

l̂�� �̂� l̂+ is the number operator, �̂± and
l̂± are the raising and lowering operators of the z compo-
nents of spin and orbital angular momentum respectively.
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Appendix C: Evaluation of the Inner Product

Substituting in ĤSO for Ĥ 0 yields

hn0 m0 �0| ĤSO |nm�i =
D
n0 m0 �0

���

���

0

2a2⇢

✓
2�m

���nm�
E
0

+⇢@z
⇣���n, m�1, �+1

E
0

��,� 1
2
+
���n, m+1, ��1

E
0

��,+ 1
2

⌘◆�
,

Substituting in the explicit wave function for |nm�i0
as written in Eq. 6, and the transpose of this is 0hnm�|,
and pulling out constants yields a product of integrals of
the form

hn0 m0 �0| ĤSO |nm�i =
Z

2⇡

0

Z 1

0

Nn0 |m0|

a
Zn0 |m0|(Un0 |m0|⇢)e

�im0�e�i(�0
n

0 |m0|z�!t)ê†�0


� ��0

2a2⇢

✓
2�m

Nn |m|

a
Zn |m|(Un |m|⇢)e

im�ei(�
0
n |m|z�!t)ê�

+ ⇢@z

⇣Nn |m�1|

a
Zn |m�1|(Un |m�1|⇢)e

i(m�1)�ei(�
0
n |m�1|z�!t)ê�+1

��,� 1
2

+
Nn |m+1|

a
Zn |m+1|(Un |m+1|⇢)e

i(m+1)�ei(�
0
n |m+1|z�!t)ê��1

��,+ 1
2

⌘◆�
rdrd�, (C1)

It is much easier to tackle this equation if it is broken
up into three parts. After some simplification, the first
part becomes

A ⌘

��
a2

Z
2⇡

0

Z 1

0

�� �0 �mm0Nn0 |m0|Nn |m|Zn0 |m0|Zn |m|�
0d⇢ d�,

= ��2⇡

a2
�� �0 �mm0Nn0 |m0|Nn |m|J|m0|(Un0 |m0|1)J|m|(Un |m|1),

with the help of �0(⇢) turning into a Dirac delta for a
Heaviside Step Potential. The Dirac delta, �(⇢� 1), sim-
plifies all the ⇢ terms in the infinite integral to unity. A
factor of 2⇡ was pulled out from the definite � integral
since the variable itself was not present.

The second part,

B ⌘ � �i

2a2
���ê

†
�0 ê�+1

Nn0 |m0|Nn |m�1|�
0

n |m�1|
Z

2⇡

0

ei(�m0
+m�1)� d�

Z 1

0

Zn0 |m0|Zn |m�1|�
0⇢d⇢. (C2)

This part of the equation can be simplified by realizing
that the definite � integral evaluates to 2⇡ when m0 =

(m�1) and 0 when m0 6= (m�1), collapsing the integral
into 2⇡�

(m�1)m0 . Likewise, ê�+1

and ê†� can be replaced
with �

(�+1)�0 . As with part A, the �0(⇢) becomes a Dirac
delta that further simplifies Eq. C2 to,

B = ��⇡i
a2

�
+

1
2 ,�

0�
(m�1),m0Nn0 |m0|Nn |m�1|�

0

n |m�1|

J|m0|(Un0 |m0|1)J|m�1|(Un |m�1|1). (C3)

Similarly, the third part,

C ⌘ � �i

2a2
��+

ê†�0 ê��1

Nn0 |m0|Nn |m+1|�
0

n |m+1|
Z

2⇡

0

ei(�m0
+m+1)� d�

Z 1

0

Zn0 |m0|Zn |m+1|�
0⇢d⇢

evaluates to

C = ��⇡i
a2

�� 1
2 ,�

0�
(m+1),m0Nn0 |m0|Nn |m+1|�

0

n |m+1|

J|m0|(Un0 |m0|1)J|m+1|(Un |m+1|1). (C4)

Thus, adding up parts A, B, and C, we get
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0hn0 m0 �0| ĤSO |nm�i0 = ��2⇡

a2
�� �0 �mm0Nn0 |m0|Nn |m|J|m0|(Un0 |m0|1)J|m|(Un |m|1)

� �⇡i

a2
�
+

1
2 ,�

0�
(m�1),m0Nn0 |m0|Nn |m�1|�

0

n |m�1|J|m0|(Un0 |m0|1)J|m�1|(Un |m�1|1)

� �⇡i

a2
�� 1

2 ,�
0�

(m+1),m0Nn0 |m0|Nn |m+1|�
0

n |m+1|J|m0|(Un0 |m0|1)J|m+1|(Un |m+1|1). (C5)
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