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In this paper, a new approach to quantizing gravity is explored called Causal Dynamical Tri-
angulation (CDT). This paper talks very briefly about the theory necessary to build a computer
simulation to investigate Quantum Gravity with 2 spatial dimensions and 1 temporal dimension.
Furthermore, we have successfully built the initial structure of the universe and filled all of vacuum
spacetime in 3 dimensions with 3-simplices (tetrahedrons). The next immediate step is to investigate
CDT in 2+1 dimensions by performing combinatorial moves and anti moves along the topology of

spacetime.

I. INTRODUCTION

The challenge for physicists lies in developing theories
to better understand the behavior of the universe. Dur-
ing the 20th century, the discovery of general relativity
(GR) and quantum mechanics (QM) revolutionized our
understanding the universe. general relativity has suc-
cessfully explained the realm of the very massive. It ex-
plains that space and time is curved, and that curvature
is responsible for our perception of gravity. quantum me-
chanics has successfully provided physicists with explana-
tions at the small scale. QM tells us, among other things,
that something may exist in an indefinite state, and that
these uncertainties become very important when we try
to precisely measure very small objects. Although both
of these theories have been experimentally tested with in-
credible accuracy, the fundamental assumptions of these
theories seem to contradict each other. For most regions
of our universe, heavy masses are not concentrated into
a small enough region to warrant an explanation from
quantum mechanics and general relativity. As a result,
we deal with the physics in the quantum regime sepa-
rately from the gravity regime neglecting the effects of the
other regime. However, regions where quantum mechan-
ics and general relativity merge do exist and Quantum
Gravity (QG) is an attempt to merge quantum mechan-
ics to our notion of gravity.

Causal dynamical triangulation (CDT) developed by
Ambjgrn, Jurkiewicz and Loll is one of the most recent
proposed techniques to understand and quantize grav-
ity [1]. CDT is a conservative approach to quantizing
gravity that relies solely on ideas and techniques that
have already been known to physicists such as path inte-
grals, causality, simplicial manifolds, triangulation, etc.
The formulation of CDT, while being extremely straight-
forward, has yielded some important results- while space-
time is classical in four dimensions, it predicts a two
dimensional and nonclassical spacetime at the Planck
scale(~ 107%°m) [2].

This paper introduces and briefly describes the theory
of CDT and explains the initial triangulation of space-
time required for studying quantum gravity in a universe
with two spatial and one temporal dimensions.

II. THEORY

To fully understand the CDT approach, it is necessary
to first familiarize oneself with the basic concepts of Ein-
stein’s field equations, path integrals for an electron, and
what it means to triangulate spacetime. In this section
we will give a brief introduction to all these concepts and
will finally explain the CDT method.

A. General Relativity

In standard geometry, we deal with surfaces with only
spatial dimensions which involves applying the Rieman-
nian metric. For example, the Euclidean metric is an
example of such a metric that calculates the distance
between two points given by the Pythagorean formula.
However, in relativity we add a temporal dimension, set-
ting space and time on equal footing [3]. The line ele-
ment denotes an interval between two nearby points in
spacetime separated by timelike intervals dr and space-
like intervals do. In flat spacetime, we generalize the
Pythagorus theorem to obtain the line element [4]:
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where the Greek indices run from 0 to 3 and the repeated
indices represent an implied sum. Defining the basis for
an event in space time as a four dimensional contravariant
vector we have
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and in flat spacetime far from any stress or energy the
Minkowski metric g, is given by
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Using these transformation rules, we are able to define
a different basis called the covariant vector with lowered
indices as

T = G (2)

In general relativity, it is often required to change the
coordinate system to understand an event from a differ-
ent perspective. An example of this kind of change in
coordinate system can be seen in special relativity where
we apply the Lorentz tensor and perform what is called
the Lorentz transformation [5]. To get from a coordinate
system z# — z the element of infinitesimal change has
the form

=k, §z” (3)

where the comma represents a partial differentiation.
This convention is called the Einstein’s summation con-
vention [5]. Using the tools described above, we are able
to generalize the transformation. For example,

Psns = 2 5z 28 5 Ppag- (4)
Following Eddington’s theorem [5] any indexed quantity
that obeys this transformation rule described in Eq. 4 is
itself a tensor.

Next, we explore the curvature of a manifold. It is nec-
essary to develop tools to shift a vector along a manifold
while making sure that the vector is always parallel to
itself. For this purpose, we introduce a non tensor called
the Christoffel coefficients or connection coefficients that
account for the change in component for the transformed
vector. This technique is called parallel transport. The
details for shifting some arbitrary vector from position
x* — zx* + dz* and the derivation of the connection
coefficients can be found in [4]. The connection coeffi-
cients are non tensors that relate to the derivative of the
metric tensor and are defined as [5]
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Now, we are able to define a curvature tensor in terms of
the connection coefficients known as the Riemann curva-

ture tensor as [5]
RG,, =-15,,+15,1,,+1g,,—15.15,. (6)

We can contract the Riemann curvature tensor on the 15¢
and 4" indices to form the Ricci curvature tensor [5]

RS0 = Ray. (7)

Further contraction of the Ricci curvature tensor we ob-
tain the Ricci scalar curvature [5]

RS = R. (8)

In spacetime, we characterize the world line of a free
particle as a time geodesic. Furthermore, the geodesic
in curved spacetime is the straightest possible curve that
have stationery length and is derived as [5]:
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The geodesic equation is a direct consequence of space-
time being curved by matter. This forces to introduce the
stress energy momentum (SEM) tensor. Details of the
geodesic equation and SEM tensor can be found in [6].
The SEM tensor is a relativistic generalization of the en-
ergy density which is defined as [5]
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where PH is the four momentum vector and V is the
volume vector. With regard to the conservation of four
momentum and the principle of minimal coupling, it is
known that the SEM tensor is divergenceless [4]. The
Einstein field equation with regard to the SEM tensor
is [5]

R, — %g,“, + Agy = 87GT,, (11)
where A is the cosmological constant to account for the
accelerating size of the universe, the speed of light ¢ = 1.
We can write this in a more compact form by introducing
the Einstein tensor, G, which is also the trace reversed
Ricci tensor

G + Agpy = 87GT,,,. (12)

For this paper, we assume a vacuum universe and do
not take matter into account to obtain the vacuum field
equation [7]

G + Agyw = 0. (13)

We can also derive the vacuum field equation by taking
solving the Euler-Lagrange equations for the KEinstein-
Hilbert (EH) action. The EH action Sgg is the action



for spacetime in general relativity and is defined by [2]

S = / dey/—g(A—2R)  (14)

where g = det[g,,|. In our case, we only deal with two
spatial dimensions and one time dimension so we can
rewrite the EH action as

1

where we diagonalize the metric over all 3-dimensional
simplicial manifolds to get the invariant area element,

dA = /=1t dt\/Gze AT\ /Gyy dy = /=9 d3z.

B. Quantum Mechanics

The famous double-slit experiment first introduced by
Thomas Young in 1803 involves passing a beam of light
through two narrow parallel slits (as shown in Fig. 1—a)
to produce an interference pattern on the screen which
demonstrated the wave-nature of light, this phenomenon
along with the photoelectric effect is widely known as
the wave-particle duality. Now, if we keep on adding
additional slits to the same screen we arrive at the sit-
uation shown in Fig. 1—b. Furthermore, if we keep on
adding more screens, we arrive at the situation shown
in Fig. 1—c and by adding infinitely many screens and
slits we are eventually left with empty space as shown in
Fig. 1-d [8].

A photon passing through a double slit from some ar-
bitrary point a has a probability of arriving at some point
b that is characterized by

Pla — b] = |E[a — b]|? (16)
where the normalized electric field amplitude is given by
Ela — b] = el 4 il (17)

where ¢ = [w dt [§]
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FIG. 1: Schematic of the evolution of infinitely many screens
with infinitely many slits that demonstrate that an electron
has infinitely many paths to reach from point a to point b.
Figure adapted from [8].

for the slits, 1 and 2. With regard to waveparticle
duality, we are able to replace a massless photon with a
relatively massive electron. Passing the electron through
the double slit, Feynman showed that the probability for
a electron starting at a to reach b was

Pla — b] = | Ala — b]|? (18)

with the probability amplitude A for the two slits, 1 and
2 is given by

Ala — b) = el 4 g9l (19)

where the phase accumulated by the electron is

L S
@—/wdt—/ﬁdt—ﬁ.

For a free particle, the potential energy V is zero and
hence the Lagrangian L is equal to the kinetic energy T,
L =T -V =T1T. Here, we can see that the action S in
quantum mechanic is analogous to the Lagrangian L in
classical mechanics [8].

As the realm of QM is a linear vector space, it fol-
lows the superposition principle. For a screen with two
slits, the probability amplitude for the electron to go from
point a to b is simply the sum of the two amplitudes [8]

A=A + A, (20)

where A; and As are the probability amplitudes for slits
1 and 2 in Fig. 11 respectively. Similarly, for a system
with ¢ screens and j slits for each screen the probability
amplitude for the electron to go from point a to b is

A= ZAi’j = Z Apath~ (21)
2

allpaths

Here, we have developed that there are infinitely many
paths between a and b and the probability amplitude
considers all possible paths. We now define the Feynman
propagator for a quantum system to be the probability
amplitude between two points in spacetime (¢,,a) and
(ty,b) as [7, 9]

Gla, b;ta, te] = (alU[ta, ts] |b) (22)

where U[t,, ] = e~ (tr—ta) is the unitary time evolution
operator and H is the Hamiltonian of the system. A
rigorous derivation for the unitary operation is beyond
the scope of this paper and can be found in [7].
Combining Eq. 21 and Eq. 22 for the total amplitude we
get a formal expression for the Feynman propagator to
go from point a to b as [8]

tp
A[a — b] = g[a, b;tantb] = /Dx[t]ezs[x[t”/h (23)
ta



FIG. 2: Figure shows the side by side comparison of the
path integral from QM with the gravitational path integral
from QG in one temporal and one spatial dimension. Figure
adapted from [3].

where Dz[t] is a path measure that accounts for all possi-
ble paths, S is the action and % is the Planck’s constant.
The integral in Eq. 23 which gives the sum over all paths
is called the path integral.

Analogous to the path integral for quantum mechanics,
we introduce a gravitational path integral for quantum
gravity (QG). As shown in Fig. 2, the gravitational path
integral generalizes the path integral from QM based on
the principle that QG should involve all metrics in space-
time, and hence is described as a sum over all possible
geometries [7].

C. Wick Rotation

Wick rotation is a method that is used to solve a prob-
lem in the Minkowski spacetime by transforming it to a
simpler problem in Euclidean space. This transformation
involves substituting an complex-number variable for a
real-number variable [10]. The concept of Wick rotation
originates from the residue theorem in complex analysis
that states that the integral of an analytic function f[z]
under a closed path in the complex plane is zero [3].
Notice that the path integral described in Eq. 23 is of the
form e which is a sinusoidal function and the integral
does not converge. By rotating the contour by 7/2 radi-
ans counterclockwise as shown in Fig. 3, we notice that
the function goes to zero more rapidly as it gets closer to
infinity, more explicitly [7]

0= ?{f[z]dZZ 7f flzldz + 7f flzld=. (24)
—'inf —iinf

Next, by changing the integral axes, x — z and z — iy
we get [7]

inf 7 inf
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FIG. 3: The integral counter (left) and adding a complex
factor (right) in the complex plane allows for Wick rotation.
Figure adapted from [3].

By applying this Wick rotation we convert the stan-
dard Einstein-Hilbert action into the Einstein-Hilbert ac-
tion for a Euclidean space. This means that the action
in Eq. 14 now becomes [7],

SEn dA (A —2R) (26)

i
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where dA is as defined above. This causes the probability
amplitude from Eq. 23 to transform as follows [3]

A= /Dgeis — /DgeSE =7 (27)

where Z is the partition function. Notice here that
the Wick rotation transforms the Feynman phase factor

e from Minkowski spacetime to the Boltzmann weight
iS5 — o—iSp|

D. Causal vs. Euclidean Dynamical Triangulation

Causal dynamical triangulation is a non-perturbative
attempt to quantize gravity without adding any addi-
tional structure. It does not describe the dynamics of
gravity as linear perturbation around some preferred
background metric [2]. With regard to the known prin-
ciples from quantum mechanics and general relativity,
CDT utilizes causally triangulated geometries. In dy-
namical triangulation, the edge lengths are fixed and the
path integral from Eq. 23 is represented as a sum over tri-
angulations. Despite its discrete foundation, CDT does
not necessarily imply that spacetime itself is discrete [1].
The CDT approach arose as a modication of its prede-
cessor, Euclidean dynamical triangulations (EDT) where
no global foliation of spacetime was imposed. In EDT,
discrete geometries are made up of Euclidean simplical
building blocks that only have space-like edges and al-
lowed all possible triangulations of spacetime [11]. This
lack of a foliated structure in EDT resulted in a failure
to reproduce a 4-dimensional classical universe. CDT
tackles this problem by implementing the Lorentzian
structure of spacetime to include space-like and time-like
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FIG. 4: Figure (adapted from [8]) of a light cone in 141
dimensional and 2+1 dimensional space times. The future
light cone is pointing right.

edges. CDT has already had great success by predict-
ing that the universe is 1 + 1 dimensional at the Plank
scale [3].

CDT assumes a global time slicing, where each time
slice is set up such that the metric exists and the volume
is finite [2]. Asshown in Fig. 4, in a Minkowski spacetime,
the worldline of any object enters every event via the
pastlight cone and exits via the future light cone. This
creates a foliation in spacetime, which is intrinsic in CDT.
The foliated or sliced structure of spacetime is imple-
mented by using Minkowski triangles. Asshown in Fig. 5,
unlike Euclidean triangles, the Minkowski triangles have
two directed timelike edges and one spacelike edge. Each
Minkowski triangle has the metric ds? = —dt?+dz?. Due
to the difference in the metric, the area of the Euclidean
triangle with length I was noticed to be 1?v/3/4 and the
area of the Minkowski triangle with length [ was 12v/5/4.
The details of this calculation can be found in [3]. In tri-
angulation, the Minkowski triangles are equilateral and
preserve the total area. CDT uses dynamical triangula-
tion with a foliated structure by gluing time-like edges in
the same direction. The microscopic causality inherent
in the resulting spacetime foliation ensures macroscopic
spacetime as we know it. This implies that causality is
not only a global property of spacetime, but it is also
local [2].

E. Regge Calculus

Regge calculus was first developed by Tullio Regge
where he introduced the idea of approximating space-
time with a piecewise linear manifold, a process called
triangulation. Regge calculus offers a method to work in
GR without using symmetry arguments and is ideal for
numerical simulations. It is an inherently discrete formu-
lation of complex topologies in GR [12]. Each building
block of the new manifold is called a simplex, which is
an n—dimensional generalization of the notion of a point,
a line, a triangle or tetrahedron as shown in Fig. 6. In
2+1 dimensions, a manifold can be approximated using
a number of 3-simplicies or tetrahedrons. This process
of approximating spacetime produces a ‘Connection Ma-
trix’ which contains all the data on the edges about the

= L=

FIG. 5: Figure shows the Minkowski (right) and Euclidean
(left) Triangle. Figure adapted from [3].

dx = {/2 de =1/2

geometry and topology of our spacetime [12]. Following
this information stored triangulation of a smooth mani-
fold can be obtained by gluing together these simplices
in an appropriate manner. These tetrahedrons are lo-
cally flat and indeed this kind of discretization leaves
gaps in the approximation of the spacetime; Regge calls
these gaps ‘hinges’ or ‘bones’. The angle of curvature
in the hinge, called the deficit angle € is illustrated in
Fig. 7. A positive decit angle represents positive curva-
ture and a negative decit angle stands for negative cur-
vature [12]. The sum over deficit angles, weighted by the
volume V' each hinge is proportional to the integral of the
Ricci scalar over a surface. We are now able to express
the Einstein-Hilbert action as a function of just the edge
lengths of making appropriate substitutions [2]

/ d"zy/—gR =2 e, (28a)
€T
/ d"zy/—g —2) Vi (28b)
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where T is the triangulation where the curvature is lo-
cated. Using the tools recently developed, we can sim-
plify the Wick rotated Euclidean action from Eq. 26 as

SEH%SRZ%ZV%Q—ﬁ Z

sitmplicies

‘/simplea:
(29)

where 4 is the number of hinges in the curvature. The
path integral in Eq. 23 over all unique field configura-
tions is then taken to be a sum over all triangulations T'
weighted by Sk from above to get

Z:/DgeZ B
T Cr

where 1/Cp is the symmetry factor with Cp begin the or-
der of the homomorphism group for a triangulation T [2].

(30)
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FIG. 6: The n-simplices used in the triangulation of spcae-
time.

FIG. 7: Schematics of 2D and 3D triangulated manifold (a)
has a curvature that is situated on vertices while on a 3D
triangulated manifold (b) the curvature is concentrated on
edges (figures not to scale).

III. FILLING SPACETIME WITH
TETRAHEDRONS

The building blocks of a 3 dimensional CDT are 3-
simplices that span adjacent time slices. A timelike (p, q)
n—simplex, where p+¢q = n+ 1, has p points on the ear-
lier time slice and ¢ points the adjacent later time slice.
However in a spacelike simplex all points must be on the
same slice [2]. The tetrahedrons in CDT inherit causality
as a result of time slicing. To preserve the causal struc-
ture, CDT does not allow topology changes of the time
slices. The global causal structure for any triangulated
geometry with local causality is obtained by gluing these
3-simplicies in an appropriate way such that their space-
like edges are all of length squared a? and timelike edges
have same length —va? where v is an asymmetry fac-
tor that accounts for the distance between timelike and
spacelike geodesics. Following these rules, there can only
be three types of basic tetrahedrons, namely (1, 3), (2,2)
and (3,1) as illustrated by Fig. 8. As mentioned earlier,
these tetrahedrons are classified by the number of points
it has in the adjacent spatial slices. For example, a (3,1)
tetrahedron has 3 vertices at time tg and 1 vertex at time
t.

In 241 CDT we take our standard = and y axes to be
our spatial axes and the standard z axis as our temporal
axis. In the experimental section in three dimensions, it

FIG. 8: Figure shows the three types of basic building blocks
in 3 dimensions.

is necessary to carefully tile tetrahedrons to fill spacetime
in such a way that there are no gaps, and that all edges
of the tetrahedrons are aligned correctly to the adjacent
one. To make sure that none of these rules are violated,
we followed a face centered cubic (FCC) lattice structure
where we mapped vectors from the center of one lattice
point to another to define the initial basis vectors. The
three basis vectors used are of unit length and were taken
to be

@ = (1, 0, 0)
<; V32, 0>
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The tetrahedron where the edges are the basis vectors is
shown in Fig. 9. Once the basis vectors are defined, we
merely have to translate vectors in order to fill each time
slice.

To make sure that the tetrahedrons are glued along the
edges, we followed the FCC lattice ABA structure to
fill adjacent time slices. Once the first layer was com-
pleted, the mirror image of the layer was constructed in
the +t direction. The initial lattice structure was drawn
in Mathematica [13].

For numerical simulations of the discrete Lorentzian
model it is required to make ‘moves’ and ‘anti-moves’,
that are a set of basic manipulation of a triangulation
which results in a different triangulation [14]. The details
of the moves in three dimensions are beyond the scope of
this paper and is fully explained in [14]. Keeping in mind
that these moves have to be made in the future, it is re-
quired that we build a computer simulation to perform
these numerical simulations. In this paper, we only deal
with the initial structure of our universe. The simplices
in the initial universe was drawn using Objective-C in
Xcode 4.4.1. Since each triangulated spacetime is glued
to a set of tetrahedra in a specific manner, it was nec-
essary to store the data for each tetrahedron. For this
reason, we initialized a hash table to store information
about the current state for each tetrahedron. Each tetra-
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FIG. 9: Figure shows a Type 3 tetrahedron with the basis
vectors. The basis vectors, @, is the red arrow, 2 is the
green arrow and s is the blue arrow.

hedron has a unique key, and the hash table stores infor-
mation about its vertices and the key for the neighboring
tetrahedra. The structure of the hash table is

( key, type, t, vl, v2, v3, v4),

where key is the unique id for the tetrahedron,type is the
type of tetrahedron (declared as integer to store either 1,
2 or 3), t is the earlier time slice (min[ty,t]), v1,v2,v3
and v4 are declared as a structure to store the x, y
and z coordinates for each vertex. For example, the list
(21,2,4,0.0,0.0,0.0,1.0,0.0,0.0,0.5,0.8,0.0,0.5,0.3,0.8)
represents a type 2 tetrahedron with id 21 resting on
the time slice 4 with vertices v1 = (0.0, 0.0, 0.0),
v2 = (1.0, 0.0, 0.0), v3 = (0.5, 0.8, 0.0) and
v4 = (0.5, 0.3, 0.8).

IV. CONCLUSION AND FUTURE WORK

Here we have just set up the initial structure of the
universe. The next immediate step in this project is to
write an algorithm to perform the combinatorial moves
and anti-moves in 2+1 dimensions along the topology
of spacetime. While writing an algorithm to perform
these moves, it is required to account for the time foli-
ated structure of our universe. Furthermore, it could be
worth minimizing the deficit angle to get more accurate
results by either increasing the number of tetrahedrons
or decreasing the length of the edges. These are just a
few things that we have yet to build and explore. Once
the program is complete, the next step would be to plug
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FIG. 10: Screenshot of the program written in Xcode that

draws tetrahedrons to fill spacetime. The program allows
the user to change the dimension of the lattice structure, the
depth and perspective of the view as well as the opacity. The
user also has the option to draw only type 1, type 2 or type
3 tetrahedrons as well as change the color for each.

in values for the cosmological constant and the Planck
constant to study how much fluctuations would be seen
in order to understand higher dimensions.
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