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This research is an attempt to further develop cloaking through the stress energy momentum that
has been studied in College of Wooster physics department, by specifically exploring the behaviors
of swirling space-time. A program was developed, which calculates a specific space-time geometry
according to the given metric. The strength of this program is that it accepts any diagonally sym-
metric metric. However, there is the downfall of such general input, as it only provides mathematical
boundaries, disregarding physical boundaries. Moreover, the visualizations that were generated have
their limits in specifying what exactly is happening. Randomly generated metrics were put through
the programs, which lead to a very unusual space-time curvature. However, unfortunately, attempts
to further understand only lead us to incomprehensible results.

I. INTRODUCTION

Sir Isaac Newton developed the law of universal grav-
itation,

, (1)

in the 17th century, in order to better understand the
motion triggered by the attraction between two masses.
His law was successful in describing the motion at low
speeds. However, his theory of gravitation is not able to
explain the source of such attraction nor other general
relativistic effects.

Studying electromagnetism, Albert Einstein realized
that the Newtonian mechanics clashed with the laws of
the electromagnetic fields [2]. He developed the special
theory of relativity, which was expanded to explain grav-
itational fields. By 1915, Albert Einstein developed a
theory of gravity named general relativity, taking another
step to truly understanding the source of gravity and its
effects. Einstein’s relativity has been congruent to the
vast majority of recent discoveries and experiments and
has been used to further develop the theories of natu-
ral phenomena. The conjoining of general relativity and
electromagnetism lead physicists to develop the relativis-
tic quantum field theory in mid 20th century.

In this experiment, I was able to use general relativ-
ity to create a program that will generate visualizations
of manipulated space times. Through the program, el-
ements that develops the geometry of the space-time is
manipulated as an attempt to better understand the role
of each element in determining the space-time curvature.

II. THEORY
A. Coordinates

The notation for the space-time coordinates in general
relativity can be reduced to x*, where
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FIG. 1: Visualization of a parallel vector transportation on
a curved surface. Starting from point A, the vector is trans-
ported to point N, B, then back to A. The vector does not
match after the transportation around the curved surface, as
it would on a flat surface.

The Greek letter indices can be expanded from zero
to three, where each number represents a variable of a
dimension; z" is the time dimension, and z!, 22, and z3

are the spatial dimensions. The notation applies similarly



for the spherical coordinates, as
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B. The Metric

Neither the length nor time intervals are absolute in
general relativity, but there are invariant constants that
do not depend on the reference frame [1]. The quantity
of these invariants are four-dimensional “distance” sepa-
ration. An invariant section of a space time is denoted
by do. The Riemannian metric allows us to create the
connection, which is quadratic[l], as
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g"” implies summation between the repeated indices on
following pair of dz. Often, even if the Einstein sum-
mation notation is not specified, such summations over
repeated indices are always implied. In rectangular co-
ordinates, the flat space time metric is
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which is often called the Minkowski metric; in spherical
coordinates, the flat space-time metric is
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The time dimension have the opposite sign of the spatial
dimensions. In this particular convention, the time di-
mension is negative, and the spatial dimensions are pos-
itive. Note that

9" =g, (7)

requiring that the metric must be symmetric along the
diagonal elements.

C. Connection & Curvature

In curved space-time, the components of a vector does
not retain as shown in Fig. 1. The connection coefficient
or the Riemannian metric, I', allow us to calculate the
change in components of a vector. A comma signifies a
differentiation in respect to the index that follows, such
as

=4 0
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The connection coefficient is given as

1
Dsr = 5 Guve + o = G- (9)
Indices can be raised or lowered using the metric, as
9" Tave =T . (10)

D. Ricci Tensor and the Einstein Curvature Tensor

The Ricci Curvature tensor, R, allows us to measure
the degree of which the Riemannian metric affects the
curvature of space-time. Binding of lower indices for Rie-
mann and Ricci tensor (shown in Eq. 11) allows us to de-
velop the Einstein curvature tensor, GG, through which we
can compute the curvature of the space-time. The Ricci
Tensor can be written using the connection coefficients;

RE =Tk —Th  +TP TH —TP TH (11)
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The Ricci tensor can be contracted as

R =Ry, (12)
Furthermore,
R = Rl. (13)

The reverse trace of the Ricci tensor gives us the Ein-
stein tensor,

1
GH = RM — §R gt (14)
All of the tensor calculations and metric manipulations

are included in Appendix A.

E. Stress Energy Momentum

In general relativity, a particle with a mass is under-
stood as the source of gravitation by curving the space-
time around it, and hence “Stress energy momentum
can be thought of as the relativistic generalization of

mass” [5]. A particle’s 4-momentum can be recorded
using,
P E
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p° is the energy of the particle, and the rest are spa-
tial momentum. The stress energy momentum tensor is
related to a particle’s 4-momentum per unit 3-Volume;

dE dE dE dE
dr dy dz dt dy dz dt de dz dt dz dy

dp“ dp” dp” dp” dp”
v dr dy dz dt dy dz dt de dz dt dx d
TH ¢+ BV 4 dp% d;,/y dp¥ dp? v
v dr dy dz dt dy dz dt dx dz

dp” dp”® dp”®
dt dy dz dt dz dz

dt dz dy
dn*

dzx dy dz dt dx dy

(16)



FIG. 2: The plot of stress energy momentum [3]. Notice the
pattern regarding energy density/flux, pressure, and shear,
within the metric. (rectangular coordinates)

After the conversion to a fraction of force per unit 3-
dimension,
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dvV dt dA, dt dA, dt dA,
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Each element corresponds to the stress energy momen-
tum as shown in Fig. 2. Notice that since T*" is diag-
onally symmetric within the spatial elements, giving us
ten independent equations.

The Einstein field equations in relation to the stress
energy momentum tensor is

e~ L

8m (18)

Because of the stress energy momentum tensor’s sym-
metry within spatial elements, the Einstein tensor must
have the same symmetry.

F. Geodesics

In general relativity, a geodesic equation describes a
curved space-time, where its tangent vectors are parallel,
even after being transported [1]. The law of motion in
general relativity is

A+
dr2
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which is the general form of Newton’s first law in classical
mechanics. The connection coefficient, I" allows us to
consider the curvature of space-time. The parameter 7
is the proper time. If v << ¢, the connection coefficient
goes to zero. Notice that if the connection coefficient
becomes zero, Eq. 19 becomes the law of inertia [5];

dv®

— =0.
dt

(20)
The greek index is switched to a latin index, which goes
from one to three, only considering the spatial dimen-
sions.

G. The Schwarzschild Metric

One of the most commonly found solution to the Fin-
stein equation is the Schwarzschild metric. It describes
the space-time curvature around a spherical mass. The
Schwarzschild metric is
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rs is the Schwarzschild radius, which is the radius of a
spherical orbit around the mass that requires the speed
of light as the escape speed.

H. The Kerr Metric

Another commonly found solution to the Einstein
equation is the Kerr metric. The Kerr metric,
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describes the space time around an empty black hole,
with a spherical event horizon [2]. Notice the off-diagonal
elements within the metric, allowing rotation of space-
times. Eq. 22 is true where

p=+/1%+ a2 cos(6)?, (23)
A=7r2—rg+a? (24)
and
J
= —_— 2
o= (25)

J is the angular momentum of the space-time, and M is
the vicinity of a mass [1].



III. PROCEDURE

Mathematica 9 is used to create the program to com-
pute the manipulated space-time geometry and create
visualizations. The program for connection was writ-
ten referencing the program of Syne Salem’s indepen-
dent study [5]. Moreover, the program for geodesic equa-
tions was written referencing Duncan Price’s Mathemat-
ica file [4] from his 2012 summer research.

The parameters within the program are simplified; the
gravitational constant, GG, and the speed of light, ¢ are
reduced to 1. To allow the space-time to swirl in the
program, the spherical coordinates are used; Eq. 3.

I was able to create a program that will visualize the
manipulated space-time for any kind of metric entered,
although they must be symmetric along the diagonal due
Eq. 7. Into the manipulated space-time, a bundle of
parallel light-like rays are entered, traveling through the
space-time. The path of the light rays are plotted, cre-
ating a visualization that allows better understanding of
the geometry of the space-time.

Through the program, the major metrics are plotted;
Minkowski, Schwarzschild, and Kerr. Since the program
is able to plot any diagonally symmetric 4 x4 metric, ver-
sions of the three major metrics and more are also plot-
ted. In an attempt to understand how each element of
the metric affects the space time, they are manipulated
separately.

IV. RESULTS & ANALYSIS

The program was successfully developed, plotting the
space time curvature of any diagonally symmetric metric
inputs, and at the same time, recording the path of a
bundle of rays to visualize the curvature. As examples,
the flat space-time, Schwarzschild and the Kerr metric
are discussed in following sections. In all visualizations,
the light rays enter from the +x direction. Each metric
is visualized in 2 dimensions and 3 dimensions. The 2
dimension visualizations are x and y cross section, where
z = 0. In 3D visualizations, the axis and ticks are triv-
ial, since the direction of entrance nor the quantity are
significant.

A. Flat Space-Time

The flat space-time 2-D visualization is included in
Fig. 3 and the 3-D in Fig. 4. From Fig. 3, one can
see that light travels straight in flat space-time. How-
ever, from Fig. 4, one can notice that the light rays are
not quite parallel even though they are traveling in flat
space-time. One possible cause is the working precision of
the program (which can be increased, compensating with
the calculation time), but it is minor, insignificant to the
general understanding of the behavior of the space-time
within the big picture.
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FIG. 3: 2-Dimensional plot of flat space time. The light rays
enter the space-time from the +z direction
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FIG. 4: 3-Dimensional plot of flat space time. The parallel
light rays enter from the surface on the left-front side and exit
to the opposite side. Notice that the the top layer of rays exit
slightly off parallel.

B. The Schwarzschild Metric

The Schwarzschild metric, given in Eq. 21, is put into
the program and the respective space-time curvature is
visualized in Fig. 5 and Fig. 6; 2-D and 3-D respectively.

In Fig. 5, notice that the rays within the radius (inner
most red, yellow, and green rays) of the event horizon



FIG. 5: 2-Dimensional plot of the space-time given by the
Schwarzschild Metric.

FIG. 6: 3-Dimensional plot of the space-time given by the
Schwarzschild Metric.

creates an erroneous results as they enter the boundary.
Now, consider Fig. 6, the 3-D visualization; the curvature
of space-time around a sphere should also resemble the
curvature of the around the sphere. However, remember
that the plots only convey the path of the parallel light
rays entering from one side, causing Fig. 6 to appear the
way it does, only conveying the curvature on the further
side of the origin of the light rays.

FIG. 7: 2-Dimensional plot of the space-time given by the
Kerr Metric. The light rays vanish at the event horizon.

FIG. 8: 3-Dimensional plot of the space-time given by the
Kerr Metric. The parallel light rays enter from the surface on
the right side. The light rays vanish at the event horizon.

C. The Kerr Metric

The Kerr metric, given in Eq. 22, is put in to the pro-
gram, and the 2-D visualization is included in Fig. 7, and
3-D in Fig. 8. These visualizations represent a very ba-
sic form of a black hole. Notice in both plots that near
the center, the light rays suddenly vanish. This signifies
that the light rays have entered the event horizon, or the
point of no return.

The Kerr Metric allows swirling of the space-time
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FIG. 9: 2-Dimensional plot of the space-time given by the
Kerr Metric with counterclockwise spin (J=2). The parallel
light rays enter from the surface on the right side.

FIG. 10: 3-Dimensional plots of the space-time given by the
Kerr Metric with a spin where J=2. The perspective of the
plot on the left is +z, and right is +y. The parallel light rays
enter from the top.

around the black hole, as Eq. 22 has off diagonal com-
ponents, r¢. Fig. 9 is a visualization of a swirling space-
time curvature around a black hole in 2-D. The angular
momentum of the black hole is in +¢ direction (counter-
clockwise).

Fig. 10 is a combined visualization of a swirling space-
time curvature around a black hole in 3-D, shown from
two different perspectives.
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FIG. 11: 2-Dimensional plots of the space-time given by the

manipulated Kerr Metric with an angular momentum; J=2;
Eq. 26. The parallel light rays enter from the left.

D. Manipulated Kerr Metric

To explore the metric, the Kerr Metric was manipu-
lated randomly. The metric that created an interesting,
and possibly non-trivial space-time was the metric which
was developed by introducing a dtdr element, —r sin 6 to
the Kerr metric;

Juv
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(26)
Fig. 11 (2-D) and Fig. 12 (3-D) shows the behavior of the
light rays in the manipulated space-time based on Eq. 26.
Consider Fig. 11; it seems that from a distance, the
rays travel towards the center of the space-time, but ulti-
mately spin out counter clockwise. Moreover, rays enter-
ing from higher values of y have much smoother curvature
than that of rays that enter from lower values of y as they
are spitted out, since rays that enter from lower values
of y initially travel towards the center curving clockwise.
Rays that enter from lower values of ¥, curving clockwise,
must counter interact with the counterclockwise spin of
the space-time, allowing the light to travel a little closer
to the center. Lastly, notice that no light rays on the
horizon are able to reach the center.



FIG. 12: 3-Dimensional plots of the space-time given by the
manipulated Kerr Metric with an angular momentum; J=2
(counterclockwise); Eq. 26. The perspective of the plot on the
top is perpendicular to the xy horizon where x = 0, and the
plot on the bottom is looking down from +z direction. Plots
with bigger inputs are included in the Section VII.

The 3D plots on Fig. 12 help visualizing the space-time
of the particular metric; Eq. 26. Only the light rays with
z = 0 components swirl out, creating a spiral. However,
light rays with z # 0 components wave in towards the
center and swirl in towards the z axis and vanish as if
they have reached the event horizon of a blackhole. (as
in this program, not physically)

The same dtdr component is entered into the flat
space-time metric to further understand the role of the
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FIG. 13: 3-Dimensional plot of the space-time given by the
manipulated flat space-time metric; Eq. 13.

component, resulting
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(27)

Fig. 13 is the visualization of Eq. 13. It is interesting
to see that the initial behavior of the light rays are very
similar to the those in Fig. 12, although the rays are
driven into the event horizon in the center.

To further explore, the d¢d¢ element of the Kerr met-
ric is added, allowing the space time to swirl. Hence, the
metric will consist of the diagonal flat space-time met-
ric elements—(r sin fdtdr) + (d¢d¢ element of the Kerr
metric).

“1 —rsin6 0 0
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The 2 dimensional visualization is shown in Fig. 14.
There is no explanation for such phenomena. The bold
pink and green rays shooting out from the origin seem to
be numerical errors. The 3 dimensional version was not
plotted, as it required more powerful computer or more
efficient program.



FIG. 14: 2-Dimensional plot of the space-time given by the
Eq. 14. There is no explanation for the phenomena. The
bold pink and green light rays shooting out from the origin
are numerical errors.

V. CONCLUSION

The program capable of creating a specific space-time
according to the given metric was successfully developed.
The next step would be creating a program that also gen-
erates the corresponding stress energy momentum ten-
sor to the metric given. Such program will bring us a
step closer to practical space-time engineering, which will
hugely assist in developing the cloaking through stress en-
ergy momentum, that has been attempted in College of
Wooster physics department. (Even though the discov-
ery of the negative energy density is required in order to
develop the cloak in reality)

Moreover, visualizations that were generated through
the program have their limits in explaining what exactly
is happening. Also, because of the generalness of the met-
ric that the program accepts, only having mathematical
boundaries, it is hard to know the physical boundaries in
terms of practical metrics.

Finally, the discovery of Eq. 26 was accidental. The
space-time curvature provided by the metric is very in-
triguing, as it somewhat resembles the structure of spi-
ral galaxies, although there is no evidence for the con-
nection. Unfortunately, attempts to understand more in
depth had only lead us to incomprehensible results.
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