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Earthquakes result from plate tectonic behavior just below Earth’s crust. Seismology is the study
of earthquake dynamics. We modeled earthquake seismology by studying stick-slip friction with
three spring-block models. The first was a one-dimensional three block system, pulled by a driving
motor. The second is a two-dimensional, nine block system pulled from the center. The third is
a two-dimensional, nine block system pulled more evenly. Earthquakes follow a power law known
as the Gutenberg-Richter law with a power of n = −1. Our three models seemed to tend toward
behavior in accordance with the Gutenberg-Richter law. For our three systems, we measured powers
of −1.0±0.3, −0.7±0.2, and −1.3±0.2 respectively. With more data collection and a more significant
number of events, it may be possible to show a more strong correlation to the power law behavior.

I. INTRODUCTION

Earthquakes are naturally occurring events in the
Earth’s lithosphere, resulting from plate tectonic activity.
Earthquakes primarily occur at transform boundaries,
subduction zones, and along mid ocean ridges. Strike-
slip faults exist where two parallel tectonic plates are
sliding past one other below the Earth’s crust at a trans-
form boundary. Subduction zones exist in the oceanic
crust where one tectonic plate is wedging under another
at a convergent plate boundary. Convergent boundaries
occur in regions where tectonic plates are moving in op-
posite directions toward one other. Plate tectonic ac-
tivity at mid ocean ridges is fairly constant, but slow.
As the crust is weaker in these regions from the forma-
tion of new magma, not enough strain can build up to
cause large magnitude events. Earthquakes at strike-slip
faults and subduction zones can both have drastic con-
sequences. Large transform boundaries may host devas-
tative natural disasters along large strike-slip faults, two
of the biggest being the San Andreas fault in Califor-
nia and the North Antatolian Fault in Turkey [3]. Large
magnitude earthquakes in subduction zones can lead to
tsunamis.

Strike-slip faults have primarily lateral movement,
with roughly no vertical component [3]. Theoretically,
strike-slip faults can transverse small areas or on a sig-
nificant global scale [3]. Their ability to span around the
globe comes from the fact that unlike convergent plate
boundaries, their displacements are not limited by rock
composition. Earthquakes at strike-slip faults occur rel-
atively shallow in comparison to the earthquakes at sub-
duction zones.

Earthquakes at subduction zones can occur at depths
of a few hundred kilometers below the oceanic crust.
While much plate tectonic activity in the oceanic crust
goes unnoticed every day, earthquakes of great magni-
tudes can occur at subduction zones. These are known
as megathrust earthquakes and can lead to the develop-
ment of tsunamis, which can cause a lot of damage to
coastal areas [1].

Given the destructive nature of earthquakes, we have
learned to construct architecture in such a way that al-

lows our buildings and people to be safer in areas at
risk of damage due to plate tectonic activity. We are
currently unable to predict earthquake’s locations, mag-
nitude, or timing, but hopefully through understanding
the dynamics of the actual events, we will eventually be
able to predict these events globally and account for them
accordingly.

There is no complete laboratory or mathematical
model for earthquakes, as they obey many complex be-
haviors on varying orders of magnitude [2]. Even if a
full laboratory or mathematical model existed for earth-
quakes, it would have computational constraints [2].
Consequentially, laboratory and mathematical models
with the goal of emulating earthquake behavior must
focus on specific aspects of the quake. Stick-slip fric-
tion models are popular in modeling earthquakes. Some
common laboratory models that show stick-slip friction
are cellular automaton and spring-block models [4]. In
spring-block models, earthquakes are viewed as a chain
reaction of sliding blocks on some surface, controlled by
the behavior of frictional forces working with elastic in-
teractions [2].

Previously studied spring-block models include Bur-
ridge and Knopoff’s work, in which they studied a one
dimensional, eight block system driven by attaching the
tops of the blocks by springs to a board and using the
driving motor to move that board in order to examine the
resulting behavior of the blocks [8]. Michael Davis built
an analogous model using a one dimensional set up with
four blocks and a pulley with hanging masses to apply a
consistent force [6].

In this paper, we present the results of my study using
three spring block models. One was created as a one-
dimensional block system with three blocks. The two
other spring-block systems consisted of nine blocks laid
out two-dimensionally. In all cases, the blocks are at-
tached by springs and moved along a wooden surface by
a driving motor pulling string.
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II. THEORY

Earthquake seismology is the study of earthquake dy-
namics. Earthquake seismology is modeled according to
the Gutenberg-Richter power law. Stick-slip frictional
systems are modeled as critical phenomena [5]. Critical-
ity describes systems that follow scaling relations, fractal
dimensions of behavior, and critical exponents [7]. In the
case of earthquakes, criticality describes power law dis-
tributions [8]. As earthquakes occur due to millions of
years of plate tectonic movement, they are used as the
prototype for self-organized critical systems [5]. Per Bak
discusses the nature of self-organized criticality, a term
he coined, and its implication on large scales of evolution
and economics in society [7]. Critical phenomena show
up in many physical systems, but the concept of these
systems being self-organized is debatable.

Systems studied in relation to the phenomenon of crit-
icality reach critical states [7]. When our spring-block
system approaches a critical state and any more energy
is added via the driving motor, it approaches a super
critical state. Following the transition, an event that
moves all blocks in the system occurs. This is consid-
ered a large event and should occur much less frequently
than small events. That particular relationship is ana-
lyzed as a power law. Critical phenomena in the context
of seismology follow power law distributions. In the case
of earthquakes, they obey the Gutenberg-Richter power
law [8].

log10N = a− bM. (1)

The Gutenberg-Richter power law expresses a relation-
ship between the number of events N with the number
of earthquakes of at least magnitude M within a given
region. The slope n = −1 for the power law in earth-
quake seismology. The magnitude comes from the well
known Richter scale for earthquakes [6]. The magnitudes
of events on the Richter scale are based on the log10 of
the energy dispersed in the event. The relationship of
magnitude to energy is expressed as

M = α+ βlog10E, (2)

where β is a loosely fixed constant, but Richter uses the
value of β−1 = 1.5 [8]. Combining Eqs. (1) and (2), the
logarithmic relationship of the number of events to the
seismic energy is expressed as

log10
N

N0
= −bβlog10E, (3)

where E is the total seismic energy of an event, assumed
to be proportional to the potential energy released [8].
For earthquakes measuring less than 7.1 on the Richter
scale, b = 0.58 [8].

In the context of a spring-block system, that potential
energy is released from the springs and the blocks stick-
slip along the surface. Our spring-block model is likely

a better representation of small magnitude events than
it is of the largest, most destructive earthquakes [8]. In
a spring-block model, we use at the potential energy re-
leased during the events as a comparison to earthquake
magnitude. To find the potential energy U stored in the
springs

U =
1
2
kx2 (4)

and assuming elasticity in accordance with Hooke’s law,
we can use

U =
1
2
k1(x0 − x1,m − l1)2 +

N∑
n=2

1
2
k1(xn−1 − xn,m − ln)2

(5)
where k is the spring constant, ln is the length of the
corresponding spring, xm,n is the position in x of the
center of the mth block after the nth event [8]. The spring
constant, which correlates to its stiffness, is found with
Hooke’s law [3]

F = −kx. (6)

Simplifying Eq. (3) and using potential U of the system,
we get

log10
N

N0
= −nlog10U, (7)

with slope n. In earthquakes, n = −1, which is the value
that the spring-block models will be compared to.

III. PROCEDURE

The apparatus is a spring-block model prepared for
three different experimental setups. The blocks used in
the system are constructed of two smaller sanded ply-
wood blocks, one on top of the other. Each of the smaller
blocks was cut by hand with a panel saw and French saw.
Each small block was cut in dimensions of approximately
10.1 cm long, 5.49 cm wide, and 1.2 cm thick. As such,
the full blocks used in the system measured 10.1 cm long,
5.49 cm wide, and 2.4 cm thick. As all 18 smaller blocks
used were cut by hand, they were not cut exactly the
same, but they were close. The two blocks that comprise
a larger block of the system are placed one on top of the
other and attached with wood glue. We measured the
full blocks of the system to have a mass of 77.52 g and
an interacting surface area with the plane of 24.24 cm2.
Fig. 1 shows the whole block.

The blocks are connected to one other by compres-
sion springs with spring constants of 98 N/m and an un-
stretched length of 3.70 cm. The springs are connected
to the blocks by squeezing the ends of them under a sta-
ple inserted into the sides of the wood that are pointed
toward another block. As the plywood is too dense for
the staple gun to fully insert the staples, we hammered
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FIG. 1: One of the blocks used in the three experiments con-
structed of two smaller blocks, staples to hold the springs,
and wood glue to keep the blocks together.

the staples in just enough to securely squeeze the ends of
a spring under the staples, connecting two blocks to each
other. The system was set up with either three or nine
large blocks, depending on the trial.

The apparatus is designed to run the experiment in
three manners. First, the experiment was run in one di-
mension with a single row of three blocks. In the second
and third experiment, we account for two spatial dimen-
sions of interaction by setting up the 3× 3 block system.
The difference between the second and third orientation
is how force is applied to the system. In all three exper-
iments, force is applied to drag the blocks across a flat,
planar wooden surface by attaching a motor that spins a
wheel. Twine is wrapped around the wheel attached to
the axle spun by the motor.

In the first scenario, for the one dimensional case, the
twine on the wheel is attached to the end of a spring on
the central block closest to the motor. It allows for consis-
tent application of force in one location and in one direc-
tion. Experiment 1 is the most simple of the three exper-
iments and is being used compare results with previously
conducted 1-D studies by Burridge and Knopoff [8], as
well as Michael Davis [6]. The motor in figure 2 spins the
wheel on the axle so that the string is pulled from under
the wheel to avoid force being applied from above the sys-
tem of springs and blocks. Fig. 2 shows the experimental
set up for the first case.

FIG. 2: The orientation of the system for experiment 1.

In the second experiment, for a two-dimensional case,
the twine on the wheel is attached to the end of a spring
on the central block closest to the motor. All nine blocks
are pulled from this point, which is the same point as the
1-D case. The difference is the addition of blocks in the
y-direction. The addition of blocks allows for more ways
for the system to interact, but another spatial dimension
of movement is not added, as the force is still applied in
the x-direction. Fig. 3 shows the experimental set up for
the second case.

FIG. 3: The orientation of the system for experiment 2.

Due to the motor only pulling from one spot, the 3×3
spring-block system warps. The springs move in a way
that we can’t accurately measure the energy stored in
them. Fig. 4 shows the arrangement that the spring-
block model moves in with only central pull.

FIG. 4: The resulting configuration of blocks from a central
pull in a nine block system that allows for two dimensions of
interaction.

In the third experiment, our other two-dimensional
case, we examine the properties of the system with an
even pull across all blocks on the side of the motor, in-
stead of all of the pull being from one spot. To allow for
the even pull on the 3×3 model, we tied three strings, one
from each of the three blocks on the side of the motor,
between a vertically inserted staple to a wooden dowel
rod. To apply force in the x-direction, string was tied
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FIG. 5: The orientation of the system for experiment 3.

to the two ends of the dowel rod and glued for secu-
rity. With the two points of attachment, the string was
wrapped around the wheel of the motor in two layers and
secured with masking tape to keep it from falling off of
the track. Fig. 5 displays the experimental set up for the
third experiment.

The base is made of the same sanded plywood as the
blocks were cut from. The base is oriented so that the
blocks move against the grain of the wood. The blocks,
connected by springs, are placed on top of the base and
tied to the motor in whichever fashion the trial demands.
A camera is attached to a stand that positions it above
the apparatus to video record the movement of the blocks
as an event occurs. The top of all blocks have a black
sharpie dot in the middle for ease of tracking. The motion
of the blocks was tracked with Logger Pro, using video
recordings of the three experimental set ups. Fig. 6 shows
the spring-block system, driving motor, and camera used
to collect data.

Data collection was conducted by using the camera
situated above the apparatus. The camera was used to
record video of the experiment, so that the movement of
blocks could be tracked and analyzed in Logger Pro. As
Logger Pro also requires that one provides a known scale,
equidistant lines were drawn on the base every 10 cm for
the program’s ruler. Movement was tracked in the x and
y dimensions, but the blocks in the system translated pri-

FIG. 6: The driving motor with the wheel spun on an axle is
on the right side of the figure. The plywood base is placed on
the table, with the combination of springs and blocks on top
of it. The camera stand with the camera used to take data is
on the left side.

marily in the x direction. Using the black sharpie dots
centered on top of the blocks, we tracked the motion of
each block in its respective trial for each frame of video
recorded. The videos were recorded from the time that
the motor was turned on until the blocks had been pulled
as far as possible to remain on screen. The first experi-
ments video had 560 frames to track for each of the three
blocks and x0. The second experiment with the force be-
ing applied from the center had 731 frames to track for
each of the nine blocks, as well as x0. The third experi-
ment with the more evenly pulled force had 1128 frames
to track for each of the nine blocks and x0. Totaling the
tracking of experiments 1-3, around 21,000 points were
tracked. Position data for the blocks and connection to
the string from the driving motor are the only data that
were collected during the experiment.

IV. RESULTS & ANALYSIS

The goal of building a spring-block model to model
earthquakes was to see if it obeys a power law distri-
bution. Earthquakes obey the Gutenberg-Richter power
law, which expresses a relationship between the frequency
and magnitude of events in a given region. As the spring-
block model is able to obey stick-slip behavior like earth-
quakes, we are testing to see if it follows the same power
law relationship. We tested three different, but analogous
experimental set ups described in the procedure. Fig. 7
displays an example of the data recorded in the three
block, 1-D system.
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FIG. 7: The 1D spring-block data from Logger Pro. The
red, blue, and green lines represent the movement in the x
direction of the blocks over time. The bottom of the three
(red) is the block furthest from the motor. Its center was
used as the origin, which served as a reference point for the
rest of the video analysis. The position data for the middle
and closest block to the motor are the middle (blue) data set
and the top (green) data set respectively. The bottom 3 lines
represent movement in the y-direction for the three blocks.
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FIG. 8: The block is pulled by a string attached to a spring.
In this case with one block, x0 is the location of the knot tied
around the end of the spring.

The position in x and y were tracked and plotted
against time. As the force is only applied in the x-
direction, the movement in the y direction is essen-
tially nonexistent. Both two dimensional cases have nine
blocks tracked instead of three, producing a similar, but
more cluttered graph with the x and y coordinates being
tracked.

Before analyzing the video of each spring-block sys-
tem, we must first measure the spring constant k using
Newton’s second law F = ma with Eq. (6). Each spring
in the 1-D and 2-D systems is the same identical com-
pression spring. Measuring the spring constant is simple
experimentally, only requiring us to hang a mass from the
spring and measure how long it stretches. By stretching
the spring with a hanging mass, we measured the spring
constant k = 98 N

m .
The spring constant is essential in solving for potential

energy U , as in Eq. (5). As spring-block models are as-
sumed to have approximately constant velocity where the
driving motor pulls the string x0, we simplify the analy-
sis by plotting the potential energy against x0, which is
proportional to time if the point does indeed move at a
constant velocity [8]. Fig. 8 shows the connection point
between the spring and the string, which is pulled by the
motor.

Assuming the unchanging velocity for the point of con-
tact between the driving motor and spring-block is con-
venient, as the potential energy stored in the springs is
expressed as a function of the coordinates of the system
and not the time [8]. Fig. 9 shows the fit for the one-
dimensional case, but the same procedure is followed for
all three experimental setups. The point of contact in ex-
periment 2 is also the point at which the string wrapped
around the wheel of the motor ties to the spring pulling
the middle block on the side facing the motor. The point
of contact for x0 in experiment 3 is the middle of the
dowel rod, which is pulled at both ends evenly by the
driving motor.

Using a linear fit for each of the three experiments, we
measured x0 to change at 1.594 ± 0.005 cm/s, 1.395 ±
0.002 cm/s, and 0.861 ± 0.005 cm/s for experiments 1-3
respectively. Knowing the approximately constant veloc-
ity of the point of attachment, we used the summation
in Eq. (5) to calculate the potential energy U . In the
1-D case, only three terms of x-movement contributed
to the potential energy calculation. In the second ex-
periment, the blocks warped very strangely. It is hard
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FIG. 9: In the plot, x0 does not change constantly, but it
is hard to track. To account for the challenge of tracking,
x0 is plotted against time and a linear fit is taken, giving an
equation in the form of y = mx + b.

to get any analysis of the y contribution to changes in
potential energy, but there was primarily movement in
the x direction. As the stick-slip did not occur in the
y direction, the potential energy was approximated with
only the contribution from changes in x. In the third case
with a more even pull on the system, potential energy was
calculated with only the contribution from movement in
x. The dowel rod allowed the system to not warp nearly
as much as with the central pull, but when the potential
energy was plotted in the y-direction, the changes were
clearly minimal. Once again, the extra blocks spanning
into the y-dimension provided more means for the sys-
tem to interact, but there was still no driving force on
the system in the y direction for y data to contribute
much to changes in potential energy. Fig 10 shows the
potential energy per block vs. the constantly changing
x0 for each of the three cases.

The first trial’s potential energy graph looks more reg-
ular than the second or third trial’s. This could be due
to the motor pulling the one-dimensional spring-block
model along the surface quickly in comparison to the two-
dimensional spring-block models. As figure 10 shows the
potential energy stored in the springs for each case, the
drops show a release of potential energy, known as an
event. These events are what models earthquake behav-
ior, as the blocks stick and slip across the surface. To
count events of varying magnitudes, we used Igor Pro to
rotate the potential energy data and create a delta wave.
The delta wave tracked the change in potential energy for
each step in time. Positive values correspond to adding
potential energy into the system by pulling on it with the
driving motor. Negative values correspond to that poten-
tial energy being released by the springs, which is what is
required for an event to occur. As we are looking at the
relationship of events’ magnitudes to their frequency. To
do so, did not consider the data corresponding to energy
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FIG. 10: The potential energy per block of the three experi-
ments vs. the constantly changing x0 approximated by linear
fits of the x0 data from Logger Pro analysis. The bottom red
data is the potential energy per block of the one-dimensional
system. The blue middle data represents the nine block sys-
tem with central pull. The green represents the nine block
model with an even pull.

being added into the system, but instead looked at the
negative values, corresponding to the release of energy
from the springs. Fig. 11 shows a curve of the events’
magnitudes vs. their unit-less sequential number on the
sorted list.

The 1-D case appears to have a step-like feature. It
could be due to a couple factors involving Logger Pro.
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FIG. 11: The magnitude of events vs. the order on a list
sorted low to high. All three experiments’ data are shown
here with experiment 1 as red circles, experiment 2 as blue
plus signs, and experiment 3 as green triangles. The first
experiment’s data ends the soonest because it has the shortest
video and smallest amount of events. The opposite is true for
experiment 3.
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FIG. 12: The logarithm of the number of events N vs. the
logarithm of the potential energy U for the one dimensional
case with a slope of −1.0± 0.3.

One prospect is that, due to the difficulty in tracking
the points, some intermediate movements were missed,
possibly causing larger jumps in tracking throughout the
video. Another possibility is that we simply don’t have
enough data points of events since this is a shorter run
than the two-dimensional models, as the three blocks
pulled across the surface quicker than the nine block sys-
tems. This could be fixed with more time to record video
of the system and taking data with Logger Pro, but it is
not believed to be a physical characteristic of stick-slip
events.

The end goal of the analysis is to check whether or
not the three spring-block systems correlate with the
Gutenberg-Richter power law. To do so, we used a Igor
Pro macro written by Dr. John Lindner in the College of
Wooster Physics Department to count the number of oc-
curences of events of various magnitudes. A problem in
the analysis presented itself because certain bins must be
set up to group the number of events in different ranges
of magnitudes. We set up the bins of logarithmic ranges
in four different ways, but it always cut data in half that
was clearly close to the same magnitude. This might be
an avoidable issue with more data for the three systems.
When making a log-log plot of the number of events vs.
the bins of the potential energy ranges of these events,
Igor Pro ran into trouble. The issue came with taking a
logarithm of zero, resulting in values of −∞, which could
not be plotted. Accounting for the lack of sufficient event
data and the unnecessary splitting of the magnitudes by
clumping together the events close to each other in poten-
tial energy change, the systems behave similarly to the
Gutenberg-Richter law. Fig. 12 shows the log-log plot of
the number of events vs. the bins of magnitudes for the
first setup.

For the first trial with three blocks being tracked, we
measured a slope of −1.0 ± 0.3, in comparison to the
expected n = −1. There is a large error bar for the
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FIG. 13: The logarithm of the number of events N vs. the
logarithm of the potential energy U for the 2D central-pull
spring-block model with a slope of −0.7± 0.2.

relationship, but it is good evidence for the system to
have been obeying stick-slip behavior in the same way
that earthquakes do. Fig. 13 shows the log-log plot of
the number of events vs. the magnitude of events for the
second trial.

For the second trial, we measured a slope of −0.7±0.2.
This isn’t quite the expected −1, but it is within the
−0.5 to− 1.5 range that earthquakes fall into depending
on the area in which they occur [8]. The second exper-
iment has some evidence to show its stick-slip behavior
can be modeled similar to that of an earthquake. Fig. 14
shows the log-log plot of the number of events vs. the
magnitude of events for the third trial with an even pull
on the dowel rod.
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FIG. 14: The logarithm of the number of events N vs. the
logarithm of the potential energy U for the third spring-block
model with a slope of −1.3± 0.2.

Across the three separate experimental set ups, we
measured the slopes of the log-log plots to be −1.0± 0.3,
−0.7 ± 0.2, and −1.3 ± 0.2 for experiments 1-3 respec-
tively, which are close to the expected n = −1. While
the opportunity to take more data would be helpful,
the three spring-block systems obey similar behavior to
the Gutenberg-Richter law. A definitive statement of all
three cases cannot be made without further analysis of
the systems, but there is good evidence to support the
laboratory models’ usefulness in studying stick-slip fric-
tion in relation to earthquake seismology.

V. CONCLUSION

The spring-block model may be a suitable model for
some aspects of earthquake dynamics. These three sys-
tems cannot definitively be said to model earthquake be-
havior before future work with them, but there is evi-
dence to support that they are a reasonable representa-
tion of earthquake seismology. No spring-block system
can fully represent an earthquakes behavior, as they are
complicated systems which behave on many scales. We
can indeed attain some insight from spring-block systems,
however. The powers measured for the three different
systems were measured to be −1.0± 0.3, −0.7± 0.2, and
−1.3 ± 0.2 respectively, compared to the expected −1
from the Gutenberg-Richter power law.
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