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Quantum computing is an emerging field in quantum physics where a computer is built to utilize
bizarre properties of quantum mechanics so as to perform algorithms in a way fundamentally superior

to classical computers.

The quantum computer is conceived around the idea of the ‘qubit’, a

quantum state that collapses into one of only two possible states when measured, corresponding
to the classical term ‘bit’, which can exist in only two states. This paper describes two aspects of
quantum computing that set it apart from classical computing: quantum parallelism, which utilizes
superposition to test for global properties of functions in a way much faster than classical computers,
and superdense coding, where one is able to send two bits of information by transmitting a single

qubit.
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QUANTUM BITS: ‘QUBITS’

Quantum computing utilizes quantum states and their
properties and interactions in order to compute in a way
fundamentally different from classical computing. How-
ever, quantum computing is only interested in a specific
type of state: those that, when measured, are found to
be in one of two possible states. That is, the quantum
states that it uses are a superposition between two possi-
ble states which collapse into one or the other state. This
two state model corresponds to the two state nature of
classical bits.

Although it is possible and advantageous in some ways
to create a quantum computer based on a quantum state
of three possible states (a ‘quatrit’) or more, it poses
no significant theoretical challenges in addition to those
modeled on two-state systems [1].

It is relatively straightforward to generally define the
qubit. It is a superposition of two quantum states, which
will be called |0) and |1} (corresponding to classical zeros
and ones). This means that any quantum qubit is of the
form

[¥) = a|0) + Bl1), (1)

where « and 3 are complex coefficients that define the
superposition of the state. This can be represented as

the vector
o
(5): )

If the state is normalized, we find that
laf? + |8 = 1. (3)

The probability that one will find that the system is in
state |0) is |a|?, and the probability that it will be in
state |1) is |B]? [1].

Bloch Sphere

A popular way to illustrate a qubit is with a Bloch
Sphere, which is defined in spherical coordinates. The
definition of the qubit in terms of a and B is four-
dimensional (a real value for each coefficient and a com-
plex value for each coefficient), so it is necessary to com-
bine the imaginary values of the two coefficients; this is
possible by factoring out “global phase”, which is unnec-
essary.

In order to do that, we first need to separate out the
real and complex values of a and 8. Every complex num-
ber can be written as C = re*®. So Eq. 1 becomes

%) = roe'®|0) + 1™ [1). (4)

We can then factor out the first imaginary term, which
results in

) = e (o]0} + raei =91y ). (5)

It is now possible to eliminate this imaginary term since
it does not change the probability when the system
is measured. Measuring the system with some arbi-
trary measurement operator M,,, it is the case that
(/3] Mylt)) = (Yl M, Me??lip) [1]. This gives
us

1) = 70]0) 4 r1e’(@1=90)|1), (6)

In order to get spherical coordinates from this, it is nec-
essary to define g and r; with an angle. It is possible to
do this through the normalization constraint. We know
from Eq. 3 that |ro|? + |r1]|?> = 1. If we compare this to
the relationship cos z2 + sinz? = 1, we can choose

0
To = CO8 5 (7)



and
0
ry = sin 7 (8)

The choice to make the argument 6/2 instead of simply
¢ was so that it runs from 0 to 7 instead of 0 to m/2 [2].
Defining it in this way makes the variables the same as
they are standardly defined in spherical coordinates.

Our final result for the spherical definition of a qubit
is

) = cosg|0> + ¢i? sing|1>. (9)

Multiple Qubit Systems

The above formalism needs an expansion to be able
to accommodate systems with more than one qubit and
multiple-qubit gates. Describing a state of two qubits is
represented as |a)|b) = |ab). In order to create the vector
representing the state of this system, one needs to apply
the “tensor product” of the two vectors. This means
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Quantum Gates

Quantum gates can be represented with matrices.
Quantum gates operating on qubits can be represented
by writing the qubit in a state vector that is then mul-
tiplied by the quantum gate vector. There are single
qubit gates that are 2 x 2 matrices which operate on only
one qubit at a time. There are two-qubit gates that are
4 x4 matrices which operate on two-qubit systems (repre-
sented by a tensor product of the two vectors representing
the qubits, order of operation matters). There are gates
that operate on more qubits than one or two, and these
scale in a predictable manner. The basic quantum gates
are shown in Table. I.

For example, if one were to apply an X (quantum
‘NOT’) gate, to some arbitrary state vector, the ampli-
tude of the two states would be flipped. In this case
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Here the X gate exchanges the probability amplitudes
of the qubit’s state, however other gates will change the
qubit in more complicated ways.

TABLE I: Quantum Gates

Name Matrix
1 1
Hadamard 1
Pauli-X (NOT) 01
10
Pauli-iY < 0 -1 )
i 0
Pauli-Z 1 0
0 —1
Phase 1 0
0 2
1000
controlled-NOT 0100
0001
0010

PHYSICAL QUANTUM COMPUTERS

Building physical quantum computers comprises a sig-
nificant undertaking. A complete quantum computer re-
quires a significant number of quantum systems that can
be used to create enough quantum qubits. There must be
a way of keeping the systems from decohering, or losing
their quantum state due to uncontrolled measurement
collapse. A classical computer must be used to control
the quantum systems. Classical computers are also used
to manage the quantum error correction programs (which
are necessary since a small amount of decoherence is al-
ways expected). There also must be sufficient ways to in-
teract the quantum qubits with ‘gates’. Finally, it must
be possible to measure the qubits in their correct basis.

It has been proven that any theoretical arrangement of
one and two qubit quantum gates can be effectively cre-
ated using only single qubit gates and the two-qubit gate
“cnot” (albeit, sometimes this is extremely inefficient).
This is similar to the classical “NAND” gate, with which
any classical circuit can be created. This means that if
it can be demonstrated that a physical system can rea-
sonably manifest single qubit gates as well the cnot gate,
then it is possible for a quantum computer to be built in
using that physical system [1].

While it is possible to construct a physical quantum
computer using such systems as a standard simple har-
monic oscillator, it is extremely impractical since no more
than one unitary transform may be applied to the sys-
tem and certain types of algorithms would be unable to
be run on it. Let us look at a few different type of phys-
ical quantum computers that are theoretically feasible.



Optical Quantum Computers

It is possible to create a superposition of a photon in
an optical cavity. In this way, one can superpose a pho-
ton into two optical cavities and use these to transmit the
qubit. This is called the ‘dual-rail’ representation. One
can produce single photons by using an attenuated laser.
Although it is near impossible to produce two photons
simultaneously for the purposes of interacting with each
other, it is possible to delay one of the photons until two
are aligned. Photons evolves in time with the Hamilto-
nian H = hwa'a. Applying this to a two-state quan-
tum system (qubit) makes the system evolve from |¢) =
co|0) + ¢1|1) to [ (t)) = co|0) + cre~™t[1). This means
that the ‘dual-rail’ quantum system |¢)) = a|01) + b|10)
evolves only by a global phase factor e~**!, which is un-
detectable.

It is possible to perform any arbitrary single qubit gate
using a combination of z-axis and y-axis rotations. Phase
shifters can be used to perform arbitrary z-axis rotations
and beamsplitters perform y-axis rotations, therefore it
is possible to perform any arbitrary single qubit gate on
an optical qubit. The cnot gate can be created from
beamsplitters and Kerr media, a medium that has ‘cross
phase modulation’.

In this way, it is proven possible to construct a quan-
tum computer using optical components: any arbitrary
single qubit gate can be created and it is possible to cre-
ate the cnot gate. This setup is very convenient and
feasible for creating single photon qubits and performing
single qubit gates. However, it is very difficult to create
two qubit gates since the Kerr media is highly inefficient
and scatters photons at a high rate. For this reason op-
tical quantum computers have been generally considered
unlikely candidates for physical quantum computers [1].

Optical Cavity Quantum Electrodynamics (QED)

Another method for creating a quantum computer in-
volves trapping one atom in an optical trap with a high
charge and only one or two optical modes. Firing photons
into this trap will cause the photons and atom to interact
reliably. Building a quantum computer using these can
be accomplished in several ways. One is to use photons as
the quantum bits and they interact with cavities to per-
form nonlinear interactions (quantum gates); the other is
to use the cavities as the quantum bits and the photons
serve to perform nonlinear interactions (quantum gates).

The Fabry-Perot cavity is a useful and frequently used
type of optical trap cavity. This creates a large electric
field in a narrow band of frequencies in the cavity, which
is what allows the atom to exist in one of two modes.
The atom’s state is complicated, though a binary model
suffices. The field evolves with the Hamiltonian H =
hwa'la.

The QED method is more promising than the optical
method, since QED is able to create multi-qubit gates
without the unreliable Kerr medium. Instead, QED can
simulate the nonlinear interaction that the Kerr media
would provide. This makes it a stronger candidate for
being put to use in the future [1].

Ion Traps

Yet another method for creating a physical quantum
computer involves using electron and nuclear spins as
quantum bits. In order to use them, the atom is trapped
in electromagnetic fields and cooled down so that the
atom’s kinetic energy does not interfere with the spin
states.

Single-qubit gates are created by applying a magnetic
field to the atom changes the Hamiltonian of the sys-
tem and can be used to create rotation operations. A
controlled-NOT gate is created using the Hadamard gate
and interactions with phonons [1].

QUANTUM PARALLELISM

One of the clear advantages that quantum computing
holds in contrast to its rival is that qubits can be in a su-
perposition, whereas classical bits cannot. This has sev-
eral advantages, among them quantum parallelism, which
is the capability to evaluate the entire domain of a func-
tion in a single step, instead of one at a time. Since qubits
collapse when they are measured, and so only yield one
bit of information, one cannot have the computer out-
put multiple evaluations of a function without evaluating
extra qubits. However, one can determine some binary
global property of the function (or alternatively, one can
determine a global property or properties using binary
queries).

Deutsch’s Algorithm

Deutsch’s algorithm is a novel example of quantum
parallelism. It’s goal is to determine whether or not a
boolean function is balanced or constant. If a function is
constant, then every input into the function results in an
output of 1. If it is balanced, then the function will return
0 for half of its inputs and 1 for the other half (assuming
some finite number of possible inputs). With a classical
algorithm it is random how many times the function must
be called before it can be classified as either of the two
types; at most it will take 2N — 1 tries where N is the
number of possible inputs. However, Deutsch’s algorithm
can make this distinction by evaluating the function only
once.



Begin with |0), apply a Hadamard gate to it, and one
will get

(12)
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If one then applies the unknown function to this state,
the result will be

[0 itf(0) = £(1)
[12) = flr) = (13)
+ 78] irr(0) # ().

Apply another Hadamard gate to this first qubit to get

£[0) iff(0) = f(1)
|¢3) = Hlt2) = (14)
£[1) iff(0) # £(1).

As you can see, measurement of the qubit will reveal
whether or not f(0) = f(1). This is clearly a feature of
the function that would typically require one to query
the function twice, once to find f(0), and another time
to find f(1). This quantum algorithm evaluates this with
one query [1].

SUPERDENSE CODING

Superdense coding is the method by which one is able
to transmit a greater amount of information using qubits
compared with an equal number of bits. This is accom-
plished by entangling two or more qubits, which split
between Bob and Alice (this entanglement could be done
either by Bob or by a third party; Alice need not be in-
volved). Alice then modifies her qubit(s) and sends them
to Bob. By measuring the qubits, Bob is then able to tell
how Alice modified her qubit(s).

Untangling Entaglement

A system of one qubit can have two possible states af-
ter measurement: |0) and |1). A system of two qubits
then has four possible states: |00), |01), |10), and |11),
where these correspond to the four different combinations
of qubit possible states after measurement. A two-qubit
system can be said to be in one of these four states.
Entanglement may link the possible states for the two
qubits. For example, if the state of the system is

_ [00) +[11)

[¥) NG

(15)

then measuring one qubit gives us the state of the other
qubit.

In particular, Eq. 15 means that there is a fifty-fifty
chance that both qubits will be found to be in their |0)
or their |1) state; that is, if we were to measure one qubit,
we now know what the state of the other one is. Eq. 15
is one of a series of states called ‘Bell State’.

TABLE II: Two bits transmitted with one qubit.

Bits Modification Result
00 unmodified %
01 (|00>\J/r§\11>> 7 |00)\;§\11>
11 (\oo>j§\11>> WY = |10)\;§\01>

An Example: Sending Two Bits with One Qubit

Let us walk through an example where Alice sends Bob
two bits of information sending only one qubit.

In advance, Alice and Bob agree to begin with the same
state, as shown in Eq. 15. Alice can either send this qubit
unmodified to Bob or she could pass it through one of
three quantum gates, the X, iY, or Z gates [1]. The four
possible quantum states are displayed in Table II.

These four end states are all called ‘Bell States’, and
Bob can easily discover what Alice did to her qubit by
passing the first qubit through a Hadamard gate and then
measuring it.

The reason that this is possible is that these four states
are orthonormal to each other. This means that four pos-
sible states (two bits) is the maximum amount of infor-
mation one can communicate by sending only one qubit.
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