
Modeling Brownian Motion with Elastic Collisions

Michael-Erik Ronlund
Physics Department, The College of Wooster, Wooster, Ohio 44691, USA

(Dated: December 15, 2011)

In this project, I designed a program to simulate Brownian Motion as the interaction of elastic
particles. The program is intended to observe how this simple model would hold up to expected
mathematical models by only using calculations for Conservation of Momentum and Energy. While
the program has the capability to produce a large system and display effects that appear to be
the signature of Brownian Motion, the output for disk position and molecule properties is as of yet
nonfunctional, and so I could not acquire a distinct graph of the actual motion to determine its
nature.

I. INTRODUCTION

Brownian Motion is an effect named after Robert
Brown. Brown noticed that when suspended in water, a
grain of pollen would exhibit a strange behavior: it would
move and jitter about, seemingly randomly [1]. Brown’s
original hypothesis about the odd traveling of the pollen
was that it was a property of living matter, that living
things, even smaller components of them, had some mo-
bility to them. His later studies using non-living parti-
cles showed that that was not the case. The movements
exhibited by Brown’s pollen are actually the result of nu-
merous impacts from the molecules of water surrounding
it. As the particle was continually bumped into, it was
pushed across the surface.

The motion of the particle is dependent on the
molecules of the medium. A simple way of picturing it
is that at a very small scale, the motion is the direct
result of the sum of each collision with the surrounding
molecules. The changes in its motion are based on the ex-
change of momentum between the particle and molecules.
As these collisions occur, the continuous bumps will dis-
place the particle. The direction in which the displace-
ment occurs is random, and based in part on the proper-
ties of the medium and the particle [1].

Brownian Motion is an example of a general category
of random processes, the study of which can be applied
to many disciplines to make predictions. Mathematically,
it’s motion is a result of the probability of the disk moving
in a certain direction over a certain time [7]. One area
that relies on it is stock market and finance study. Even
though the model isn’t a perfect analogy, they both rely
on the accumulation of small changes to cause an overall
larger result [3]. The model can be applied in other fields
as well, such as biology, where it used to understand the
movements of microscopic organisms [2].

In order to help understand this process at a basic
level, and present a clear visual representation, I aim in
this project to create a computer simulation of Brownian
Motion, based in part on the model used by Scott Hughes
for a similar project [5]. This will mainly rely on tech-
niques and data structures from the standard C++ lan-
guage library [6]. The program creates an environment of
many small molecule-like particles, which interact with a
larger disk-like particle. The simulation explores the ba-

sic exchange of momentum in determining the motion of
the particle.

II. THEORY

The concept of Brownian Motion in this simulation is
the seemingly randomized manner in which a disk-like
particle will move around in an environment of many
smaller particles. To better understand this phenomenon
in the simplest physical situation, I created a program
that modeled a large disk and many smaller particles, and
allow them to interact using conservation of momentum
and energy.

To create such a simulation, it would need to be based
on an accurate calculation of the resulting velocities of
the disk and a particle upon collision. The assumption
that all collisions will be elastic makes this easier, as it
allows for the combination of the laws of Conservation
of Momentum and Conservation of Energy. These are
known to be

m1v1 + m2v2 = m1v
′
1 + m2v

′
2 (1)

for Conservation of Momentum, and

1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2
m1(v′1)2 +

1

2
m2(v′2)2. (2)

for Conservation of Energy. It is possible to combine the
two equations to find specific equations for the resulting
velocities after a one dimensional collision of two objects.
These turn out to be

v′1 =
v1(m1 −m2) + 2m2v2

m1 + m2
(3)

and

v′2 =
v2(m2 −m1) + 2m1v1

m1 + m2
. (4)

Now, this gives results for when two objects collide one
dimensionally, but in a simulation of Brownian motion,
the collisions can have two dimensional components. In



2

order to use these equations for the calculations, it is
necessary to find a way to view any possible collision
between the disk and a particle from a frame of reference
such that the collision is one dimensional.

FIG. 1: Diagram of the vectors used in calculation of velocity
for use in Conservation of Momentum.

One way to do this is to consider, when a collision
occurs, the line connecting the centers of the particle and
disk. The respective velocities of the disk and particle
can be viewed as being made of two components: one
along the connecting line, and one perpendicular to it,
as shown in Fig. 1. The particles can be thought of as
reflecting off each other along an axis orthogonal to the
connecting line. As such, the velocity components along
that axis, denoted v‖ as they are parallel to the reflecting
line, will remain unchanged, and all that will be affected
are the components along the connecting line, denoted
v⊥ as they are perpendicular to the reflecting line.

Now Eq. 3 and 4 can be used with the v⊥ components
as the starting velocities. This will give a new perpendic-
ular component of velocity to both the disk and particle,
which when added to their respective unchanged v‖ com-
ponents, gives the new total velocity vectors of the disk
and particle.

Brownian Motion has a distinctive quality that, for a
number of N collisions, the root mean square of the dis-
tance traveled by the large particle will be approximately√
N [1]. This can be checked by observing the disk’s

travel through the medium, and calculating its distance
every few steps and comparing it to a recorded number
of collisions.

III. PROGRAM ASSEMBLY

To simulate the phenomenon of Brownian Motion, I
created a program that set up a large particle and a set
of 200 smaller particles. The basis of the program’s func-
tionality revolved around the interactions of the particles.
In my simulation, the interactions were based on the as-
sumption that all collisions were elastic, and therefore
conserved both momentum and kinetic energy, as well

as the assumption that the smaller particles were point
masses and did not interact with each other. There are
three main portions to the program that operate behind
the scenes of the simulation: the initialization compo-
nent, the evolution component, and the collision compo-
nent.

The initialization part of the program determines the
starting conditions of the simulation universe. This in-
volves setting up the boundary conditions of the universe,
the starting mass, radius, position and velocity of the
large particle, and the mass and starting positions and
velocities of the small particles. The boundaries of the
universe are defined simply by user input. The large disk
is by default set to position coordinates (0,0) with a ve-
locity of 0 m

s . The many smaller particles are given their
starting conditions, position and velocity, by a pseudo-
random number generation from the C++ arc4random()
function. Before the particles themselves are created, two
arrays of vectors are set up, one array for the position
vectors and one for the velocities. These arrays contain
n elements, where n is the number of particles that will
be placed in the universe, so that each entry corresponds
to a certain particle. For the position array, the coordi-
nates are generated as random numbers, limited by the
boundary size of the universe so that the particles are not
created outside. The velocities are defined by assigning a
random x component, which can have a magnitude from
0 to the default maximum velocity of 200 m

s . This ve-
locity did not have particular mathematical significance,
but was a compromise of the largest amount of parti-
cles before I began noticing a collision error, which will
be discussed in the Future Work section. These are also
randomly assigned to be either negative or positive. The
y component of the velocity is then determined by the
Pythagorean Theorem such that the magnitude of the
entire velocity vector equals 200 m

s , and is again ran-
domly set to be negative or positive. In this way, each
small particle has the same magnitude of velocity but dif-
ferent position and velocity directions. Once these arrays
are created, the particles are then created and assigned
their values from the arrays, and placed in the universe.

FIG. 2: Photo of the final simulation during motion.

Once all the starting conditions are set up, the pro-



3

gram then begins running the simulation. This animation
is controlled by an evolution function, which determines
how the particles will move and behave as time advances.
This is broken into three steps. First, both the particles
and disk are checked to see if they are going to collide
with a wall. In the event of a wall collision, the com-
ponent of velocity perpendicular to the wall is reversed,
while the parallel component is left alone. Secondly, the
program checks if any of the small particles are about to
collide with the large disk. This is done by determining if
their move forward will result in the distance between the
particle and disk’s centers being be less the sum of the
radii, which would indicate that the particle would move
inside the disk. If both of these tests pass, the particles
and disk are moved forward based on their current veloc-
ities. If the particle or disk hits a wall, it’s component
of velocity perpendicular to the wall is reversed, and the
parallel component is left alone. If a collision between
a particle and disk occurs, the program moves into the
colliding step.

When the colliding step has been activated, the pro-
gram proceeds to make a calculation to find the new ve-
locities of the disk and particle. This is done by finding
the components of velocity of the disk and particle along
the line joining their centers, and using them in a one
dimensional conservation of momentum calculation, as
discussed in the Theory section above. Once the new ve-
locities are found, the program has finished its calculation
and returns to the evolution step to continue advancing
the simulation.

The program displays the movement of the particles so
the user can see how the collisions affect the disk and it’s
momentum, as illustrated in Fig. III.

IV. CONTINUATION AND FUTURE WORK

While the program generates a simulation that seems
to be accurate in terms of the motion of the disk, there
are some abnormalities. The most noticeable is the fact
that every so often, the disk will appear to “eat” a smaller
particle. That is to say, the the particle will pass inside
the disk rather than colliding as it should. This happens
only rarely, but often enough to merit investigation into
how this effects the overall accuracy of the simulation.
One hypothesis for the origin of this event is that in the
evolution function, there is an incorrect way of updating

the positions of the particles. While it is difficult to tell
with so many particles bouncing around, it is possible
that this occurs when the disk is struck by more than one
smaller particle at once. The program does not have a
specific instruction as to how to deal with that situation,
and so it may be responding inappropriately. Another
possibility is that it originates from the order in which
the tests are conducted.

As for continuation of the project and future directions
that it could go, there are several options. I would like to
collect more data from the the current simulation, hope-
fully after repairing the inconsistencies mentioned above.
I would like to check how the system behaves when the
number of particles, their average velocity, and universe
size are variable.

Looking to where the project can go once the basics
are taken care of, one idea is the situation where the
large disk has a simulated high temperature, greater than
the average kinetic energy of the smaller particles [4].
The simulation could then attempt to determine how, if
at all, the outcome would change as the disk gradually
transferred energy to the particles. In this case, it might
be valuable to allow the small particles to interact with
each other as well as the disk. One concern about doing
this is that, under the current way in which the program
checks collisions, allowing the particles to bounce off each
other would change the number of checks needed from n
to n!, as each particle would have to check all of the others
to see if it would bounce. This would greatly increase
the runtime of the program, meaning a drastically slower
speed of simulation.

A possibility for dealing with that increase is to use
a different algorithm to determine the collisions. One
method would be to analyze the particles as they ad-
vanced through space time, and find where they would
intersect walls or each other, then recalculate after each
bounce. By doing the this kind of simple geometric cal-
culation, the runtime of the program would return to the
speed it is at now, or better, allowing for a very fast
calculation of a much more complicated system.

V. ACKNOWLEDGEMENTS

I would like to thank Dr. John Lindner, for his en-
couragement and help with finding the appropriate algo-
rithms for the collision calculations.

[1] D. S. Lemons. An Introduction to Stochastic Processes in
Physics. (The Johns Hopkins University Press, Baltimore,
2002).

[2] G. Li. Amplified effect of Brownian motion in bacterial
near-surface swimming. Proc. Natl. Acad. Sci. USA 105
18355-18359 (2008).

[3] M. J. Lax. Random Processes in Physics and Finance.
(Oxford University Press, Oxford, 2006).

[4] R. M. Mazo. On the theory of Brownian motion. VII.
A hot particle in a dense medium. Journal of Chemical
Physics 60 2634-2637 (1974).

[5] S. Hughes, J. F. Lindner, W. Ditto. Chaotic Brownian
Billiards, Centennial Meeting of the American Physical
Society (Atlanta Georgia, March 1999).

[6] T. Budd. Data Structures in C++ Using the Standard
Template Library. (Addison Wesley, Reading, MA, 1998).



4

[7] V. G. Kulkarni. Introduction to Modeling and Analysis
of Stochastic Systems. (Springer New York, New York,

2011).


