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A computer simulation was written to explore the dynamics of a two-dimensional, monodisperse
system of spherical particles. By treating beads as distinct elements, a phenomenological represen-
tation of the Bak, Tang and Wiesenfeld pile was obtained, allowing for a more in depth interaction
with pile dynamics than would many cellular automaton models. A pile was built by dropping beads
randomly onto a base, and the relationships between simulated forces determined angle of repose
and avalanche behavior. A magnetic field was successful in adding cohesion amongst the beads,
which were treated as single dipoles, and chains were observed to form within the pile along the
direction of lowest energy dipole orientations. Data suggested power law behavior in the distribution
of avalanche sizes, where about 86% of all avalanches were of the smallest sizes, and less than 0.1%
of avalanches were of 10 beads or more. Avalanche distributions are expected to increasingly di↵er
from this power law behavior as the magnetic field strength increases. Data runs were taken at low
magnetic field strengths, in trials consisting of 10 000 bead drops.

PACS numbers: 45.70.-n, 05.65.+b, 45.70.Ht

INTRODUCTION

A pile of granular materials is a complex, many-bodied
system that exhibits stochastic behavior in its cycles of
building and falling. When an element is added to the
pile, the disturbance dissipates a force through the ex-
isting pile. The resulting system of short range interac-
tions propagates in complex paths and determines the
resting place of the particle. This stability represents a
minimally stable state—a point at which the force could
propagate no further.

Over the course of many grain additions, the pile builds
to a critical angle of repose. At this point, the pile can
exhibit a wide range of e↵ects as a result of only a slight
perturbation. For example, any further grain additions
to the critical pile will bring the slope to a supercritical
critical state and cause avalanches of a range of sizes.

Critical systems are said to exhibit self-organized crit-
icality if they approach a critical point without depen-
dence on tuning parameters. A granular pile is an ex-
ample of such a system, approaching its minimally sta-
ble critical angle regardless of tuning parameters. In
addition to this “sandpile”, Bak, Tang, and Wiesen-
feld (BTW) proposed that a multitude of other systems,
including the formation of fractal patterns in nature,
self-organize toward critical points [1]. Further research
into self-organized criticality has suggested that the same
principles govern the behavior of earthquakes, the prop-
agation of forest fires, motor tra�c, and fluctuations in
the stock market [2].

Research at The College of Wooster has tested a num-
ber of parameters and how they a↵ect the avalanche be-
havior of a pile of spherical steel beads, where the beads
serve as an idealized sandpile. In changing the region
and height of bead drops, deviations in the probabilities
of avalanches have been observed. These e↵ects can be

seen in Fig. 1 where the avalanche size distribution sys-
tematically rolls o↵ from pure power law behavior.

FIG. 1: Avalanche probability versus size. As the drop height
increases, over four trials, roll o↵ from power law behavior be-
comes more prominent. The inset figure displays characteris-
tic avalanche sizes—the points at which data begins to deviate
from a pure power law—against drop height. The exponent
⌧ of the power law fit was measured as 1.47± 0.03 [3].

Altering the cohesion between the beads has also been
shown to cause deviation from power law behavior. By
placing the pile within a magnetic field, a magnetic in-
terparticle force arises and causes cohesion between the
beads [4].
Researchers at The College of Wooster magnetized

steel beads by placing them within a pair of Helmholtz
coils. As suspected, clustering within the pile devel-
oped into vertical chains, and groups of beads became
somewhat resistant to forces propagating through the
pile. These e↵ects led to a decrease in the probability
of medium sized avalanches and an increase in the size
and probability of large avalanches.
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Our simulation tests the a↵ects of magnetic fields on
pile behavior and allows experiments to control such pa-
rameters as air viscosity, drop height, and the material
properties of the beads. The ability to alter these param-
eters, along with the convenience of the speed of compu-
tation, gives our simulation an advantage over experi-
mental methods, where data runs of 20 000 bead drops
take 54 hours to complete [5].

THEORY

Power Law Behavior

The wide range of length and time scales over which
critical behavior occurs can be modeled by a pure power
law describing the presence of a large probability of small
events and a smaller probability of large events. Accord-
ingly, the probability of an avalanche of size s in the bead
pile is

P (s) = P0s
�⌧

, (1)

where ⌧ is an exponent. Mean-field models find ⌧ to have
a value of 1.5 [3].

Magnetic Dipole Interactions

The magnetic field strength ~

B of a dipole in free space,
with permeability µ0, can be modeled by

~

B =
µ0

4⇡

3r̂~m · r̂ � ~m

r

3
, (2)

where ~m is the magnetic moment and r denotes the dis-
tance between poles. The direction of the field, repre-
sented by vectors pointing from the positive to negative
pole, can be seen in Fig. 2.

FIG. 2: The magnetic field lines of a dipole. The density of
field lines corresponds to the strength of the field.

When the dipole is exposed to an external magnetic
field, the potential energy U of the system is described

by the scalar product

U = �~m · ~B2, (3)

where ~

B2 represents the external magnetic field. The
force applied to the dipole then goes as the opposite of
the gradient of the energy

~

F = �~rU. (4)

For a system with two identical and vertically oriented
dipoles ~m1 = ~m2 = m, the expression for the force can
be written in terms of its x and y components. In the x

direction,

F

x

=
µ0

4⇡

3m2

�r

7
�x(�x2 � 4�y2). (5)

And in the y direction,

F

y

=
µ0

4⇡

3m2

�r

7
�y(3�x2 � 2�y2). (6)

The variables �x, �y, and �r represent the component
and total distances between the dipoles.
It is convenient to group the constants out front of

Eqns. 5 and 6, defining a single constant M as

M ⌘ µ0

4⇡
3m2

. (7)

SIMULATION METHOD

The computer simulation, coded in Obj-C/C++, is
based on a two-dimensional, distinct element method
similar to that of Fazekas, Kertész, and Wolf [6]. To
study avalanche behavior as it depends on a number
of pile parameters, we implement forces governing col-
lisions, magnetic interactions, gravity and air viscosity,
and the internal friction of the beads.
Beads are stored in an array whose width is the max-

imum number of beads. To update the interactions and
positions of the beads, the net force on each is divided by
the mass of the bead and converted to an acceleration,
according to Newton’s Second Law. An Euler-Cromer
algorithm then numerically integrates, converting accel-
erations to velocities, and then to positions. For the x

components, this method takes the form of

v

x

( v

x

+ a

x

dt, (8a)

r

x

( r

x

+ v

x

dt. (8b)

A similar method for the y components goes as

v

y

( v

y

+ a

y

dt, (9a)

r

y

( r

y

+ v

y

dt. (9b)

The position of the bead, here, is r, and dt, the integra-
tion time step. The time is incremented by dt using the
statement t ( t+ dt. A typical value for dt was 0.001 s.
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The contact force is modeled to limit the ability of
beads to overlap. As �r between two beads approaches
the radius of a bead R, the magnitude of the contact
force reaches an asymptotic limit and the position r of
a bead cannot come any closer. The contact force was
modeled as

F

c

= ↵

(�r �R)2

�r

, (10)

where ↵ is a constant adjusting the strength of the force.
The force of gravity was modeled simply as ~

F

g

= �m~g

where m is the mass of a bead, and ~g = 9.8 m/s2. ~

F

g

was

countered by a ground force ~

F

b

which shared a similar
shape to ~

F

c

and insured that beads did not pass through
the pile’s base. The base was made sticky so that an
initial layer of beads could form.

We implemented viscosity and friction for numerical
stability. The force due to the viscosity of air was mod-
eled as ~

F

v

= ��~v, where � is a strength coe�cient. ~

F

v

always opposed the direction of motion, and was usually
relatively weak with � < 1. For the frictional force ~

F

f

,
we represented the deformation of beads under stress as

~

F

f

= �µv̂F

b

. (11)

~

F

f

, here, e↵ectively depends on the distance between two
objects [7]. The strength coe�cient µ is usually initial-
ized as 0.50.

To achieve the e↵ect of magnetization in the pile, the
beads are treated as single dipoles, all of which are par-
allel to a uniform magnetic field running vertically. The
identical dipoles present a special case, as previously
mentioned, and the x and y components are calculated
separately using Eqns. 5 and 6.

Comparing Eqns. 5 and 6, notice that interacting
dipoles will achieve a lowest energy state when aligned
head-to-tail. Given the vertical orientation of our dipoles,
head-to-tail alignment occurs at �x = 0 and yields a mag-
netic force, purely in the y direction, of

F

y

=
�2M

�y

4
. (12)

This configuration is the energetically most favorable
state, and consequently, beads tend to form vertical
chains within the pile [6]. The relationship of �x and
�y to the magnetic force in the vertical direction can be
seen in Fig. 3.

A double “for” loop cycled through every potential
bead-bead interaction when calculating the contact and
magnetic forces. As the magnetic force acts at a distance,
and cycling through every bead combination would be in-
e�cient, we employed a cuto↵ distance for the checking
of magnetic interactions. This distance was 6 times the
diameter of a bead, a value that maintains the realism of
magnetic clustering behavior and changes the magnetic
energy per particle by less than 5% [8].

FIG. 3: The magnetic force in the y direction plotted against
various dipole orientations. The darkening range of red colors
indicates increasingly negative values of Fy, while the range
of blues indicates increasingly positive values of Fy. Notice
that Fy approaches negative infinity as the dipoles approach
the lowest possible energy alignment.

In order to let avalanches run their course without the
interference of dropping beads, the total kinetic energy of
the system is monitored. The next bead is only dropped
if the pile’s kinetic energy has fallen below a certain point,
indicating that the beads have settled and any avalanches
have ended.
When a new bead is dropped onto the pile, there is

potential for an avalanche of a wide range of sizes to
occur. To record the size of avalanches, we increment
a counting variable for each bead that leaves the width
of the pile and falls below the origin. We allow beads
to fall o↵ both sides of the pile. The avalanche count
is continued for each bead that leaves the pile until K
approaches 0 and the next bead is dropped. At this point,
the counting variable is cleared and made available to
tally the avalanche size for the life time of the next bead
drop.
An experiment mode was included to take avalanche

data over a large number of bead drops. This option
bypassed the drawing routine and sped up the simula-
tion speed so that a large number of data points could
be collected quickly. Using print statements, the initial
conditions for the trial, avalanche sizes, and number of
bead drops were recorded to be used for analysis.

RESULTS

The simulation was successful in emulating the multi-
tude of short range forces governing granular systems in
nature. Given initial conditions, bead after bead would
fall, piling on top of one another until a pile similar to
that of Fig. 4 was formed. Small values for � and µ

allowed the beads to bounce more, taking longer to dissi-
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FIG. 4: A typical pile. The random arrangement of the base
layer played a large role in the dynamics of small piles.

pate their energy. High values for  and ↵ made bead in-
teractions more rigid and allowed the pile to build higher.

FIG. 5: Avalanche size versus time for the M = 0 N · mm2

trial. The large number of occurrences of small avalanches
relative to the low frequency of large avalanches is shown well
here.

To investigate the e↵ect of the magnetic field, two ini-
tial runs of 10 000 bead drops were completed. These two
runs, at M = 0 N · mm2 and M = 20 N · mm2, showed
little di↵erence in avalanche behavior despite their di↵er-
ences in magnetic field strength.

The first trial was run without a magnetic field and the
data was analyzed using Igor Pro. Viewing an avalanche
size versus time plot, shown in Fig. 5, indicates that most
avalanches were comprised of a single bead, and that in-
creasingly large avalanches were increasingly rare. This
power law behavior, where the probability of small events
is large and that of large events is small, is confirmed
when the fractional occurrence of average avalanche sizes
is calculated. For the M = 0 N · mm2 run, 1-2 bead
avalanches took up 85.8 ± 0.1% of the total number of
avalanches. 3-4 bead avalanches made up 11.6± 0.1% of
the total. Following the downward trend, 2.2±0.1% were
5-6 bead avalanches, and 0.35± 0.1% were of 7-8 beads.
Finally, avalanches of 10 beads or more comprised of only
0.1± 0.1% of the total.

The similarity between the 20 N ·mm2 and 0 N ·mm2

runs was due to the magnetic field being far too weak.
As it turns out, noticeable cohesion amongst the beads

only occurs with M � 100 000 N · mm2, corresponding
to a magnetic dipole moment of 0.577 A · m2. Above
100 000 N · mm2, beads can be seen aligning into the
predicted chain formations.

CONCLUSION

A two-dimensional, monodisperse pile of magnetizable
beads is capable of modeling the behavior of granular sys-
tems in the presence and absence of magnetic fields. Our
simulation’s adjustable parameters also make it possible
to emulate beads of various coe�cients of restitution, and
piles of various geometries. As seen in the plots of prob-
ability versus average avalanche size, and confirmed by
work in similar studies, the distribution of avalanche sizes
follows power law behavior indicative of self-organized
criticality. In addition, the unpredictability of avalanche
sizes in time confirms the simulation’s ability to build a
pile to its critical point.
The addition of a magnetic field successfully produces

cohesion between the beads, but is yet to be tested over
large numbers of bead drops. Based on the experimen-
tal and computational results of other research groups,
we expect trials with increasing field strengths to yield
avalanche size distributions with systematic roll o↵ from
pure power law behavior. In addition, increases in the
size and probability of large avalanches should occur, ap-
pearing as second humps in the distributions of avalanche
sizes [5, 6, 9].
Future work at The College of Wooster can improve

this simulation by increasing processing speed and taking
the simulation into three dimensions where new geometry
within the system can a↵ect pile dynamics.
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