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The gravitational potential energy for two line segments is derived and simplified in terms of
geometric vectors. In the limit that the length of one of the line segments goes to zero the previously
know potential energy is verified. As the length of the second line segment goes to zero Newton’s
formula for the potential energy between two point masses is derived. The kinetic energy for the
system is derived and the Lagrangian formulation is used to show that 3 out of the 6 coordinates
needed to describe the system are ignorable.

PACS numbers: 45.20.D-,45.20.dc,45.20.Jj,

INTRODUCTION

Central to the study of celestial dynamics is the three
body problem [1, 2]. If only two point mass bodies are
involved, the problem can be solved exactly, but the addi-
tion of a third body makes the equations unsolvable and
numerical techniques are required. An understanding of
the intricacies requires greater perseverance.

When the two body problem is extended it is often un-
solvable and may display interesting phenomena such as
chaos. For example, if the two bodies are confined in a
spherical universe, arbitrarily complex orbits can occur
[3]. By inverting Newton’s third law and preserving New-
ton’s second law, the dynamics of the two body problem
can be chaotic [4]. By extending one of the point masses
into a line segment both order and chaos can be demon-
strated. This is known as the slash-dot problem [5].

The study of asteroids is one phenomenon that re-
quires research in two body problems. Unlike moons,
planets, and stars, when studying the dynamics of aster-
oids, which are very small and irregularly shaped, it is
inadequate to assume point masses. As energy can be
stored in rotational degrees of freedom of these irregu-
larly shaped asteroids, angular momentum exchange can
unbind orbits causing asteroid escape [6]. Escape in this
manner is not possible within the classical two body prob-
lem. To be able to predict the motion of these asteroids,
it is necessary to understand the gravitational dynamics
with the point mass assumption removed.

The study of the gravitational dynamics between two
line segments is examined in [7, 8]. The universe is re-
stricted to only two dimensions yet the dynamics seem
chaotic.

THE POTENTIAL ENERGY

Derivation

Newton proposed that the gravitational potential en-
ergies between two point masses is

V = −GmAmB

r
, (1)

where G is the gravitational constant, mA and mB are
the masses of the particles, and r is the distance between
the particles. The gravitational energy between two line
segments is then

V = −GmAmB

LALB

∫ LB/2

−LB/2

∫ LA/2

−LA/2

1

‖δA − δB‖
dλA dλB,

(2)
where LA and LB are the lengths of the slashes, δA is a
vector pointing from the origin to an arbitrary point on
slash A and δB is a vector pointing from the origin to an
arbitrary point on slash B. In terms of λA and λB ,

δA = rA + λAR̂A, (3a)

δB = rB + λBR̂B, (3b)

where {rA, rB} point from the origin to the center of
mass of each slash and {R̂A, R̂B} are unit vectors point-
ing in the direction of each slash. These vectors are shown
in Fig. 1. By varying λA and λB over the full length of
each slash all possible values of ‖δA − δB‖ may be real-
ized.

Use polar coordinates to derive values for ‖δA − δB‖
in terms of {r, φ, ϕA, ϕB}. These coordinates are shown
in Fig. 2, where r is defined to be the distance between
the center of masses of the slashes,

r = rA − rB, (4a)

r = ‖r‖, (4b)

φ is the polar angle with respect to the {x̂, ŷ} axis,

φ = arctan

(
ry
rx

)
, (5)
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FIG. 1: Several useful vectors to define the position of each
slash.

and {ϕA, ϕB} are the angles of the slashes with respect
to the {r̂, φ̂} axis,

ϕA = arctan

(
RAφ
RAr

)
, (6a)

ϕB = arctan

(
RBφ
RBr

)
. (6b)

Unlike the {x,y} basis vectors the {r̂, φ̂} basis vectors
may change with time.
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FIG. 2: The coordinates are used to express ‖δA − δB‖.

By examining Fig. 2 one can determine that

δAr − δBr = r + λA cosϕA − λB cosϕB , (7a)

δAφ − δBφ = λA sinϕA − λB sinϕB . (7b)

What is convenient about the choice of coordinates is
that the potential energy is independent of φ. When
the problem is examined in the Lagrangian formulation
φ becomes ignorable.

With some manipulation we can write Eq. 2 in the
form

V = −K
∫ LB/2

−LB/2

∫ LA/2

−LA/2

1√
α+ βλA + λ2A

dλA dλB ,

(8a)

K =
GmAmB

LALB
, (8b)

α = r2 + λ2B − 2rλB cosϕB , (8c)

β = 2r cosϕA − 2λB cos(ϕA − ϕB). (8d)

Use the identity∫
dx√

α+ βx+ x2
= log

(
β + 2x+ 2

√
α+ βx+ x2

)
,

(9)
to integrate with respect to λA. With some more algebra
the integral may be written as

V = −K
∫ LB/2

−LB/2

(U − L) dλB , (10a)

U = log

(
−mU cos ∆ + dU sin ∆ +

√
m2
U + d2U

)
,

(10b)

L = log

(
−mL cos ∆ + dL sin ∆ +

√
m2
L + d2L

)
, (10c)

where

∆ = ϕA − ϕB , (11a)

mU = λB −
LA
2

cos ∆− r cosϕB , (11b)

mL = λB +
LA
2

cos ∆− r cosϕB , (11c)

dU =
LA
2

sin ∆− r sinϕB , (11d)

dL = −LA
2

sin ∆− r sinϕB . (11e)

To solve the second integral use the identity∫
log
(
−m cos θ + d sin θ +

√
m2 + d2

)
dm, (12a)

= −m+ d csc θ log(A1) + (m+ d cot θ) log(A2), (12b)

A1 = m+
√
m2 + d2. (12c)

A2 = −m cos θ + d sin θ +
√
d2 +m2. (12d)

The complete analytic form of the potential is long
and unenlightening. The full form of the potential can
be found in [7].

Geometric Vector Simplification

The complete analytic expression for the potential en-
ergy is long and messy. However it is simplified to a



3

RB

rnp

rpp

RA

rpn

rnn

FIG. 3: Useful geometric vectors. The potential energy can be
completely specified using these six vectors, the gravitational
constant, and the mass density of each slash.

manageable form when geometric vectors are analyzed.
Six geometric vectors are shown in Fig. 3. rpp is a vector
that points from the top of slash B to the top of slash A.
rpn is a vector that points from the bottom of slash B to
the top of slash A. rnp is a vector that points from the
top of slash B to the bottom of slash A. rnn is a vector
that points from the bottom of slash B to the bottom of
slash A. The potential energy written in terms of these
vectors is

V = −K(L1 + L2 + L3 + L4 + L5 + L6 + L7 + L8),

(13a)

L1 = ‖R̂B × rnn‖ csc ∆ log

[
−rnn · R̂B + ‖rnn‖
−rnp.R̂B + ‖rnp‖

]
,

(13b)

L2 = ‖R̂B × rpp‖ csc ∆ log

[
−rpp · R̂B + ‖rpp‖
−rpn.R̂B + ‖rpn‖

]
,

(13c)

L3 = ‖R̂B × rnn‖ cot ∆ log

[
rnn · R̂A + ‖rnn‖
rnp.R̂A + ‖rnp‖

]
,

(13d)

L4 = ‖R̂B × rpp‖ cot ∆ log

[
rpp · R̂A + ‖rpp‖
rpn.R̂A + ‖rpn‖

]
, (13e)

L5 = R̂B · rpn log
[
rpn · R̂A + ‖rpn‖

]
, (13f)

L6 = R̂B · rnp log
[
rnp · R̂A + ‖rnp‖

]
, (13g)

L7 = −R̂B · rpp log
[
rpp · R̂A + ‖rpp‖

]
, (13h)

L8 = −R̂B · rnn log
[
rnn · R̂A + ‖rnn‖

]
. (13i)

where

csc ∆ =
1

‖R̂B × R̂A‖
, (14a)

cot ∆ =
R̂B · R̂A

‖R̂B × R̂A‖
. (14b)

Limits of the Potential

As the lengths of one of the slashes goes to zero the
potential energy of the slash-slash body problem should
equal the potential of the slash-dot body problem. Be-
cause the potential energy is proportional to the mass
density of each slash {mA/LA,mB/LB}, when one of the
slashes goes to a point, the mass density goes to infinity.
The value of L1 +L2 +L3 +L4 +L5 +L6 +L7 +L8 = LN
goes to zero as one of the slashes goes to zero. There-
fore the potential energy goes to 0/0 as one of the slashes
goes to zero. L’Hôpital’s rule solves the dilemma. With-
out loss of generality let LA go to zero, then

lim
LA→0

V = −GmBmA

LB

dLN
dLA

. (15)

Simplification yields the solution

V = −GmBmA

LB
log

[
−R̂B · rpp + ‖rpp‖
−R̂B · rnn + ‖rnn‖

]
, (16)

which is the potential energy derived in [5]. Repeating
the same procedure to take the limit as LB goes to zero
yields Eq. 1 which is the potential energy between two
point masses.

THE KINETIC ENERGY

The total kinetic energy for each slash is the motion of
the center of mass plus the rotation about the center of
mass,

T = TA + TB , (17a)

TA =
1

2
mA ˙rA

2 +
1

2
IAω

2
A, (17b)

TB =
1

2
mB ˙rB

2 +
1

2
IBω

2
B, (17c)

where {ωA, ωB} is the angle of each slash measured from
the {x̂, ŷ} axis

ωA = φ+ ϕA, (18a)

ωB = φ+ ϕB , (18b)

and {IA, IB} are the moments of inertia for each slash,

IA =
1

12
mAL

2
A, (19a)

IB =
1

12
mBL

2
B , (19b)
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Make the change of variables to switch to the center of
mass frame,

T =
1

2
MṘ2 +

1

2
µṙ2 +

1

2
(IAω̇

2
A + IB ω̇

2
B), (20a)

where R gives the location of the center of mass of the
system, µ is the reduced mass, M is the total mass, and

ṙ2 = ṙ2 + r2φ̇2. (21)

THE LAGRANGIAN FORMULATION

In the Lagrangian formation

L = T (Ṙ, φ̇, ṙ , ϕ̇A, ϕ̇B)−V(r , ϕA, ϕB), (22)

therefore the coordinates R and φ are ignorable. The
Lagrangian equations of motion

d

dt

∂L
∂ṗ

=
∂L
∂p

, (23)

imply a constant of motion for each ignorable coordinate:

Cx = MṘx, (24a)

Cy = MṘy, (24b)

` = IA(φ̇+ ϕ̇A) + IB(φ̇+ ϕ̇B) + µr2φ̇ (24c)

where ` is the total angular momentum. For simplicity
take C1 = C2 = 0 and solve for φ̇ in terms of ` and the
kinetic energy becomes

T = T1 + T2, (25a)

T1 =
1
2µr

2(IAϕ̇
2
A + IBϕ̇

2
B) + 1

2IAIB(ϕ̇A − ϕ̇B)2

IA + IB + µr2
, (25b)

T2 =
1
2`

2 + 1
2µṙ

2(IA + IB + r2)

IA + IB + µr2
. (25c)

Therefore the simplified Lagrangian is

L = T (r, ṙ, ϕ̇A, ϕ̇B)− V (r, ϕA, ϕB). (26)

The final 3 Lagrange equations of motion must be nu-
merically solved for a given set of initial conditions

d

dt

∂L
∂ṙ

=
∂L
∂r
, (27a)

d

dt

∂L
∂ϕ̇A

=
∂L
∂ϕA

, (27b)

d

dt

∂L
∂ϕ̇B

=
∂L
∂ϕB

. (27c)

FUTURE WORK

Future work includes simplifying the generalized radial
force and torques,

{
dL
dr
,
dL
dϕA

,
dL
dϕB

}
, (28)

in terms of the geometric quantities

{
rpp, rnn, rnp, rpn, R̂A, R̂B

}
. (29)

Initial progress has been made.

A current weakness of the model is that the potential
energy is undefined when the slashes are parallel, or ∆ =
0. The first idea to avoid this problem is to use numerical
techniques to avoid the issue. Theoretically ∆ will rarely
be exactly zero so this method is plausible. Another idea
would be to take the limit of the generalized torques and
radial force as ∆ → 0, and then when ∆ is sufficiently
small temporarily use the generalized radial force and
torques limit formulas during the numerical integration.
Further research would be needed to determine the best
method.
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