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The experiment consisted of determining the lattice constants of monocrystals using Bragg re-
flection. The second part of the experiment was investigating the lattice structure of monocrystals.
Using the adjusted Bragg’s law for the crystals that have cubic structure (NaCl and LiF), the lattice
constant for NaCl has been determined to be 565.1±0.7 pm, which is 0.1% off from calculated value
565.2 pm. The lattice constant for LiF has been determined to be 402.4 ± 0.9 pm, which is 0.1%
from calculated value 402.7 pm. In the second part, using obtained Laue diagrams, It has been
noted that the Laue spots for NaCl and LiF crystals are highly symmetrical. At the same time it
has been noted that if ∆t and L are being varied, the shape of the Laue diagrams is going to remain
the same, with constant values for spacing of lattice planes, Bragg angle and wavelength.

I. INTRODUCTION

The problem of the determining the crystal structure
was tackled by numerous English scientists that proposed
three-dimensional models of possible structures. But the
problem was that the investigations were not systematic
and at the time, reality of the atom was still not univer-
sally accepted. Furthermore, there was no way how to
actually determine a space group and test the theory that
the atoms of crystal structures were actually arranged in
patterns, that is predicted by space-group theory.[1]

In 1895 Roentgen discovered x-rays. There were dif-
ferent theories of what nature X-ray could be. Wiechert
and Stokes believed that the X-rays must be short waves
consisting of electromagnetic pulses. At the same time,
W. H. Bragg believed in the corpuscular theory of X-
rays[1, p. 1-6]. To be able to talk about the actual
nature of X-rays we have to understand the phenomenon
of diffraction of visible light by gratings. After diffrac-
tion experiments were conducted on a fine wedge-shaped
slit, it was assumed that the radiation had the same
wave properties as light, even though it was of a shorter
wavelength. Von Laue came to an idea that the lattice
structure could serve as natural three dimensional diffrac-
tion grating for a radiation provided that wavelength and
cell side were of the same order of magnitude. He also
assumed that the lattice points should be occupied by
atoms or molecules.

Von Laue’s initial experiments failed. After some
adjustments, his experiment succeed, he proved the pe-
riodic arrangement of atoms in crystals. The wave na-
ture of X-rays, and theory named after him: von Laue’s
diffraction theory. For his experiment he used a crystal
of cubic ZnS, which was placed in the path of a fine beam
X-rays. Photographic plate, that was used to record the
effects, was placed behind the crystal and normal to the
beam. ZnS crystal managed to produce only a specific
selection of the diffraction spots. Laue described this by
attributing five wavelengths in the radiation. The results
of his experiments were published in 1912.[1]

Laue’s publication produced a lot of new interest in
determining the crystal structure, especially in England.

W. H. Bragg and his son W. L. Bragg shared the interest
in Laue’s work, and decided to do their own experiments
to test Laue’s work. W. L. Bragg confirmed that Laue’s
photographs were due to diffraction, but the explanation
for the spots needed to be modified. He observed that the
diffracted beam was being reflected by the crystal, which
could be explained if the diffraction effect can be seen as a
reflection of X-rays from the lattice planes of the crystal.
W. L Bragg’s tests of this theory showed that all wave-
lengths over a certain range were represented in the X-
ray beam and that the reflection effect was equivalent to
a selection from the continuous spectrum of wavelength
determined by spacing of the lattice planes parallel to
the plate surface of the mica crystal. This lead him to
formulation of his famous Bragg’s law:

n · λ = 2 · d · sinθ, (1)

where n is an integer, λ is the wavelength of the incident
wave, d is the spacing of the reflecting panes, and θ is
the angle of reflection.[1]

II. THEORY

Before we start talking about diffraction patterns of
x-rays, we should note two facts: 1) the incident beam
and the diffracted beam are always coplanar; 2) the angle
between the diffracted beam and the transmitted beam
is always 2 ·θ. The condition under the diffraction occurs
is that the wavelength of the wave motion is of the same
order magnitude as the repeat distance between scatter-
ing centers.
We can see from Figure 1 that the second wave travels
longer distance A’B’ and B’C’, then the first wave. We
can have constructive interference only if ∆ = A′B′ +
B′C ′ is a multiple of n λ, where n can have integer val-
ues of 1 and bigger. This gives us:

∆ = n · λ. (2)
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FIG. 1: Geometry behind Bragg scattering. The figure comes
from [2].

Looking at the Figure 1, we can also note using geometry
that :

∆ = 2 · d · sinθ, (3)

where d is the spacing between parallel lattices, and θ is
the angle of reflection. If we equate Equations 2 and 3
we get Equation 1, which is Bragg’s law [3].
From Bragg’s law, we can see that since sinθ has to be
less than 1(cause the max value sine function has is 1) :

n · λ
2d′

= sinθ, (4)

then n · λ has to be less then 2d’. Since n=0 means that
the diffracted beam is in the same direction as transmit-
ted beam, the lowest value that n can have is 1, which
implies that:

λ < 2 · d′. (5)

Since for most crystals d < 3 · 10−10 m, that implies that
the biggest value that λ can have is 6 · 10−10m[4, p. 95].

In the experiment only crystals with cubic structure
are being used. The cubic structure is specific, because
the lattice planes run parallel to the surfaces of the crys-
tal’s unit cells, which implies that spacing d is one half
of the lattice constant:

d =
a0
2
. (6)

This can be seen graphically in Figure 2.
From where it follows that:

n · λ = a0 · sinθ, (7)

where a0 is lattice constant. From here we can calcu-
late the lattice constant for each of the crystals, NaCl
and LiF. In this experiment x-rays that are used are the
molybdenum x-rays. These x-rays have two lines, with
corresponding wavelengths [5]:

Kα = 71.08 pm,Kβ = 63.09 pm. (8)

FIG. 2: Three-dimensional representation of the structure of
NaCl. Picture taken from [5].

FIG. 3: Two dimensional representation of Laue condition of
two neighbouring x-rays. Picture taken from [6].

The cubic structure of the crystals is also neat for
determining the Laue condition for constructive interfer-
ence, because the rows of the points associated with the
three spatial directions are perpendicular to each other,
with the distance between the points, a0, always being
the same.
Looking at Figure 3, we can see that the x-ray can be
diffracted at different lattice planes. This implies that:

∆ = ∆1 −∆2 = a0 · cosα1 − a0ċosα2, (9)

where α1 is an angle between the incoming x-ray and the
row of points, α2 is angle between the diffracted x-ray and
the row of points. Now that we know this fact we can
construct the Laue condition for constructive interference
in three dimensions [6]:

a0 · cosα1 − a0ċosα2 = h× λ

a0 · cosβ1 − a0ċosβ2 = k × λ

a0 · cosγ1 − a0ċosγ2 = k × λ. (10)
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FIG. 4: Unit vectors s1 and s2, and their connection with
vector g = λ ·G. This comes from [6]

The quantities h, k, l are integer numbers and they are
called Miller indices. In order to simplify our understand-
ing of the theory let us introduce unit vectors, as seen in
Figure 4.:

s1 = (cosα1, cosβ1, cosγ1)

s2 = (cosα2, cosβ2, cosγ2). (11)

Taking into consideration our new unit vectors we can
rewrite Laue condition as:

s1 − s2 = λ ·G, (12)

where B is vector of the reciprocal lattice, and is equal
to B = (h, k, l) · (1/a0). Since s1 and s2 are unit vectors,
they have equal magnitudes, which implies that vector
G is perpendicular to bisectrix S between the incoming
and the diffracted x-ray. This implies, if we plug in the
magnitude of vector G, that we get Bragg’s law [6]:

λ = 2 · sinθ · a0√
h2 + k2 + l2

, (13)

where:

d =
a0√

h2 + k2 + l2
. (14)

III. PROCEDURE

The experiment consisted of two parts. First part
was determining the lattice constants of monocrystals,
NaCl and LiF, using Bragg’s reflection. Second part of
the experiment was investigating the lattice structure
of monocrystals, NaCl and LiF, by analyzing Laue
diagrams.

Bragg Reflection: The experimental apparatus
consisted of X-ray apparatus Leybold 554 811 and NaCl

FIG. 5: X-ray apparatus (554 811) with goniometer.

and LiF crystals. The apparatus can be seen in Figure
5.
The apparatus already came setup, but the instructions
on how to setup the Bragg configuration can be found
in [5]. The first step that was done was to make sure
that the apparatus is aligned properly according to the
instruction sheet. There were some modifications done,
the distance between slit diaphragm of the collimator
and the target arm was set to 5 cm. The distance
between the target arm and the slit diaphragm of the
sensor was set to 6 cm. The apparatus was manually
aligned to the zeroth position. Apparatus was also
connected to PC using an USB cable. The program,
X-ray Apparatus, needed to operate the apparatus and
perform the data measurements was pre installed on the
PC.

The first data run was performed using LiF. The
crystal was placed on the appropriate holder on goniome-
ter, and tightened with the knurled screw. The voltage
of the tube was set to U = 35 kV, while the current
emission was set to I =1 mA. Maximum counting rate
for the sensor mode was found at the angle 19.7o, and
for the target mode it was at the angle 10.3o. After
the system has been aligned the data measurement has
been taken with the following configuration: U = 35
kV, I =1 mA, ∆β = 0.1o, ∆t = 10s, and β going from
4o to 34o, where ∆β is angular step. The data has
been measured and transferred to the PC by pressing
the SCAN key. Using the command “Calculate Peak
Center” the width of each peak has been measured in
order to find the glancing angle. The value of the angles
have been recorded and the data has been analyzed,
which will be discussed in the following section.

The second data run was performed using NaCl
crystal. LiF crystal has been replaced with the NaCl
crystal. Maximum counting rate for the sensor mode
was found at the angle 14.2o, and for the target mode it
was at the angle 8.7o. The data measurements have been
taken with the same configuration, as in the previous
part: U = 35 kV, I =1 mA, ∆β = 0.1o, ∆t = 10s, and β
going from 4o to 24o. The values for glancing angle have
been found using the same way as for the previous part
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for LiF. Data will be analyzed in the following section.
Laue diagrams:
In order to perform this part of the experiment, the
apparatus needed to be adjusted. The goniometer was
removed. First part to removing the goniometer was to
remove the sensor from its seat, and then the knurled
screws of the bottom guide groove were removed.
Goniometer was then slid to the left in the experiment
chamber, and the cable was unplugged. The sensor arm
was moved to position 0o and the goniometer was finally
removed. Next step was placing the film holder inside
the apparatus. The mounting plugs of the film holder
were placed into the mounting sockets in the experiment
chamber. Experiment was conducted with NaCl and
LiF crystals [6].

First NaCl crystal was placed on the pinhole
diaphragm of the collimator. Agfa Dentus M2 Comfort
x-ray film was placed on the holder, aligned so that the
center of the film matched the marked center of the
film holder. The film was placed on the front side of
the film holder(first data gathering was done with the
film on the backside of the film holder, as gathered data
wasn’t as good as when the film was placed in front).
The distance, L, between film holder and collimator was
varied, between 15 and 11 mm. The data measurements
were taken with U = 35 kV, I =1 mA, ∆β = 0.0o,
∆t = 1800s. Third data run has been done with
∆t = 2100s. After the film has been exposed to x-rays,
next step was developing the film. This was done under
the dark room conditions. Mixture for developing and
fixing were first prepared. For developing three parts of
water (300 ml) and 1 part of the developer (100 ml) were
mixed in a tray. For fixing three parts of water (300 m)
and 1 part of the fixer (100 ml) were mixed in a tray.
Film was first placed in the developer for approximately
2 minutes and 20 seconds. After that the film was
washed under the running water for 15 s. Then the film
was soaked into the fixer for 2 minutes. After that the
film was again washed under the running water for 4
minutes in order to ensure radiograph quality required.
After that films were scanned on a Epson scanner with
a resolution of 1600 dpi. Next step was analyzing the
scans using Canvas X. Scans were imported into Canvas,
and the size of the films was set to 5.7 cm by 7.5 cm.
The center of the coordinate system was set into the
center of the Laue diagram, and the x and y coordinates
were determined.

LiF crystals were also used to create Laue diagrams.
NaCl crystal was removed, and LiF crystal was placed
instead of it on the collimator. The data measurements
were taken with U = 35 kV, I =1 mA, ∆β = 0.0o,
∆t = 1200s. The distance L was varied from 11 to 15
mm. The film has been developed and the data has been
analyzed in the same way as previously explained for
the NaCl crystal. The purpose of this experiment
is to evaluate Laue diagrams for NaCl and LiF. The
experiment and coordinate system is setup as described
in Figure 6.

FIG. 6: Diagram of x-ray that is diffracted on the crystal at
point K and hits the film at point P. Picture taken from [6].

The angle, 2θ, at which diffracted ray leaves the crystal
can be represented from looking at Figure 4 as:

tan2θ =

√
x2p + y2p

L
, (15)

where L is the distance between the crystal and x-ray
film. The coordinate zQ can be calculated from the for-
mula :

zQ =
√
x2Q + y2Q + L2 − L. (16)

NaCl and LiF crystals, that are used in this experiment,
have been cut parallel to the plane (1 0 0). From here it
follows that:

h : k : l = xQ : yQ : zQ, (17)

where h,k,l are smallest triple of integers that fulfill Equa-
tion 17. The spacing of lattice planes can be calculated
from the Equation 14, and the wavelength can be cal-
culated from Equation 14, and the Bragg angle can be
calculated from[6]:

θ = arctan(
l√

h2 + k2
). (18)

IV. RESULTS & ANALYSIS

The goal of the first part of the experiment was
determining the lattice constants of monocrystals using
Bragg reflection. This was done using Equation 7 where
values for λ have been represented by wavelengths for
Kα and Kβ , as given in Equation 8. Values for glancing
angle have been measured as described in procedure
section. Values for n ran from 1 to 3, where each index
had a two values, one for Kα and other for Kβ . The
values for each valuable can be seen in Figure 7 and 8.
In order to calculate lattice constant a0 for both crystals
Equation 7 has been used, where a0 represents the slope
of n/λ versus sinθ. The graph representation of this
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FIG. 7: Table 1: Glancing angle θ of the LiF crystal.

FIG. 8: Table 2: Glancing angle θ of the NaCl crystal.

FIG. 9: Graph of n/λ versus sinθ, where NaCl is represented
by circles, and LiF is represented by squares.

relationship can be seen in Figure 9.

From the slopes it has been determined that lattice
constant for NaCl is equal to 565.1 ± 0.7 pm, which
is 0.1% off from calculated value 565.2 pm. Lattice
constant for LiF has been measured to be 402.4 ± 0.9
pm, which is 0.1% from calculated value 402.7 pm.

The second part of the experiment consisted of
investigating the lattice structure of monocrystals using
Laue diagrams. Five different diagrams have been made.
The data runs have been represented in Figure 10:
As it can be seen two variables have been varied, ∆t and
L. From the obtained results that have been performed
on NaCl crystals, it has been determined that varying

FIG. 10: Tabular representation of data runs performed in
the second part of the experiment.

FIG. 11: Spacing of lattice planes d, Bragg angle and wave-
length associated with the sets of lattice planes of NaCl

∆t while keeping L constant, does not actually affect the
corresponding Miller indices, Bragg angle, wavelengths
or the shape of Laue diagrams(it just makes them more
clear, if the exposure time is increased). This actually
makes sense because none of the equations that are
used to calculate Miller indices, or any other variable
are dependent on ∆t. This can be seen by looking at
the values for certain Miller indices, and corresponding
Bragg angle, wavelengths, in Figure 11. Like it has been
already said, the values are the same for both runs, so
only one generic table has been created for both cases.
In Figure 12, we can see an example of obtained Laue
diagram for third run on NaCl crystal, with some of the
Miller indices labeled.

From the obtained results that have been performed
on LiF crystals, it has been determined that varying L
while keeping ∆t constant, does not actually affect the
corresponding Miller indices, Bragg angle, wavelengths
or the shape of Laue diagrams (in case when the distance
l is increased we just get more clear and more spread
out Laue spots, take into consideration that we have
a big enough x-ray film). This actually makes sense
because the equation that is used to calculate Miller
indices does include L, but increasing L implies that x
and y coordinates are going to increase, as z coordinate
(increase is proportional to increase in z coordinate).
Since Miller indices are determined from the ratio of
x,y and z coordinates, it means that they are going
to remain basically the same, which gives us the same
values for Miller indices, Bragg angle, wavelengths
and the shape of Laue diagrams. This can be seen by
looking at the values for certain Miller indices, and
corresponding Bragg angle, wavelengths, in Figure 13.
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FIG. 12: Laue diagram at NaCl.

FIG. 13: Spacing of lattice planes d, Bragg angle and wave-
length associated with the sets of lattice planes of LiF

Like it has been already said, the values are the same
for both runs, so only one generic table has been created
for both cases.
In Figure 14, we can see an example of obtained Laue
diagram for the second run on LiF crystal, with some of
the miller indices labeled.

When looking at the both Laue diagrams, it is
easy to note that is a high symmetry among the Laue
spots. Each Laue spot has its own symmetrical pair.
Some of the spots might not be showing. There are
some errors. These errors might be due not proper
alignment of the x-ray film on the film holder. Some of
the errors might be due to not long enough exposing
the film to x-rays. Another source of the error might be
due to improper determination of Miller indices. This
error seems as the most probable one, cause if the x-ray
film was misaligned during the exposure time, then we
would have wrong x,y and z coordinates, which makes
the determination of Miller indices almost impossible.

FIG. 14: Laue diagram at LiF.

Some of the future work can consists of performing
Back-Reflection Laue method, instead of Transmission
Laue method that has been used for this experiment.

V. CONCLUSION

The experiment consisted of determining the lat-
tice constants of monocrystals using Bragg reflection.
The second part of the experiment was investigating the
lattice structure of monocrystals. Using the adjusted
Bragg’s law for the crystals that have cubic structure
(NaCl and LiF), the lattice constant for NaCl has been
determined to be 565.1± 0.7 pm, which is 0.1% off from
calculated value 565.2 pm. The lattice constant for LiF
has been determined to be 402.4± 0.9 pm, which is 0.1%
from calculated value 402.7 pm. In the second part, using
obtained Laue diagrams, It has been noted that the Laue
spots for NaCl and LiF crystals are highly symmetrical.
At the same time it has been noted that if ∆t and L are
being varied, the shape of the Laue diagrams is going
to remain the same, with constant values for spacing of
lattice planes, Bragg angle and wavelength.

VI. ACKNOWLEDGMENTS

I would like to thank to Professor Lehman for help-
ing me understand the experiment better. I also want to
thank the College of Wooster for providing the necessary
equipment needed for conducting the experiment.



7

[1] C. Tang, E. D. Brill, J. T. Pfeffer, Mathematical Models
and Optimization Techniques for Use in Analysis and
Design of Wastewater Tratment Systems , University of
Illinois, (Urbana, 1984)

[2] Carleton.edu website (Accessed at 04/28/2011)
http://serc.carleton.edu/research education/geochemsheets/BraggsLaw.html

[3] R. E. Dinnebier, S. Billinge, Powder diffraction: theory
and practice, Royal Society of Chemistry (Cambridge,
2008)

[4] B.D Cullity, S.R. Stock Elements of X-ray Diffraction, 3rd
ed., AddisonWesley Pub. Co., (Reading, Massachusetts,
1978)

[5] Leybold Physics Leaflets, P7.1.2.1

[6] Leybold Physics Leaflets, P7.1.2.2,
http://www.ld-didactic.de/literatur/hb/e/p7/p7122 e.pdf


