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This experiment continues work done on the //-body problem which investigates the interactions
of two line segments (or slashes) confined to a plane. In this experiment the slashes are “freed”
from the plane and, in doing so, add two more parameters in the form of polar angles, θA and
θB . The addition of these parameters increases the complexity of the problem. However, the
expressions for the potential energy and the equations of motion are found to be integrable.
Visualization is also found to be possible though it was not within the scope of this experiment
to do such visualizations beyond the potential energy.

I. INTRODUCTION

Over 300 years ago, Isaac Newton formulated his the-
ory of gravitation. From this theory he was able to solve
the two-body problem. The two body problem consists of
essentially two point masses orbiting each other. Newton
found that the stable orbits of these bodies were ellipses.
Newton then approached what would seem to be the next
logical step in orbital mechanics, the three-body problem.
However, this proved to be much more complex than the
two-body problem, in fact, it is infinitely more complex
(Danby, 1988).

Since then, scientists such as Poincaré and many others
have worked on the three-body problem and have found
it to be chaotic. The three-body problem is a rich source
of information on chaotic systems and this manifested
in some of the pioneering work on chaos. One may ask,
however, where is the distinction made? What is the
critical point at which the two-body problem transcends
simplicity? It was in the probing of these questions that
work on this project began.

Previous work has been done on what is called the
“2.5-body” problem, or /. (slash-dot) (Lindner, 2010).
It is the exploration of the interaction between a point
mass and a line segment that results in chaotic behavior.
This experiment pushes that boundary even further by
exploring the interaction of two line segments. In previ-
ous work, Alex Saines derived the potential energy and
equations of motion for the two line segments (or slashes)
as they were confined to a plane (Saines, 2011). In this
experiment, the line segments are freed from the plane
and allowed to rotate through both azimuthal and po-
lar angles. This adds an interesting layer of complexity
to the problem in the form of two additional parameters
that will be discussed in detail below.

II. THEORY

The theory of // is very complex. However, everything
up to a certain point is just Newtonian gravitation. For
example, Newton postulated and proved that a sphere, at
any distance outside of its radius, can be approximated to

have all of its mass concentrated at one point at its center
of mass. This is known as the Shell Theorem. If this is
true, than a person that wants to know the gravitational
attraction between a planet and another body need only
to employ the following equation:

F =
Gm1m2

r2
, (1)

where G is the gravitational constant, m1 is one inter-
acting object, m2 is another interacting object, and r is
the distance between their centers of mass. The equation
works for planets because they are, to a good approxi-
mation, generally spherical. However, in the // body
problem, slashes (line segments) can’t be approximated
as points. They have many different contributing param-
eters. Their moments of inertia and angular velocities
also contribute to their potential energy expression. The
expression for the potential energy for the two slashes as
they interact is much more complex than it is for spheres
or point masses because the Shell Theorem cannot be
used. The following expression is that of the potential
energy of the slashes with respect to one another:

V = −GmAmB

`A`B

∫ `B/2

−`B/2

∫ `A/2

−`A/2

1
~<

dδA dδB , (2)

where G is the gravitational constant, mA and mB are
the masses of the slashes, `A and `B are the lengths of
the slashes, δA and δB are the lengths along the slashes
toward the mass elements and ~< is a vector that locates
each mass element with respect to the other. The rea-
son there is a double integral is that the entirety of both
slashes need to be integrated over, hence the limits of
integrations. Spherical polar coordinates are used to do
this, so the above expression undergoes a few changes
once the transformation to spherical polar coordinates
takes place. These changes are discussed in the Proce-
dure section.

Once the potential energy, V , is determined, the ki-
netic energy, T , must be determined so that the La-
grangian equation (L = T − V ) can be used (Feynman,
1964). The specific construction of the kinetic energy
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will be detailed in the Procedure section as well. How-
ever Euler’s angles are used and their use is detailed here
(Thornton, 2003). Euler’s angles are used to describe
rotations about three axes, θ̇, φ̇, and ψ̇ and rotation
through their corresponding angles, θ, φ, and ψ. The
angle θ governs polar rotations, φ governs azimuthal ro-
tations, and ψ governs rotations through the axis parallel
to the length of the slash. Since we are dealing with a
line segment, the angular velocity about the axis that is
parallel to the line segment has no effect on the kinetic
energy. This is because a line segment has no thickness.
So, the expressions for the angular velocities in the x, y,
and z directions become:

ωx = θ̇,

ωy = φ̇ sin θ,

ωz = φ̇ cos θ.

These expressions are then used in the equation,

Trot =
∑ 1

2
Ii ω

2
i , (3)

where I is the moment of inertia ω is the angular velocity,
and i = x, y, z. From this equation, a large part of the
kinetic energy T can be found. The other part comes
from what one might expect,

Tlin =
1
2
µ(x′(t)2 + y′(t)2), (4)

where µ = mAmB/(mA + mB) and x′(t) and y′(t) are
the velocities in the x and y directions. So then, to find
the total kinetic energy, the two parts are summed like
so:

Ttotal = Tlin + Trot. (5)

With this background knowledge in place, it is possible
to start experimentation with the slashes.

III. PROCEDURE

To begin, it is necessary to define the parameters that
will be manipulated throughout the course of the proce-
dure. The lengths of the slashes (or line segments) are
denoted by `A and `B and the masses are denoted as mA

and mB . The azimuthal angles for both slashes are de-
noted as φA and φB , respectively, and the polar angles
are denoted as θA and θB , respectively and the physics
convention for spherical polar coordinates is used (Mc-
Quarrie, 2003). Each slash is divided into mass elements
dmA and dmB which are located a distance and direction
δA and δB from the center of each slash. There is a vec-
tor, ~< that locates the mass elements dmA and dmB with
respect to one another that is defined as ~< = ~δA− ~δB−~r,
where ~r = ~rB − ~rA where ~rA and ~rB locate the center
of mass of the slash from some arbitrary origin. From

FIG. 1 A diagram of the slashes and relevant parameters.

these basic assignments, we can derive all of the neces-
sary equations for the // problem. A diagram of the sys-
tem with all of the relevant parameters labeled appears
in FIG. 1.

The derivations appear simple but are actually rather
complex. The definition for ~δA is as follows:

~δA = δA (sin θA cosφA î + sin θA sinφA ĵ + cosφA k̂).
(6)

The definition for ~δB is very similar and is as follows:

~δB = δB (sin θB cosφB î + sin θB sinφB ĵ + cosφB k̂).
(7)

Finally, the definition for ~r = x î + y ĵ + 0 k̂. This defi-
nition for ~r actually confines the slashes’ centers of mass
to the x− y plane. From these definitions the remainder
can be input into Mathematica 8 in a very intuitive way
i.e. as basic functions of ~δA, ~δB , and ~r.

Now that all the basic parameters have been defined,
it is possible to integrate to find the potential energy V .
To do this, an integral of the form,

V = −GmAmB

`A`B

∫ `B/2

−`B/2

∫ `A/2

−`A/2

1
~<

dδAdδB , (8)

must be taken. One would assume that with adequate
computing power this would be no trouble at all. How-
ever, this is not the case. The integral must be broken
down into four separate pieces in the following way. First
the indefinite integral must be taken with respect to δA
as follows: ∫

1
~<

dδA = ResultA (9)
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Following this integration, which is fairly quick, the result
must be evaluated from −`A/2 to `A/2 separately, like
so:

ResultA|+`A/2−ResultA|−`A/2 = Upper−Lower. (10)

Then, the result of the previous integral must be taken
and integrated two separate times. For clarity I will refer
to the integral with respect to δA evaluated at −`A/2
as “Lower” and evaluated at the upper bound, `A/2, as
“Upper”. The second integration then looks like∫

(Upper−Lower) dδB =
∫
Upper dδB−

∫
Lower dδB

(11)
Then each of these are evaluated at −`B/2 and `B/2 for a
total of four portions known as “Lower-Lower”, “Lower-
Upper”, “Upper-Lower”, and “Upper-Upper” (abbrevi-
ated as LL, LU, UL, and UU). The final expression for
V is

V = (UU − UL)− (LU − LL). (12)

After completing this integration, it is possible to graph
the potential both when φA and φB are varied and when
θA and θB are varied. This can be done by setting the
other two angles to an arbitrary angle and then using
both the Plot3D function and the ContourPlot function
in Mathematica 8 for different perspectives on the data.

After this step has been completed, then the potential
energy V , and the kinetic energy, T , can be combined
using the Lagrangian according to

L = T − V. (13)

The kinetic energy is here defined as

Ttotal =
1
2
µ(x′(t)2 + y′(t)2)

+
1
2
ιAθ
′
A(t)2

+
1
2
ιA(sin θA(t) φ′A(t))2

+
1
2
ιA(cos θA(t) φ′A(t)2)

+
1
2
ιBθ
′
B(t)2

+
1
2
ιB(sin θB(t) φ′B(t))2

+
1
2
ιB(cos θB(t) φ′B(t))2,

where ιA and ιB are the moments of inertia of the slashes
and µ is the reduced mass defined as mAmB/(mA +mB).
The moments of inertia are defined as ιA = (1/12)mA `

2
A

and ιB = (1/12)mB `
2
B . The kinetic energy was defined

this way because of the definitions of Euler angles and
their angular velocities.

Next it is necessary to derive the

force equations for each parameter (i.e.
x(t), y(t), φA(t), φB(t), θA(t), θB(t)). This is done by
taking a series of partial derivatives of the form,

∂

∂t

∂L

∂x′(t)
=

∂L

∂x(t)
, (14)

where each parameter (i.e. x, y, φA, φB , θA, and θB) is
put through the above equation individually. After these
equations have been created, a numerical differential
equation solver using a Symplectic Partitioned Runge-
Kutta method is employed to solve these equations for
the position variables.

After the equations of motion have been solved for, it
will be possible to plot orbits, angular momentum, and
even three dimensional spacetime graphs. However, this
was not done in this project.

IV. DATA & RESULTS

The first part of data collection was to graph the poten-
tial in both a three-dimensional perspective and from a
contour perspective. The first potential that was graphed
was a special case, where the slashes are confined to a
plane (i.e. θA = θB = π/2). This figure (FIG. 2) was ini-
tially plagued with many discontinuities. However, after
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FIG. 2 The unsimplified potential energy in contour form.
The different colors denote different heights, lighter being
“higher” and darker being “lower”.

considerable simplification, it was possible to pinpoint
the sources of the discontinuities and eradicate them.
This was done by taking logarithmic combinations such
as,

logA− logB, (15)

and substituting,

log
A

B
. (16)

This eliminates any round-off error that would be per-
petuated by the subtraction, that is, that the complex
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FIG. 3 (a) The simplified potential energy in contour form.
The different colors denote different heights, lighter being
“higher” and darker being “lower”. The effect of the log-
arithmic simplification is immediately apparent. (b) A 3D
rendering of the same plot.

parts of the logarithms effectively cancel out (Spiegel,
2003). Once these modifications were made to the po-
tential energy expression, the contour plot of V (FIG. 3)
is much more continuous, plagued only by a single “scar”
across the diagonal. These plots of potential energy were
created from the variation of φA and φB while holding
θA = θB = π/2. The results pictured in FIG. 3 are con-
sistent with the previous work done by (Saines, 2011).
However, the potential can be plotted in a novel way, by
varying θA and θB while holding φA and φB at some arbi-
trary angle as in FIG. 4. From studying the potentials it
is possible to conjecture their preferred alignments. For
example, here it can be seen that the slashes prefer to
be facing each other lengthwise. In the next example,
FIG. 5, that the slashes have a larger array of angles
that they prefer to be aligned in. In FIG. 6, note that
the slashes are near perpendicular to each other and that
there appear to be two stable spots in the potential, when
θA = 0 & θB = π/2 and when θA = π & θB = π/2. In
FIG. 7, set values of the angles have been reversed, so
the graph appears to have been rotated π/2 radians. For
three dimensional representations of these plots, see Ap-
pendix A.
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FIG. 4 (a) The potential for θA and θB , varying from 0 to
π, with φA = π/7 and φB = π/12 The different colors de-
note different heights, lighter being “higher” and darker being
“lower”. (b) A 3D rendering of the same plot.

V. CONCLUSION

This problem is robust in its complexity. It was found
to possible to integrate the expression for the potential
energy as well as the equations of motion. However, it is
very difficult to manifest this data into a coherent visual-
ization. The fact that it is possible to derive these equa-
tions leaves hope for future investigators who can surely
create stunning visualizations of the motion of these line
segments. Examples of what could be done include, but
are not limited to, animations, spacetime plots and plots
for the potential when x and y are allowed to vary. In
short, there is plenty more to be done in the regime of
the //-body problem.
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FIG. 5 (a) The potential for θA and θB , varying from 0 to
π, with φA = π/5 and φB = π/4. The different colors de-
note different heights, lighter being “higher” and darker being
“lower”. (b) A 3D rendering of the same plot.
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FIG. 6 (a) The potential for θA and θB , varying from 0 to
π, with φA = π/2 and φB = π/12. The different colors de-
note different heights, lighter being “higher” and darker being
“lower”. (b) A 3D rendering of the same plot.
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FIG. 7 (a) The potential for θA and θB , varying from 0 to
π, with φA = π/12 and φB = π/2 The different colors de-
note different heights, lighter being “higher” and darker being
“lower”. (b) A 3D rendering of the same plot.


