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In this paper, a theory of quantum gravity called Causal Dynamical Triangulation (CDT) is
explored. The 1+1 dimensional universe is simulated in xCode. This paper explains CDT in
general and presents and explains the results of 1+1 dimensional simulations. The critical value of
the reduced cosmological constant was found to be 1 (it is taken to be dimensionless).

I. INTRODUCTION

Understanding gravity at the fundamental level is
key to a deeper understanding of the workings of the
universe. The problem of unifying Einstein’s theory of
General Relativity with Quantum Field Theory is an
unsolved problem at the heart of understanding how
gravity works at the fundamental level. Various creative
attempts have been made so far at solving the problem.
Such attempts include String Theory, Loop Quantum
Gravity, Hořava-Lifshitz gravity, Causal Dynamical
Triangulation as well as others.

Causal Dynamical Triangulation (CDT) is a rela-
tively new attempt developed by Jan Ambjørn, Renate
Loll and others to quantize gravity. It involves decom-
posing space-time into ‘triangular’ building blocks[2]. It
has so far predicted that the universe is two dimensional
and nonclassical at the Planck scale (about 10−35 m).
It has also managed to recover the classical behaviour of
space-time at four dimensions.

Unification of Quantum Field Theory and General
Relativity is important in order to get a more funda-
mental understanding of gravity. In order to use the
CDT approach, the Einstein-Hilbert action of General
Relativity and the path integral approach to Quantum
Field Theory are extremely important[2]. We begin by
introducing both concepts as well as the metric and the
Einstein Field equations.

In this paper we attempt, at least briefly, to ex-
plain CDT in general and explain what we have found
with our simulation.

II. BRIEF REVIEW OF GENERAL
RELATIVITY

In everyday life, we are accustomed to measuring
the Euclidean distance between two places (that is, the
distance between two points on a flat, smooth surface).
As we go throughout our daily lives, we rarely ever, if at
all, measure distances on curve surfaces. We generally
use what is called the Euclidean metric. In general, a

metric is a function that obeys certain properties.

Let d(x, y) be a metric (a distance function be-
tween points x and y). Then it obeys the following
properties:

(a) d(x, y) ≥ 0

(b) d(x, y) = 0 iff x = y

(c) d(x, y) = d(y, x)

(d) d(x, y) ≤ d(x, z) + d(y, z)

From the properties above, one sees that the distance be-
tween any two points must always be either 0 or strictly
positive[10]. This is in line with our every day experi-
ences. The pythagorean theorem for a right triangle is
an example of a metric. This is called the Euclidean
metric[9]. The Euclidean metric is the metric of flat
space. In flat space-time however, we have the Minkowski
metric described by

ds2 = c2(dt)2 − (dx)2 − (dy)2 − (dz)2 (1)

We see right away that from the definition above, this
function can give negative values so it fails the first prop-
erty. The space with which this metric is associated is
called a Pseudo-Riemann space, but the space that obeys
a− d above is called a Riemann space. The metric is in-
variant and is intrinsic to the space. We may write Eq. 1
in terms of matrices as

ds2 = gµνdx
µdxν (2)

where we are using the Einstein summation convention.
This takes advantage of the fact that we may write the
metric in terms of the product of some matrix and two
vectors. This matrix is called a metric tensor.The metric
tensor for flat space-time is:

gµν =

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


Metric tensors obey general rules of transformation which
will be explained in the context of General Relativity be-
low. The metric tensor above is the tensor of flat four di-
mensional space-time, where there is no matter (or where
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we only have subatomic particles) and in a universe where
the cosmological constant is zero. In General Relativ-
ity, to understand what goes on in another observer’s
frame of reference, one needs to do general coordinate
transformations[9]. We typically define a general coordi-
nate transformation as follows. Let’s say the coordinates
in an observer’s frame of reference are xµ and we want
to transform into the coordinate system of xα. Then we
have:

gαβ = gµν
∂xµ

∂xα
∂xν

∂xβ
(3)

The basic idea behind the expression above is very power-
ful in General Relativity. This principle and the proper-
ties of tensors in fact are what allows gravity to be able
to be seen as manifesting from the curvature of space.
Tensors appear in the Einstein Field equations which
can be derived using the Einstein-Hilbert action[2]. The
Einstein-Hilbert action turns out to be very important
in attempts to quantize gravity. The Einstein-Hilbert
action will be presented in terms of the determinant of
a matrix. In order to understand how the determinant
comes in, the reader will be reminded of a few things
from multivariate calculus. If we let det[gµν ] = g, then
from this we have that g = gJ2[9], where g is related to
the observer’s frame of reference and J is the Jacobian
which is defined as:

J = det

[
∂xµ

∂xα

]
(4)

Now from standard multivariate calculus, we know that
for the 4-volume d4x = Jd4x[9]. Now, we then get the
invariant volume:

dV =
√
−gd4x =

√
−gJd4x =

√
−gd4x (5)

We can use this to obtain an expression for the Einstein-
Hilbert action in terms of the determinant of the tensor
gµν . The Einstein-Hilbert action is:

SEH = k

∫
dV

(
1

2
R− Λ

)
= k

∫ √
−gd4x

(
1

2
R− Λ

)
(6)

where k = c4/8πG, R is the Ricci scalar curvature (which
in terms of the Einstein-Hilbert action could be thought
of the lagrangian density) and Λ is the Einstein cos-
mological constant (which affects the expansion of the
universe)[9]. From the Einstein-Hilbert action, one can
get the Einstein Field Equations in the vacuum:

Rµν −
1

2
gµνR+ Λgµν = 0 (7)

The cosmological constant term Λ is thought to explain
the observed accelerated expansion of the universe and
it is believed that if this is indeed the correct equations
of the vacuum, then it means that space-time without
matter is not truly flat but is slightly curved. It is also
thought that the cosmological constant is responsible for

FIG. 1. Diagram showing the resulting paths of a particle
traveling through a screen of multiple slits (A and B) and
multiple screens with multiple slits (C and D).

quantum fluctuations of the vacuum which might have
prevented the formation of a cosmological singularity (a
time at which the universe had infinite density). At this
point, the equations of relativity ‘blow up’ and a unifi-
cation of Quantum Field Theory with General Relativity
required to explain what goes on there.

III. BRIEF REVIEW OF QUANTUM FIELD
THEORY

Imagine particles incident on double slits. This looks
like the situation in part (A) in figure 1. Now, imagine
we keep adding slits (part B) such that there are an
infinite number of slits and screens (part C). Part (D)
shows that after adding an infinite number of slits and
screens, we have empty space. What we have are an
infinite number of paths as a result[3].

Now specifically, let us consider photons incident
on a screen with double slits. Let the photon travel from
some point a to some point b and let

E[a→ b] = eiφ1 + eiφ2 (8)

be the electric field amplitude, where φ =
∫
ωdt. We then

have the probability that the photon goes from point a
to b given by:

P[a→ b] = |E[a→ b]|2 (9)

Now, instead of photons, imagine we have some other
particle, say electrons that are incident on the double
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slit. We then have:

P[a→ b] = |A[a→ b]|2 (10)

where A is the probability amplitude of the electron[3].
We have:

A[a→ b] = eiφ1 + eiφ2 (11)

where here we have φ =
∫
ωdt =

∫
Ldt/~ = S/~. S

is known as the action and as one can see, it is defined
similarly as in classical mechanics with the lagrangian L.
All we have done so far is use a double slit, but there is
more to this thought experiment. Let us now add more
slits to the screen. In fact, let us add an infinite number
of slits in infinitely many screens. The total probability
amplitude is a sum over the amplitude for each slit and
each screen (a double sum)[3]. Let i be the index over
slits and j be the index over screens, we then have:

A =
∑
i,j

Aij =
∑
paths

Apath (12)

where Apath = eiSpath/~[3]. From this, the quantum
propagator[7] is defined. The quantum propagator for
a particle moving from point a to point b is defined as:

A[a→ b] =

∫ b

a

Dx[t]eiS[x[t]]/~ (13)

where Dx[t] is a path measure, S is the action and ~
is Planck’s constant which as of now on, along with the
speed of light will be defined as c = 1 and ~ = 1. This is
called the path integral[3]. The path integral approach is
an approach completely developed by Richard Feynman.
It can be thought of as a generalization of the action
where instead of thinking of a single unique path of say
a particle, we have multiple paths[3]. The path integral
is a sum over all these paths[3].

IV. REGGE CALCULUS

Regge Calculus is a formalism which involves decom-
posing space-times that are solutions to the Einstein
Field Equations into building blocks called simplices[9].
A simplex is a generalization of a triangle[4] shown in fig-
ure 2. This decomposition of space-time into triangular
building blocks is called a triangulation. Triangulating a
space involves gluing together the simplices in a specific
manner[2]. The simplices are glued together such that
the curvature is restricted to regions of space-time[2].
The triangulation of space-time in classical Regge Cal-
culus uses simplices with a specific and consistent edge
length[2]. The triangles are flat and thus locally have a
curvature of zero. At a single vertex, multiple triangles
meet and it is with respect to this common vertex that
curvature is localized[5]. In figure 3 we see a vertex with
a certain number of triangles. The angle δ is a result of

FIG. 2. Diagram showing n-simplices, where n is the number
of dimensions.

FIG. 3. Triangles sharing a common vertex

the curvature of the space[6] at that location being tri-
angulated. From this, one can obtain the so called Regge
action[2] after making the following substitution:

1

2

∫
dnx
√
−gR→

∑
j∈T

δj (14)

∫
dnx
√
−g →

∑
j∈T

Vj (15)

We are summing over the deficit angles δj and the volume
Vj [2]of the region around each vertex associated with
each deficit angle. The Regge action (discretized version
of the Einstein-Hilbert action)[2] is thus:

SR[l2j ] =
∑
j∈T

(kδj − Vjλ) (16)
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FIG. 4. Diagram showing an example of a triangulation of a
1+1 dimensional universe.

where λ = kΛ and k = 1/8πG and Vj is the volume of
the region obtained by counting the triangles.

This means of studying General Relativity has been
successful for some time now and this idea has been
adopted to quantize gravity in previous approaches,
particularly the the theory of Euclidean Dynamical
Triangulation (EDT). This approach to quantizing
gravity was developed and explored in the 1990s. It
accepted all possible triangulations of space-time. This
highly democratic nature of the theory appeared to be
responsible for its failure. The theory failed to reproduce
back the 3+1 dimensional classical universe that we
currently observe when it was supposed to. It instead
obtained an infinite dimensional universe as space-time
condensed on a few vertices. Some simulations also lead
to a 2 dimensional universe as space-time polymerized
into 1+1 dimensional branches. After some time, a new
theory using somewhat a similar idea was developed.
Simulations have reproduced the classical 3+1 dimen-
sional universe and it has predicted that the universe is
1+1 dimensional at the Planck scale and is fractal at the
quantum level. This theory, called Causal Dynamical
Triangulation is the focus of this paper and it will be
explained in the next section. The 1+1 dimensional
simulation that we are developing will be explained in
the next few sections of the paper.

V. CAUSAL DYNAMICAL TRIANGULATION

Causal Dynamical Triangulation (CDT) quantum
gravity is different from EDT quantum gravity in
various ways. One of the main assumptions of CDT
is the existence of microcausality. What this means is
that causality is no longer considered just as a global
property of space-time, but something that is local. It
implements this assumption by making the simplices
Lorentzian[2]. That is, the simplices no longer just have
space-like edges as in EDT, but they also have time-like
edges as well. The simplices are then glued such that
their time-like edges are always future pointing. An
example of a resulting space is shown in figure 4. The

FIG. 5. Diagram showing history of geometries.

triangles have the same squared spatial edge lengths l2s ,
but their time-like edge lengths squared is l2t = −l2s .

Now, in CDT, the Path integral is done over ge-
ometric histories[9] rather than over paths. The
propagator developed earlier can be modified to do a
sum over the history of geometries. One does this by
using the Einstein-Hilbert action[9]. The modification
is:

A[g0
ab → g1

ab] =

∫
Dgabe

iSEH [g] (17)

What happens here is that the propagator takes into con-
sideration different possible geometries beginning with an
initial geometry g0

ab to a final geometry g1
ab (latin indices

represent spatial geometries and greek indices represent
space-time)[9]. This is shown in figure 5. In CDT, this
integral has to be discretized and this is done by making
the integral into a sum which gives us:∫

Dgabe
iSEH [g] →

∑
T∈T

1

C(T )
eiSR(T ) (18)

where 1/C(T ) is the measure on the space of triangu-
lations, C(T ) is the size of the automorphism group[2]
of the triangulation T and T is the space of all
triangulations[2]. This makes understanding the geome-
tries from a combinatorial perspective possible thus mak-
ing the problem workable using computers. In com-
puter simulations, the configuration space of all trian-
gulations is sampled to obtain an approximation to the
path integral[2]. The discretization is however not yet
complete because we need to handle the imaginary part
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of the sum. This part is handled using what is called a
Wick rotation[2] which will be explained further in the
next section.

A. Wick Rotation

The Wick rotation takes a Lorentzian geometry to
its associating Euclidean geometry[2]. This is done by
making the substitution −l2t → l2s [8] for the time-like
edges. As a result, the Regge action corresponding to a
Lorentzian triangulation is replaced by the correspond-
ing Euclidean action[2]. This means that we make the
following substitution:

iSR[Tl]→ −SE = iSR[TE ] (19)

where SE is the Euclidean action, Tl is the Lorentzian
triangulation and TE is the Euclidean triangulation[2].
In effect, this approach converts the path integral into a
partition function and we can handle the space of trian-
gulations the way we would handle a system in statistical
mechanics[2]. The result is that we get:

Z =
∑
T∈T

e−SE [T ] (20)

We set 1
C(T ) = 1 because of the observation that general

observations in critical phenomena tells us the choice
of measure does not affect the continuum limit of
the theory[2]. With this problem now in a statistical
mechanics form, one can now implement the Metropolis
algorithm to do Monte Carlo simulations. This will be
explained in more detail in the section that explains the
simulation.

In 1+1 dimensional CDT, we need the 2 dimensional
Einstein-Hilbert action[9]. This is just:

1

2
k

∫
d2x
√
−gR =

∑
j∈T

kVjδj = 2πχ (21)

where χ is called the Euler Characteristic[4]. We also
have:

k

∫
d2x
√
−gΛ =

∑
j∈T

λVj = k2λN2 (22)

where λ = kΛ and N2 is the number of triangles in a
given triangulation. The Euler Characteristic is known
as a topological invariant[4]. What this means is that
when we compute its value, this number will remain the
same for any space that is topologically the same as the
space for which we computed the number initially.

From the above equations, we have the Euclidean
action in terms of the number of Lorentzian triangles in
a triangulation. This gives:

SE [Tl] = 2πχ− k2λN2 (23)

FIG. 6. Diagram showing two types of triangles - up pointing
(type 1) and down pointing (type 2). The time-like edges
are distinguished from the space-like edges with the arrows
shown. Time is taken to go from bottom to top.

Since our topology is fixed in this simulation (S1 × S1),
then the term 2πχ is constant because χ is a topological
invariant[2]. This term would not be constant if we al-
low the topology to vary[2]. The partition function then
becomes:

Z =
∑
T∈T

e2πχ−k2λN2 = ξ
∑
T∈T

e−k2λN2 (24)

where ξ = e2πχ is just a constant in the simulation[9].
There is a critical value λc such that at a certain amount
above this value, the partition function converges[3] and
at a certain amount below this value, the partition func-
tion diverges[3]. This value seems to vary and this will
be found for this simulation.

VI. SIMULATION

In this simulation, we only looked at the 1+1 dimen-
sional universe. In this simulation, the 1+1 dimensional
universe is decomposed into 2 dimensional simplices -
one with two time-like edges and a space-like edge[9].
These are shown in figure 6. In the simulation, the data
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FIG. 7. Diagram showing an example of a triangulation with
labelled triangles. Type I triangle vertices are numbered be-
ginning from left to right and up, while type II triangle ver-
tices are labelled from down to upper left to upper right.

structure stores this kind of information which turns out
to be very useful to implement the simulation. The up
pointing triangles have their spatial edges on a past time
slice and the down pointing triangles have their spatial
edges on a future time slice. Those time-like edges are
always future pointing as shown in the diagram. In this
simulation, periodic boundary conditions were chosen.
What this means is that the final time-slice and the
first time-slice are connected so that every vertex of the
beginning time-slice are identified with every vertex on
the final time-slice. The toroidal topology S1 × S1 was
used to achieve the periodic boundary conditions.

In our simulation, we used a data structure that
stores certain information about each triangle in the tri-
angulation. This information is stored in an array (called
a Hash Table). In this array, the following information
about the triangulation is stored: type of triangle (that
is, if it is up pointing or down pointing), the time slice
which it is located, the vertices as well as the neighbors
of the triangles. Figure 7 shows an illustration. Using a
labeling scheme very much like the one in figure 7, we
were able to store information about the triangles in a
triangulation. Each triangle was given a key starting
from 0 to n− 1. The type of the triangle (which is either
type I or type II) was also stored. The neighbors for
the different triangles were also stored. The neighbors
were determined by looking at the triangle (the key)
opposite a given vertex of another triangle. Take for
example, the triangulation in figure 7. Look at the
triangle labelled 3 in the figure. This triangle is within
time slice labelled t + 0.5 and it is of type I. Vertex
1 for this triangle has the triangle labelled 7 opposite
to it. Similarly, vertex 2 has the triangle labelled 6
opposite it and vertex 3 has the triangle labelled 5
opposite it. An array for the triangle labelled 3 would

FIG. 8. Figure showing 1+1 dimensional universe before any
move or anitmove was made.

thus look like T3 = {I, t+ 0.5, 1, 2, 3, 7, 6, 5}. In general,
the array structure for any triangle takes the form
Tn = {type, time, p1, p2, p3, n1, n2, n3} where p1, p2, p3
are the vertices of the triangle and n1, n2, n3 are the
neighbor of vertex 1, neighbor of vertex 2 and neighbor of
vertex 3 respectively. This entire structure is composed
strictly of integers. The integer assignments are in line
with the idea of reducing the problem to a counting
problem. This data structure is then taken advantage of
to do the combinatorial moves to split a vertex and add
two triangles and antimoves to remove two triangles.
The moves are done by randomly picking a vertex and
splitting it, adding two triangles in the gap left behind
where ever the vertex was split. The antimoves involve
randomly picking vertices and deleting the triangles
associated with the vertex. This is the same thing as
doing a random walk through space-time. When the
moves and antimoves are done, the arrays are repeatedly
updated for every move and antimove. The universe
is then made to evolve by repeatedly doing moves and
antimoves rapidly and the size of the universe is mea-
sured every time over every 100 such combinatorial move.

In figure 8, we have the universe before any move
or antimove and in figure 11 we have the universe after
the moves and anitmoves are done together by the
computer.

In figure 9, we see the result after doing a move on the
triangulated 1+1 dimensional universe. It is visible that
more triangles are added to the universe after a move is
made. Two triangles are added after a move. They are
added after a vertex is randomly selected and split. In
fact, after each move, two triangles are added (one of type
I and another of type II). The other kind of combinatorial
move done on the universe is called an antimove. This
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FIG. 9. Figure showing result after a Combinatorial move
was made.

is shown in figure 10. An antimove deletes two triangles
associated with a randomly selected vertex.

After the moves and antimoves started working prop-
erly, we then implemented the Metropolis algorithm. The
Metropolis Algorithm does a selective sampling of the
vertices[1]. This selection is done based on importance[2].
The importance of a sample is determined based on a
probability based on its Boltzmann weight (which is e−SE

in this case)[1]. This is important in the Monte Carlo
integration[1]. In general, in a Monte Carlo simulation,
one finds what is called the Monte Carlo average of N
measurements of some observable O[9] determined by:

< O >=

∑
T∈T

O[T ]e−SE [T ]

Z
≈ 1

N

N∑
n=1

O[Tn] (25)

Now, with the Metropolis Algorithm, we use a detailed
balance condition[9]. This occurs when a random walk
through our configuration space reaches an equilibrium.
This equilibrium is reached when:

P[Tn]P[Tn → Tn+1] = P[Tn+1]P[Tn+1 → Tn] (26)

where P[Tn] is the probability of getting the nth trian-
gulation and P[Tn+1] would be the probability of getting
the n+ 1 triangulation[2]. So we have:

P[Tn → Tn+1]

P[Tn+1 → Tn]
=

P[Tn+1]

P[Tn]
=
e−SE [Tn+1]

e−SE [Tn]
= e−∆SE

(27)

FIG. 10. Figure showing result after a Combinatorial anti-
move was made.

What the Metropolis Algorithm does is accept or reject
one of the Monte Carlo moves based on the change in the
action ∆SE [9]. This is done using the following criteria:

P[Tn → Tn+1] =

{
e−∆SE ,∆SE > 0
1 ,∆SE ≤ 0

The volume of the universe was controlled with the ad-
dition of a term δSE to the action[2]. We have:

δS = εδN = ε|N2 − V | (28)

where V is the volume of the universe. We then make
the substitution:

S → S + δS = λN2 + εδN (29)

The addition of this extra term to the action was used
to suppress transitions to extreme volumes[9].

After the Metropolis algorithm was implemented,
multiple simulations were ran to find how many data
points were best suitable to use for our calculations.
After this was done, we ran eight simulations at a spatial
volume of 100 and we went up to 100 time steps. We
then used the data to find a critical value for the reduced
cosmological constant. The critical value is where the
fluctuations are stable[9]. After this value was found,
we computed the average size of the 1+1 dimensional
universe.
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FIG. 11. Figure showing 1+1 dimensional universe after move
and anitmove are done together.

FIG. 12. Figure showing the size of the universe versus the
number of slices at a certain size.Here, the reduced cosmolog-
ical constant was 1.2.

VII. RESULTS AND ANALYSIS

The results we obtained yielded significant fluctua-
tions. This already hints that the value of the actual
cosmological constant must be quite small. Figure 12
shows the fluctuations in the size of the universe at a
specific cosmological constant.
Notice here how the fluctuations start from some point
then diverge away from the point and as it goes further
away from that point, it seems to diverge less. The part
closer to this source is due to certain artificial conditions

FIG. 13. Figure showing stable fluctuations of the size of
the 2 dimensional universe at a specific reduced cosmological
constant. This is a data reduction of the data represented by
figure 12.

FIG. 14. Figure showing the ratio of the average size of the
universe and the standard deviation of the size of the universe
versus the reduced cosmological constant.

within the simulation. As the fluctuations continue
however, for a stable universe, the fluctuations stop
diverging and stabilize. It is this region of stability (Fig.
13) that is considered useful data and hence is what
is used to figure out the critical value of the reduced
cosmological constant.

The best critical value for the reduced cosmologi-
cal constant we found in our simulations was 1. We
obtain this critical value by noting from analytical
results in CDT in 1+1 dimensions that µL/σL =

√
2

where µL is the average size of the universe and σL is
the standard deviation of the size of the universe. Using
this result as a guide, we ran our simulations at different
values for the reduced cosmological constant. Figure
14 shows the results. Notice that after the peak which
occurred at a reduced cosmological constant of 1.2, there
was a fall in the ratio. The ratio rises to some point
then falls, more data would most certainly give a much
better idea as to what is really happening with regards
to how the ratio and hence the fluctuations vary with
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the cosmological constant and so more work needs to be
done on that.

VIII. CONCLUSIONS

These results imply large quantum fluctuations in the 2
dimensional universe which in turn implies a small value
for Einstein’s cosmological constant. We obtain a criti-
cal value for the cosmological constant to be 1 and the
best dimensionless value for the average size of the uni-
verse is 104. If we let the length of each triangle be
a(remember they all have the same spatial edge length),
then the physical average size of the universe based on
these results is thus just 104a. Overall, the 2 dimen-
sional universe’s size has a spread σL = 73. There is
still much work to be done. We need to understand how

much varying the cosmological constant would vary the
fluctuations, and we need to understand how the theory
behaves in higher dimensions. These are just a few of the
things we need to explore in the future.
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