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The aim of the experiment was to investigate the forces acting on a soccer ball through its flight
in air. This was done by treating the soccer ball as a sphere moving in a viscous fluid and then
applying fluid dynamics to derive the relationships between the forward movement of the ball, the
Magnus effect and rotational velocity, drag and linear velocity and gravity. Upon establishing the
relationships, a simulation model was created and run to observe the effect of several parameters on
ball flight. Finally, the model was used against a famous goal by Roberto Carlos and the physics
behind the goal was established. The model predicted that the ball would curve about 2.6 m under
theoretical circumstances where only the drag, gravity and Magnus forces were acting on the ball.

I. INTRODUCTION

In 1997 during the Tournoi de France, Brazilian left
back Roberto Carlos scored a goal that for years was
called a wonder goal by his fans and a freak goal by his
critics. Carlos took a free kick from about 35m in front of
the goal, initially hitting the ball so far to the right that
it cleared a wall of defenders approximately 15 meters
in front of him by about a meter and caused a ball boy
nearly 10 meters to the right of the goal to duck. The
ball then seemingly inexplicably swept to the left and en-
tered the top right corner of the goal, to the amazement
of the goalkeeper, players and fans alike [1]. Many fans
and critics alike claimed that the goal defied the laws
of physics. Similarly, throughout his career David Beck-
ham has become famous for his control over curve kicks
thus becoming the inspiration for the phrase “bend it like
Beckham”.

Physicists soon proved that Carlos’ kick did not defy
the laws of physics, but rather highlighted the beauty of
physics in real world instances [2]. Indeed the ball had
some erratic behavior due to external conditions such
as wind blowing against the ball but the curving of the
ball was not erratic nor due only to these uncontrollable
conditions. Under normal circumstances the ball should
have moved in a straight path with the major forces re-
sisting this motion being gravity and drag force. In a
simplified but accurate version of the movement, the ball
can be treated as any spherical object moving in the
viscous fluid, air. Considering a three dimensional co-
ordinate system where the z-axis represents the vertical
height the ball reaches, the y-axis represents the forward
displacement of the ball and the x-axis represents the lat-
eral displacement of the ball, it was expected that the ball
would have had no significant lateral displacement if only
the forces mentioned were acting on the ball. However,
what physicists highlighted was that this kick allowed
the introduction of a new force on the ball due to the
introduction of spin on the ball as it moved. This force
is called the Magnus force and it acts perpendicular to
the motion of the ball. The effect is named after Hein-
rich Magnus who described it in 1852; however there is
proof that the effect was discovered by Isaac Newton in

1672 while observing tennis players playing a game [4].
In a spinning ball moving at fast speeds, the spin causes
the velocity of the ball relative to the air surrounding
it to vary at different points on the ball depending on
the speed and orientation of the spin [5]. The Magnus
effect can cause a significant force to be experienced on
the ball, allowing for situations such as Carlos’ goal to
occur. Thus, although Beckham has been given the title
“Bend it like Beckham”, the true title should be “Bend it
like Magnus” since anybody can kick a ball and curve it
with a significant deviation as Carlos or Beckham’s kicks
due to the Magnus effect, given that certain conditions
work in their favor. The true challenge lies not so much
in making the ball curve, but rather in learning exactly
how to judge the necessary factors and curve the ball
precisely as desired. The effect of Magnus force on the
lateral movement of the ball is illustrated in FIG1.

This goal was the primary inspiration for this paper,
which covers the process behind creating a simulator that
was able to model the trajectory of a soccer ball kicked
with some exit velocity vy and rotational velocity w.

FIG. 1: The figure above shows the x and y directional trajec-
tory of the ball from Carlos’ shot. It also shows the straight
line trajectory the ball was expected to take. The straight tra-
jectory shows the path the ball would have taken had there
been no Magnus Forces and wind acting on it and thus helps
to visualize the effects of the Magnus forces on the ball. The
image was taken from [1] and edited to include the straight
trajectory.



II. THEORY

There are several forces acting on a ball moving
through a fluid that were considered in the model. The
forces considered were: drag on the ball, gravity, The
Magnus force which all opposed the force driving the ball
to move forward.

From Newton’s second law, it is taken that while in the
air, the ball’s velocity changes due to the applied force
according to the equation

Fet = ma (1)

where Fj,.; is the force on the ball, m is the mass of
the ball and a is the acceleration of the ball. The force
can be rewritten as a second order parametric function
of displacement with respect to time:

dv d?s
F= moy = mog = ms” (t) (2)
where dv/dt is the velocity function with respect to time,
s(t) is the displacement defined as a function of ¢, the
time. This was done to better track the displacement of
the ball over time. The components of force were consid-
ered separately in each dimension of three dimensional
motion since the movement of a curving ball is along all
three coordinate axes. Further, certain resistive forces
such as gravity only act in one dimension, in this case
the z direction since that represent vertical displacement.
The forces acting on the ball are visually described in FIG
2.
Once again, considering the components of force while
in the air are

F,.. = ma” (t) (lateral direction)

Fy = my"(t) (forward direction)
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FIG. 2: The forces acting on a ball. The ball moves forward
with some velocity. This is opposed by drag, weight and the
lift of the ball. The lift is the Magnus force experienced by
the ball. [6]

F,.. = mz"(t) (vertical direction) (3)

so that each component could be considered individually.
The movement of the ball was opposed by the respective
drag forces (and gravity in the z direction), the net forces
acting on the ball could be calculated as:

Foet =Fo+ Fp+ Fs+ F, 4)

where Fg is the downward force experienced by gravity,
Fs is the sideways component of the Magnus force and F7,
is the lifting component of the Magnus force. To further
explain Fs and F7, consider a ball that is rotating strictly
with topspin or backspin. The ball will have no sideways
rotation and hence Fg = 0. Likewise, consider a ball that
has strictly sideways spin. The Magnus force now has no
component in the z direction and thus Fr, = 0. However
when a ball is rotating in more than one axis, Fis and F,
must be considered.

From Eq. 3 the components of F),.; have been described.
The next thing to be considered was the drag force, which
was defined as:

FD = 0.5CD[JA’U2 (5)

where Cp is the drag coefficient of the ball, p is the dein-
sity of the fluid in which the ball is travelling (air in this
case), A is the cross sectional area of the ball, and v is
the velocity of the ball [5]. This equation simply says
that a sphere moving in a fluid experiences a drag force
proportional to the density of the medium, the cross sec-
tional area of the sphere and the square of the velocity
with which it is travelling by some constant Cp. In the
case of our model, Fp is considered to have the same
form in all three dimensions and hence can be equated to
all three components of Eq. 3. However since the model
was in three dimensions the velocity had to be broken up
into the components. The drag force then became:

Fp. = 0.5CDpszﬁz
Fpy = O.5C’DpA112f1y

Fp. = 0.5CppAv*o, (6)

but since we know that ¢ is simply the unit vector for a
vector v, and is defined as

. v
V= —
[v?|

we can substitute this into Eq. 6. Before this is done, it

was considered that [v?| = (y/v2 4+ v2 +v2)%. Thus the

equation of drag became:

Fp, =05CppAy/v2 + vg +vZvy
Fpy = 0.5CppAy/v2 4 v2 + viv,



Fp. =0.5CppA, /v + vg +v2v, (7)

Next we considered the force due to gravity, Fg = mg
which can simply be applied to the z component of Eq. 3.
Finally, the Magnus force was considered. The Magnus
force equation started out analogous to the drag equation
as:

Fyr = 0.5pAv*Cy, (8)
where
C, = Cyrw
v
and thus
Fy = 0.5Cy pArwu (9)

where Fjy is the Magnus force, C'y; is the coefficient of
proportionality, p is the density of air, A is the cross sec-
tional area of the ball, w is the rotational velocity of the
ball and v is the linear velocity of the ball [5]. This equa-
tion thus implies that the Magnus force is proportional
to the density of the medium, the cross sectional area of
the ball, the radius of the ball, the angular velocity of the
ball and the velocity of the ball by some constant C);.

This introduction of w required some investigation,
since w was stated as a vector in the form {w,,w,,w.}
where this first component represented a rotation about
the x axis, the second about the y axis and the third a
rotation about the z axis. For example, strictly sideways
spin (with no lift force) is represented as a rotation about
the z axis so only w3 would have a non-zero value and
wy = wy = 0. For simpler models, it was assumed that w
was constant. A ball that was kicked with an initial rota-
tional velocity would experience no damping but would
continue to spin at the same pace. This is not true in
reality and w was defined by a function. To derive this
function, the forces acting on a rotating ball were consid-
ered. A rotating sphere would experience two extremities
with respect to the drag force. By the definition of the
Magnus effect it can be taken that the side of the ball
where the tangential velocity v; was in the same direc-
tion as the drag, the ball’s velocity relative to the air
would be minimal. On the side where the tangential ve-
locity was opposing the drag, the ball’s velocity relative
to the air would be maximum [2]. Thus the tangential
velocity could be added to and subtracted from the linear
velocity to represent the the maximum and minimum net
velocity of the ball on either side and hence the maximum
and minimum drag forces experienced on either side of
the ball. The maximum drag force is

Fpmae = (0.5pACDH) (v + v,)?
and the minumum is

FDmin = (O.5pACD)(’U — ’Ut)2

and the difference of the forces becomes
Fret = (0.5pACD) ((v+ v4)* — (v —v¢)?) (10)
which simplified to give:
Fret = 2pACpvy,

From this net drag force, the torque could be equated
since it is the product of the radius and linear force so
3]

F = FnetT
and also v; = rw so
I' = 2pACpvwr?

It is also known that I' = Iw’(t) where I is the inertia
which for a sphere is defined as
2
I=Zmr?
5
which upon substituting and simplification into the equa-
tion

r
/
t)=—
W)=
gives the result
, 5pACpovw
)= "~ = 11
() = L5 (11)

Considering the equation in the respective axes and ex-
panding the velocity in terms of the components give the
following equations

5pACD | /vZ + v2 + v2w,[t]

(1) = _
5pACD | /vZ + v2 + viw,[t]
!
wy(t) = -
5pACD \[v2 + v2 + v2w,[t]
wi(t) = (12)
m

With these equations derived, the Magnus force could be
better defined. Since both the rotational velocity and
linear movement were involved in determining the Mag-
nus force and since both these elements had x, y and
z components, it was determined that the direciton and
the magnitude of the force had to be determined by a
cross product of the two vectors [5]. The advantage of
using the cross product in this situation is that it com-
bined the elements Fs and Fp through the individual
components. Thus the Magnus force equations for each
individual component became:



Fre = 0.5pC Ar(w, (t)2'(t) — w(1)y' ()
Fary = 0.5pCh Ar(w, (1)’ (t) — wi (8)2(t))

Fare = 0.5pCy Ar(wy, ()Y (1) — wy (H)2'(8))  (13)
which allowed all the components that were necessary to
be acquired. Thus by equating Fj,.; as the sum of forces
causing the ball to slow down over time, the following
parametric system of equations were determined for cal-
culating the curve of a soccer ball in flight.

ma” (t) = —0.5CppAy/v2 + v2 4+ v22'(t)

70.5C'MpAr(wz'l(t)z'(t) —wl(t)y'(t)),

my” (t) = —O.5CDpA\/my/(t)

—0.5Cw pAr(w, ()2’ (t) — wy, (1) 2'(£)),

mz"(t) = =0.5CppA/v2 +v2 +v22/(t)

—0.5CppAr(w, ()Y’ (t) — wy (t)a' (t)) — mg (14)

III. SIMULATION

For the simulation modeling, Mathematica was se-
lected as a tool. This is because mathematica had a lot of
built in functions that could be called to simplify certain
parts such as solving the system of differential equations.
This also allowed the code to be kept simple and neat
and allowed for more time to play around with different
values of the input parameters. The NDsolve function
was crucial in solving the differential equations and only
required simple initial conditions to be provided to solve
the differential equations.

The modeling was adapted and allowed for several
builds that progressively got more complicated in a sin-
gle mathematica notebook. This was advantageous in
the case that one wanted to backtrack and explore dif-
ferent aspects of the simulation, so that the model would
not have to be reconstructed from scratch.

A. 2D Model

The model took parameters:m, g, v, p, 4, 8 and v
where m was the mass of the ball, g was the effect of
gravity, v was the linear drag coefficient, A was the cross
sectional area of the ball, 6§ was the launch angle of the
ball, and v was given as a launch velocity of the ball
which was then divided into vsin 6 for the z(t) component
initial condition and vcos 6 for the y component initial
condition. This model was simple and produced plots of
z(t) vs. y(t) that agreed with the theory.

B. Single NDSolve

This model got more intricate and attempted to model
the drag forces involved in three dimensions and added
the Magnus forces to the previous model. All three vari-
ables were solved in a single NDSolve command and the
parameters remained the same with the addition of Cjy
for the Magnus coefficient, wy for rotational velocity, r
for the radius of the ball and the renaming of v to Cp.
This model also considered w as a vector of w values in
all three dimensions and used the cross product so that
both lift and sideways movements would be considered
due to the Magnus effect.

C. Manipulator

This third model included the addition of the decaying
w function and thus added a new level of complication
to the model. The ball was no longer assumed to have a
constant angular velocity and thus the curvature trajec-
tories became significantly less distinct but at the same
time more realistic. This model also added the function-
ality to create a manipulated function that would allow
the initial launch velocity and also all three components
of rotational velocity to be altered and seen in a dynamic
plot that reflected the changes.

IV. ASSUMPTIONS

Although many assumptions had to be made in cre-
ating the model, some that may have major effects are
listed as follows: The effect of wind is very prominent
in real soccer. The model assumes that wind more or
less acts uniformly on the whole ball and is thus only
somewhat reflected in the drag coefficient of the ball. In
reality, wind in a single constant direction may affect the
curved flight of the ball significantly depending on the
situation. The drag coefficient is taken to be constant
throughout the flight of the ball. In reality the drag co-
efficient varies with the decreasing speed of the ball, espe-
cially around critical velocity with turbulent and laminar
air flow around the ball [5] [7] [8]. This would affect the
accuracy of the results The coefficient of the Magnus force



was also assumed to be constant and equal to 1 [5]. In
reality this constant would also vary, possibly even more
greatly than the drag coefficient since it is affected not
only by linear velocity but also rotational velocity. The
air density varies depending on day and time. Ball condi-
tions such as wetness or how well it is pumped should also
affect the results The ball is treated as a sphere in some
cases (Intertia of a sphere, fluid dynamics of a sphere)
and not in other cases (drag coefficient was considered
for an average soccer ball [5]. This relationship could be
further investigated.

There are probably several assumptions that are made
but those listed might have the most significant effect on
the data and should be investigated in future work.

V. RESULTS AND ANALYSIS

The model proved succesful in providing accurate flight
trajectories for a ball in air. Despite the assumptions
listed in the previous section, the model was able to ac-
curately simulate the curved trajectory of a ball in air.
In the Roberto Carlos goal, the ball is speculated to have
curved with a deviation of approximately 4-5 meters away
from the goal. When run in the model with a launch
speed of 30 m/s, a launch angle of about 15 degrees with
pure sidespin, the ball was projected to curve about 2.6
m as shown in FIG 3. FIG 4 shows an alternate view of
the kick as if seen along the direction in which the kick
was taken. FIG 5 looks at kick considering only the lin-
ear drag and not the curve by rotating the image to focus
on the y and z axis. The parameter values were attained
from [2] and [9]. One would think this is not completely
accurate but it should be considered that Carlos’ kick did
not have purely sidespin as assumed in the calculations.
This is shown in the figures below. Also, several fac-
tors were judged from videos after the kick occurred and
these values may have been inaccurately measured. The
model succeeds in verifying that curvature would occur
and makes a close guess to what that deviation would be
and is expected to be much more accurate if all the val-
ues were relatively known. Further, it calculates exactly
what would happen, if only the forces considered were
acting on the ball. One interested thing that was noted
was that this model showed curved movement occuring
instantly whereas in reality there is a slight delay before
the ball begins to curve. This might be due to the chang-
ing drag and Magnus coeflicients as ball speed varies but
more investiation is needed into this discrepancy.
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FIG. 3: Diagram showing top view of simulation for Roberto
Carlos’ free kick, the deviation along the x axis is seen to be
about 2.6m. This result shows that the simulation is able to
predict curvature even for very low sarting values. The x axis
shows the lateral deviation and the y axis shows the distance
the ball is expected to travel in 2 seconds.
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FIG. 4: Alternate view of Roberto Carlos’ kick showing a 3
dimensional view. The model assumes that the launch angle
in terms of x (lateral) displacement is 0. Thus the figure
represents the curvature seen in the ball if one looked along
the x component of the angle of launch for the ball.
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FIG. 5: Alternate view of Roberto Carlos’ kick. This view
shows only the linear drag being reflected in the z and y axes.
It can be seen that from a side view the ball seems to follow
a trajectory similar to the output of model 1 verifying the
purely sideways spin does not affect either axes component.

In analyzing this figure the strengths of the model can
be seen. It does accurately simulate the motion of a ball
but in a theoretical manner. The model does not in-
clude external factors such as wind and can be further
expanded to even better simulate the curvature of a soc-
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FIG. 6: This figure looks at a 2 dimensional top view of several
different trajectories looking at purely sideways spin in incre-
ments of 100 rad/s and ranging from 0 to 1000 rad/s. The
decaying rotational velocity shows that the greatest curving
occurs in the earlier stages of flight instead of their being a
slight delay before curving as seen in reality.

FIG. 7: 3 Dimensional view of different curvatures. Different
angular velocities not only affect the amount the ball curves
but also directly affect the distance traveled, at a high enough
angular velocity it is expected that the ball would spiral in
until the angular velocity reaches 0, in which case the ball
would continue to move with the tangential velocity assuming
that it does not hit the ground.

cer ball through the air. Considering purely sideways
spin, a plot of the effect of varying the rotational veloc-
ity is included in FIG. 6 and a three dimensional view is
shown in FIG 7. FIG 7 has the same initial conditions
as FIG 6 (Which takes the initial parameters from the
Carlos’ kick and simply varies the angular velocity) but
angular velocity values from 0 to -1000 rad/s in incre-
ments of 100 were used:

It is interesting to note that this model can allow for
some very interesting special cases. One such case is
when the ball is given high enough backspin, the ball
will actually curve up until it starts moving backwards



FIG. 8: Side View of ball with enough spin to go backwards
and up. This is the special case mentioned above.

as shown in FIG 8. This would be the case where the
rotational velocity of the ball provides enough lift and
spin to overcome both gravity and the forward flight of
the ball and instead move in the direction opposite to
launch.

VI. CONCLUSION

In conclusion it can be said the flight trajectory of a
soccer ball moving through the fluid air was successfully
simulated. The models were able to accurately model the

effects of different rotational velocities and exiting veloc-
ities. The model did make certain assumptions which
leaves room for future work, to create the most accu-
rate possible model however for purposes of a general
idea, this model will accurately simulate flight trajecto-
ries. Due to the ease of use with the code, the model can
also be adapted to simulate trajectories of any spherical
object moving through the air by simply tweaking differ-
ent parameters. The aim of the model was achieved in
that Roberto Carlos’ goal was accurately simulated and
the model can be used to determine that the goal was
not a fluke of physics but rather a calculated effort by the
player and similar goals could be reproduced by applying
the correct forces in the correct spots. Roberto Carlos’
kick specifically was calculated to have 2.6 m of curva-
ture, which represented the value that the ball would
have curved if only drag, Magnus force and gravity acted
on it.
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