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The representation of physical phenomenon is overwhelmingly visual. Although this has many
uses, and serves as an sufficient if not near perfect means of representation, it only acknowledges one
of our senses. Musical representation offers a refreshing alternative. Time varying aural effects are
equally well if not better suited for the representation of some physical systems. Chaotic attractors
provide an interesting point of comparison. In this experiment, Mathematica’s “Play” function
was used to generate music of time-varying frequency, amplitude, and origin using the governing
equations of the Lorenz, Rossler, and Chua attractors. Despite conservative use of aural effects, not
only were different attractors easily identifiable aurally, changes in an attractor’s parameters could
also be idenified. The musical samples generated provide an experience of these attractors unlike
any visual representation.

I. INTRODUCTION

A. Algorithmic Composition

From a musical standpoint, mathematics has a long
history of application as a means to generate or reveal
the essential compositional structure of a musical com-
position. While Pythagoras’ explanation of the overtone
series is fundamental, more modern examples such as
Bach’s numerology or the use of the Fibonacci sequence
in the music of Debussy and Bartok are also significant.
Needless to say, musicians have not overlooked advances
in science and computer technology. These advances have
produced more complex and sophisticated mathematical
methods for musical composition and analysis including
the integration of probability, stochastic theory, and 1/f
noise. The sensitive nature of chaotic trajectories offers a
means for computer-generated variability and in a sense,
creativity.

The study of chaos and chaotic attractors has been
made possible in large part by advances in computer
technology. Although mathematics and the sciences have
benefited incredibly from computer based computation,
composers have also made use of these advances. Algo-
rithmic composition is a form of composition in which
a computer is allowed to generate musical content from
a set of rules defined by a composer. When algorith-
mic composition is used to musically represent physical
phenomenon, the composer chooses how to represent the
equations governing the physical phenomenon, but then
allows the computer to generate the musical results of
those choices.

B. Uses of Musical Representation in Physics

Graphical simulations of physical phenomenon are
overwhelmingly visual. While graphs and figures are no
doubt sensible and easy to comprehend, they appeal to
only one of our senses. An alternative means of rep-
resentation is musical. The use of aural perception in

teaching and learning physics is undeveloped as of yet.
However, aural perception is an exciting way to experi-
ence physics. Despite limitations in the speed of sam-
ple generation, musical representation carries a higher
dimensionality and cognitive economy.

Although higher dimensionality is a phenomenon typi-
cally equated with theoretical particle physics, this is not
its only form. Multi-dimensional systems are also present
in thermal and quantum physics. For example, the in-
terdependence of temperature, pressure, volume, inter-
nal energy, and entropy can be represented concurrently
as a five dimensional plot. However, even a simple sys-
tem such as projectile motion can be represented multi-
dimensionally using the position, velocity, and accelera-
tion vectors of the x-y plane. For the present experiment,
the x, y, and z components of the chaotic attractors were
represented musically.

C. Chaos and Chaotic Attractors

Chaos defines the behavior of certain dynamical sys-
tems whose time-evolution is highly sensitive to initial
conditions. The famous butterfly analogy postulates that
a simple change such as the flapping of a butterfly wing
could generate a catastrophic change in the weather. Be-
cause of this sensitivity, chaotic motion seems random.
However, chaotic systems are deterministic in that their
future states are completely determined by their present
states[1].

A chaotic attractor is a dynamical system in which
initial conditions eventually converge toward a particular
set in their trajectories. Having reached this set, slight
perturbations will not affect its motion. For example, in
the well known Lorenz attractor, once the trajectory has
entered the wings, slight perturbations will not affect its
continued trajectory along the wings.
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II. THEORY

A. The Musical Representation of Physical
Phenomenon

Changes in frequency, amplitude, timbre, duration,
and origin of a sound over time are aural effects that can
be used to represent dimensions. When used in an ap-
propriate manner, this higher dimensionality can enable
a higher order experience than a visual representation.
Not only can more dimensions be represented, but also
the joining of multiple aural effects can add depth to the
experience of a smaller number of dimensions. Defining
cognitive economy as the amount of information that can
be coherently experienced through time, musical repre-
sentation has a higher cognitive economy.

B. Chaotic Attractors

Chaotic attractors are non-linear systems that are at-
tracted to particular orbits in space-time. Although there
are a variety of kinds of attractors, only the Lorenz,
Rossler, and Chua attractors were explored in this ex-
periment. They are similar in that they are defined by
three differential equations with three time-dependent
variables. The flow of an attractor through time can be
described using a group of equations distinct to each at-
tractor. Slight differences in the equations with respect
to their constants or starting points can vary the mo-
tion of the attractor significantly over time. Although
the projection of an orbit and the shape of the attractors
are generally preserved, motion within an orbit can vary
between periodic and chaotic. The general shape of an
attractor can be stretched, contracted or twisted in 3-
space, but it will always have a defining shape. Because
the chosen attractors are described by three equations
with three time dependent spatial variables, it is very
easy to generate plots using a standard 3-dimensional
parametric plot. However, they are also apt for musical
representation. An attractor’s extreme sensitivity to ini-
tial conditions, dynamical nature, and attracting orbits
allows for the generation of an infinite amount of distinct
yet structurally similar musical material. Although the
musical flow of a single attractor may become bland with
time, as with the visual representation, different attrac-
tors will sound different.

The Lorenz attractor is a historically significant at-
tractor. Working in the dawn of the computer age,
with a computer capable of 60 multiplications per second
and total memory of 16 kB, Lorenz set to work model-
ing changes in the atmosphere. Due to the Poincare-
Bendixson Theorem, a chaotic solution could not be
found with fewer than 3 differential equations. Although
the system initially was implemented with 12 equations,
after approximately 20 years Lorenz had simplified it to
the three equation model[2]. It can be expressed using
the three ordinary differential equations,

FIG. 1: A parametric plot of the Lorenz attractor generated
by Mathematica for σ=10, b=8/3 and r=30. As shown here,
the z-axis is always positive and the x and y axis vary between
two attracting equilibrium.

ẋ = −σx+ σy, (1)
ẏ = −xz + rx− y, (2)
ż = xy − bz, (3)

where the Prandtl number σ, the Reynolds number r, and
b are all parameters of the system. The dot on top of the
x, y, and z refers to the next iterate. This produces a
highly idealized motion of a fluid in which the warm fluid
rises and the cold fluid sinks. The result is the famous
butterfly, which can be viewed in Figure 1.

Lorenz found that for fixed σ = 10 and b = 8/3, the
system behaves chaotically for values of r greater than
r ≈ 24.74.

The Lorenz attractor is a very popular attractor and
comes with a great amount of interesting phenomenon.
However, it is not the only chaotic attractor determined
by differential equations. In 1976, the German scientist
Otto Rossler found a simpler set of differential equations
which produces another chaotic attractor. The equations
are,

ẋ = −y − z, (4)
ẏ = x+ ay, (5)
ż = b+ (x− c)z, (6)

where a, b, and c are parameters characterized by the
system. The simplicity of these equations comes from
the fact that two are linear in nature. Only the ż com-
ponent carries any non-linearity. Although initially they
were designed to behave similarly to the Lorenz attrac-
tor but to be easier to analyze, these theoretical equa-
tions were later found to be useful in modeling chemical
reactions[3]. The Rossler attractor is strikingly different
than the Lorenz attractor and can be viewed in Figure 2.
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FIG. 2: A parametric plot of the Rossler attractor generated
by Mathematica for a=0.1, b=0.1 and c=18. As shown here,
the x and y components circle around the origin and the z
component is only non-zero in the first quadrant.

Although the Chua attractor is not as simple mathe-
matically as the Lorenz or Rossler attractors, it is unique
in that it doesn’t require computer simulations to visual-
ize the chaotic behavior. The Chua attractor can be gen-
erated relatively easily in an electronics lab using two ca-
pacitors, a resistor, an inductor, and a non-linear diode.
After creating the circuit, it can be viewed using a simple
oscilloscope[2]. The equations for the Chua attractor are

ẋ = c1(y − x− g(x)), (7)
ẏ = c2(x− y + z), (8)
ż = −c3y (9)

where

g(x) = m1x+
m0 −m1

2
(|x+ 1| − |x− 1|), (10)

and c1, c2, c3, m0, and m1 are all parameters that char-
acterize the circuit. The function g(x) is the only non-
linearity present in the system. It represents three differ-
ent current regimes for the non-linear diode. The Chua
attractor is different than the Lorenz or Rossler attractor
in that for certain parameter values, it creates a discon-
nected set. Figure 3 represents the connected attractor.
The disconnected attractor will be shown later in Figures
12 and 13.

Together, these attractors represent interesting and
important chaotic systems in the field of chaos. They
are all characterized by three differential equations with
at least one non-linearity. They also are attracted to
particular orbits which serve to make interesting visual
plots. By mapping them musically, equally interesting
musical samples can be generated.

FIG. 3: A parametric plot of the Chua attractor generated
by Mathematica for c1=15.6, c2=1, c3=25.58, m0=-8/7, and
m1=-5/7. For certain values of c3, it becomes two separate
yet similar attractors.

C. Musical Formalism

Although there are five aural effects that can be manip-
ulated, only the amplitude, frequency, and origin of the
sound were used in this project. With this in mind, only
the frequency and spatial component of the sound will
need theoretical explanation. The frequency of a wave,
measured in Hertz (Hz) is the number of complete cycles
of a sine wave in the time of one second. A pitch of our
tuning system can therefore be expressed as simply as

A · sin[F × 2πt], (11)

where t is the time, A is the amplitude, and F is the
frequency. If the frequency were 440 Hz, then the sine
wave would have 440 cycles per second. By increasing
the amplitude, the peaks of each wave would be higher
and a louder wave will result.

D. Creating a Time Varying Frequency

To generate a time varying frequency, as used in this
experiment, a more sophisticated explanation of fre-
quency is needed. The interval of an octave is represented
by a doubling of frequency. Considering a frequency of
440 Hz, this means the upper octave has a frequency of
880 Hz, while the lower octave has a frequency of 220
Hz. Although a piano presents each octave as having
12 notes, the notes in the higher octaves have a larger
difference in frequency per note than the lower octaves.
The frequency difference between two notes on a linear
scale (such as the piano) can be understood in terms
of the system of “cents”. In the system of cents, there
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FIG. 4: A graph exhibiting a the tuning system based upon
“cents”. The black lines represent octave equivalents. The
frequency is displayed on the left axis and cents are displayed
on the bottom axis. It is generated using Equation refTun-
ing1. Cents provide a means of understanding musical pitch
linearly. In this system, each octave has 1200 cents, and each
note on the 12 tone scale is 100 cents apart. This system is
generalized to work to translate a governing equation of an
attractor to our tuning system.

are 1200 cents in an octave, and each successive note in
the ascending 12-tone scale has an increase of 100 cents.
Knowing the difference in cents between two notes, and
the frequency of one, we can calculate frequency of the
other using the equation

b = a · 2 n
1200 , (12)

where 1200 represents the number of cents in the octave,
a represents the known frequency of the first note, b is
the calculated frequency, and n represents the difference
in cents between the two notes. A graph displaying the
tuning system in terms of cents can be seen in Figure 4.

Though equation 12 is of standard use in our tuning
system, it can be generalized to accommodate any linear
(or non-linear) parametric equation that has a maximum
and minimum value. A more general form of the equation
can be written

b(t) = a · 2
P (t)
O(s) , (13)

where P (t) is some time varying function, a is the chosen
fundamental, b(t) the time varying frequency directly re-
lated to the trajectory of P (t), and O(s) is the octave
size chosen. By taking the difference of the maximum
and minimum of P (t), the range can be calculated and
used to generate an octave size. For example, dividing
the range by 3 will produce a range in frequency of 3
octaves. By choosing a fundamental frequency a such as
440 Hz, a new function b(t) directly translates the time-
varying trajectory of the system to our standard tuning
system.

E. The Spatial Perception of Sound

Our perception of the origin of a sound can be un-
derstood using simple mathematics. Because of limi-
tations in stereo equipment, only the left-right contin-
uum was employed. When a sound comes from the far
left, it makes sence that all sound would come from that
speaker; and similarly with the right speaker. However,
the space in between requires explanation. The stan-
dard representation of these parameters is modeled by
two simple equations for the amplitude of the sound leav-
ing the left and right speakers. Orienting the speakers
such that positive values of some equation come from
the right, and negative values from the left produces

L(t) =
(P (t)− 1)2

4
(14)

R(t) =
(P (t) + 1)2

4
(15)

where P (t) is a chosen parametric equation scaled such
that its maximum is 1 and its minimum is -1, L(t) is
the amplitude of the sound which comes from the left
speaker, and R(t) is the amplitude of the right speaker.
A graph of these equations can be viewed in Figure 5.
When P (t) is at its maximum, no sound comes from the
left, when P (t) is at 0, sound comes half from the left
and half from the right.

FIG. 5: A graph representing our perception of the origin of
a sound. When P (t) has reached its maximum value of 1,
all sound comes from the left and none from the right. For
−1 < P (t) < 1, each speaker has a specific output amplitude.

III. EXPERIMENT AND PROCEDURE

All experimentation involved computer based musical
generation. Mathematica 7, specifically the “Play” func-
tion, was used to create generate all musical samples.
Of the five possible aural dimensions, it was decided to
use only use the amplitude, frequency, and spatial di-
mensions. A completely continuous and time-varying fre-
quency, amplitude, and origin was desired. However, the
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Play function could not deal with a continuously varying
frequency without strange errors, so a discrete function
had to be implemented. The “UnitStep” function was
used to sustain a frequency for a discrete time step. The
Unit Step function is equal to 0 for x < 0 and 1 for x ≥ 0.

By using this function correctly, the frequency function
was re-evaluated and sustained for a 10th of a second
every 10th of a second. A figure of the proper use can be
viewed in Figure 6.

FIG. 6: A graph displaying a continuous function and its
translation into a discrete function using the Unit Step func-
tion. The bottom axis represents time and the left axis rep-
resents the d For the experiment, the “Step” was chosen to
be 0.1s. Although the continuous function was preferable, a
continuously varying frequency produced aliasing errors.

The code for its proper use is complicated, but can be
written as

f(t) =
tStop/tStep∑

i=0

z[i · tStep]× U [t− (i · tStep)]

×U [((i+ 1) · tStep)− t],

where F (t) is the linear frequency component, z repre-
sents the differential equation of the attractor chosen to
represent frequency, the function U is the unit step func-
tion, t is time, tStep = 0.1s, and tStop specifies the stop
time. Although this is complicated, the two Unit Step
functions are only both non-zero when t satisfies

i · tStep < t < (i+ 1) · tStep. (16)

Although each note had a finite duration, because the
duration was not varying, the continuous nature of the
function was somewhat preserved. Although the Play
function generated blips between each 0.1 second sam-
ple, these blips were somewhat aesthetically pleasing. In
addition to reinforcing a perception of rhythm, the per-
cussive sound that was generated distracts the ear from
the pure sound wave which is an aurally jarring quality
alone.

After creating a discrete function for the frequency,
it was translated into a frequency function which cor-
responded to the western tuning system as described in

Equation 13. The octave size was decided to be a third
of the range of the ẋ, ẏ, or ż equation for the attrac-
tor that was chosen to represent frequency. The exact
pairings for these equations and frequency can be seen in
Table I. The fundamental was chosen to be 440 Hz. A
graph of the z component of the Lorenz attractor and its
translation into frequency can be compared in Figure 7.

FIG. 7: A comparison of the x component of the Lorentz
attractor before and after translation into frequency. The
bottom function is characterized by its discrete nature and
larger changes in frequency for higher pitches. Although not
clearly visible in this picture, the total range of frequencies
for a 100 second sample is three octaves.

Several musical examples were generated for each at-
tractor, but the musical pairing of the differential equa-
tions did not change for each attractor. The pairing of
each equation with musical dimensions can be seen in
Table I.

TABLE I: Pairing of Specific Equations with Musical Dimen-
sions.

Attractor x[t] y[t] z[t]

Lorenz Spatial Frequency Amplitude

Rossler Amplitude Spatial Frequency

Chua Spatial Amplitude Frequency

The pairing of the differential equations to musical di-
mensions was chosen to maximize musical expression.
This meant that the equation of the attractor which
was most defining of the attractor in general, such as
the ż equation for the Rossler attractor, was mapped to
frequency. After choosing the frequency equation, the
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FIG. 8: The output display of a the Lorenz attractor using
the Play function and corresponding 3-d plot with parameters
σ=10, b=8/3, and r=30.

equation that could benefit from a spatial representation
was chosen. Whatever equation remained, typically one
which was not very expressive, such as the ẏ equation of
the Chua attractor, was paired with the amplitude.

Although these equations could be mapped to different
musical dimensions, because the focus of the experiment
was the chaotic attractors, the content of experimenta-
tion was primarily the effects of the change in initial pa-
rameters. Specifically the c parameter in the Rossler at-
tractor, and c3 parameter in the Chua attractor were
varied and the musical results analyzed. The result of
these changes were musical samples that were alike in
structure but noticeably different in musical identity.

IV. RESULTS AND ANALYSIS

For each example presented in this report, there is a
corresponding music file.

A. The Lorenz Attractor

The output display of a the Lorenz attractor using the
Play function and corresponding 3-d plot with parame-
ters σ=10, b=8/3, and r=30 is represented in Figure 8.
The upper portion of the display shows the frequency,
while the second and third displays show the amplitudes
from each speaker. The middle display represents the
amplitude of the left speaker and the amplitude of the
right speaker is the lower display. The middle display
has a higher amplitude because for this portion of time,
z component has a proportionally high magnitude when
its value for x is neqative. A darker blue in the upper
display implies a louder note.

Although there is much more that can be studied with
the Lorenz attractor, it was thought that the other at-
tractors might give more musically significant results.
The Rossler and Chua attractor have very clear points
of periodic and chaotic orbits.

B. The Rossler Attractor

Two outputs of the Rossler attractor are represented
in Figures 9 and 10. The trajectory is very simple com-
pared with the Lorenz and Chua attractors, and this
result is more simple musically as well. A clear cyclic
pattern is easily recognizable in both samples. This is
because the trajectory oscillates almost periodically be-
tween the maximum and minimum values for x[t] and
y[t]. Although frequency is still the dominant musical
dimension, this periodicity makes the Rossler is easiest
to identify musically.

The output display of the Rossler attractor with a=0.1,
b=0.1 and c=6 and the equivalent purely visual represen-
tation is displayed in Figures 9. This set of parameters
produces a period 2 attractor. This is evident by the fact
that the first and third humps in the upper display are
equal in size and darkness. Furthermore, they are fol-
lowed by sections of no darkness in which the amplitude
is 0 (no sound). The amplitude goes to zero because the
exact minimum point in the x[t] component reaches its
minimum every second revolution.

FIG. 9: The output display of the Rossler attractor with
a=0.1, b=0.1 and c=6 and the equivalent purely visual rep-
resentation.

The output display of the Rossler attractor with a=0.1,
b=0.1, and c=9 using both the Play function and a 3-
D plot is shown in 10. Although the z-range is almost
identical to the periodic attractor in 9, this example is
distinct aurally because of its chaotic trajectory.

FIG. 10: The output display of the Rossler attractor with
a=0.1, b=0.1, and c=9 using both the Play function and a
3-D plot.



7

C. The Chua Attractor

The Chua attractor is disconnected for particular pa-
rameter values. For the disconnected sets, two differ-
ent frequency functions corresponding to orbits were em-
ployed. The output for a connected attractor looks like
Figure 11, while the output for the disconnected attrac-
tor is represented in Figure 12 and 13.

The output display of the Chua attractor with c1=15.6,
c2=1, c3=25.58, m0=-8/7, and m1=-5/7 using the play
function is shown in Figure 11. The 3-D plot is the same
as displayed in Figure 3. Although the Chua attractor
has two attracting equilibrium like the Lorentz attractor,
the values for the frequency overlap between the two at-
tracting equilibrium. The aural result is that the change
in frequency between the two basins is not as distinct,
and the fluctuations in frequency are not a quick as in
the Lorenz attractor.

FIG. 11: The output display of the Chua attractor with
c1=15.6, c2=1, c3=25.58, m0=-8/7, and m1=-5/7 using the
play function.

The output display of the disconnected Chua attractor
with c3 = 50 using both the Play function and a 3-D plot
is shown in 12. The Chua attractor is not connected, and
each part is displaying a period 1 trajectory. The Play
output shows very interesting results. The two frequen-
cies are not exactly aligned, and don’t exactly parallel
to each other in space. This is shown by their difference
in peak frequencies. The lower attractor has a peak fre-
quency later than the upper attractor. Furthermore, the
lower trajectory is slightly more negative in the y compo-
nent. This can be seen by the period of no darkness in its
motion of ascending frequency. The likely reason for this
is the start parameters that were chosen. The two sets
clearly have periods of equal length. Choosing proper
initial values could result in two frequencies moving in
parallel motion through time.

The output display of the disconnected Chua attractor
with c3 = 33 using both the Play function and a 3-D
plot is shown in 13 . For this value of c3, the trajectory
is chaotic for both attracting sets. This plot is clearly
different from Figure 12. Besides for not being periodic,
it is also apparent that the peak frequency of the lower
attractor is happening before the upper attractor.

FIG. 12: The output display of the disconnected Chua at-
tractor with c3 = 50 using both the Play function and a 3-D
plot.

FIG. 13: The output display of the disconnected Chua at-
tractor with c3 = 33 using both the Play function and a 3-D
plot.

An infinite number of musical samples can be gener-
ated by varying the initial parameters. However, the ma-
jority of the sound will sound the same. The largest dif-
ference in sound for each attractor will be its periodic
versus its chaotic orbits. However, this does not dis-
credit the musical representation. Visual representations
can create an infinite number of images of the attractor,
but only the periodic versus chaotic orbits will be easy
to differentiate.

V. CONCLUSION

The musical mapping of chaotic attractors allows for
an experience of chaos that is unparalleled visually.
Though the beauty of the attractor can be seen in is
distinctive 3-dimensional shape, musical representation
provides distinctive representations as it flows through
time. None of the Lorenz, Rossler, or Chua attractors
sounded alike despite their similarity in timbre and the
conservative use of aural effects. Furthermore, periodic
and chaotic orbits were easily distinguishable for specific
attractors.
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