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A variety of diseases are caused by the misfolding of proteins into amyloid fibrils and their sec-
ondary structures. One such structure is the spherulite. Spherulites have been found in many
diseased organisms and are thought to be a cause of such diseases. Spherulites exhibit birefringence
and create useful images when viewed between crossed polarizers. These images change according
to the inner structure of the spherulite. To better understand these inner structures, several types
of possible spherulites were modeled in 3 dimensions using Mathematica. The images these various
models would create when viewed between crossed polarizers were constructed in order to be com-
pared to experiment. Various challenges with the way polarization was simulated led to images that
were not necessarily useful for this comparison. More work needs to be done to more realistically
model the way light interacts with spherulites in 3 dimensions.

I. INTRODUCTION

All things are made of matter, but all known living
things are made of proteins. Proteins are integral to or-
ganism structure and function. However, when certain
proteins misfold, it can be disastrous. Many debilitat-
ing diseases, affecting both the mind and the body, can
be caused by the folding of proteins into amyloid fib-
rils [1]. Alzheimer’s disease [2], Parkinson’s disease [3],
Huntington’s disease [4] and Type 2 diabetes [5] are all
thought to be caused by the abnormal accumulation of
amyloid fibrils and are hence referred to as amyloidoses.
The scientific community is still lacking detailed knowl-
edge of the inner structure of these amyloid aggregates,
but more information may lead to the cures of some of
these diseases.

Especially interesting are amyloid aggregates display-
ing spherulitic structure. These aggregates are highly or-
dered and bend light in interesting ways [1]. When placed
between crossed polarizers, these aggregates exhibit dif-
ferent patterns and colors which can be interpreted to
extract information. The orientation of the fibrils within
the spherulite can be inferred, shining light on the inner
structure of the mysterious conglomerate.

Recently, several physicists at the College of Wooster
used Mathematica to model 2-dimensional cross sections
of these structures and what they look like when placed
between crossed polarizers [1]. These models proved to be
very similar to experimental photos of spherulites, imply-
ing that the inner structures of the simulated spherulites
are similar to physical spherulites present in living organ-
isms. The closer the simulated photo is to experimental
photos, the closer the simulated structure is thought to
be to the physical structure.

This project builds on the research of these scientists
by extending the modeling of spherulites into the third
dimension in an effort to even better understand their
inner structure.

II. THEORY

A. Experimental Background

Spherulites are semi-crystalline structures that form
when a synthetic liquid is slowly cooled [6]. They consist
of a nucleation point from which fibrils radiate. These
structures have a high enough degree of order that they
bend the polarization of light in an ordered, predictable
way [1]. Spherulitic structures have also been observed
in many organic compounds. The spherulites simulated
in this experiment are organic spherulites composed of
amyloid fibrils. Amyloid fibrils come together at a nucle-
ation point, forming a spherical structure not unlike that
of a koosh ball. When viewed through crossed polarizers
or a polarizing light microscope, these spherulites exhibit
patterns that can be interpreted to determine their inner
structure.

Light is an electromagnetic wave that is composed of
both an oscillating electric field and an oscillating mag-
netic field which are perpendicular to each other. The
orientation of the electric field of a light wave is known
as its polarization. The polarization of a lightwave can
be altered by many means, such as reflecting it off several
mirrors or having it pass through polarizers. Polarizers
only allow the portion of light waves through that have
an electric field component in the same direction as the
polarization vector [7]. The intensity of a light wave, a
scalar, is the magnitude of the electric field squared. The
intensity is what is recorded in two-dimensional images
such as photographs.

When light passes through a polarizer, both the mag-
nitude and direction of the electric field change. The
magnitude of the electric field after it exits a polarizer is
given by the dot product of the electric field vector and
the polarization vector, so that

| ~Ef | = ~Ei · ~P , (1)

where ~E is the electric field vector and ~P is the nor-
malized polarization vector. The direction of the electric
field as it leaves the polarizer is the same as that of the
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FIG. 1: Schematic view of experimental set up that is mod-
eled in this project. Light passes through an initial polarizer,
interacts with the spherulite, and passes through a final po-
larizer, creating an image.

polarization vector. To calculate the electric field vector
after it leaves the polarizer, the magnitude of the electric
field as it leaves the polarizer is projected onto, or mul-
tiplied by, the polarization vector. Combining these two
calculations results in the equation

~Ef = ( ~Ei · ~P )~P . (2)

Light passing through a polarizer, a spherulite, and
a final polarizer goes through this process occur many
times. A certain amount of light is let through in the
direction of the first polarization vector, then only a cer-
tain amount of this light is let through the fibrils, and
finally a small amount of light is let through the final
polarizer in the direction of the final polarization vector.
A schematic diagram of the process can be found in Fig.
1.

This process can be modeled using the computer pro-
gram Mathematica. By modeling different structures of
spherulites and what images they would produce when
placed between crossed polarizers, experimental photos
taken under these circumstances can be better inter-
preted.

A spherulite in which all fibrils point directly radially
outward produces a pattern known as the Maltese-cross
pattern when viewed between crossed polarizers. This
is the most common pattern produced, but some other

FIG. 2: Experimental photographs of spherulites displaying
different inner structures. These images have previously been
prescribed inner structures based on the results of a 2 di-
mensional modeling project. The image on the left shows a
spherulite with radial fibrils, the center image is thought to
be of a spherulite with fibrils curling opposite ways on each
hemisphere, and the image on the right is of a spherulite with
two nucleation points. These images are taken from Hardin’s
paper describing the two dimensional model of spherulites [1].

photos taken experimentally do not display this pattern.
They can be interpreted to suggest irregular spherulite
structure, which can include the curling of the fibrils or
multiple nucleation points. Fig. 2 shows some example
experimental photographs taken with polarizing light mi-
croscopes, that imply radial fibrils, curled fibrils, and a
spherulite with multiple nucleation points.

This project models many types of typical and atypical
structures of biological spherulites as well as the images
they would create when viewed between crossed polariz-
ers.

III. PROCEDURE

A. Simulating Spherulites with Mathematica

This simulation built off the work of K. Domike, E.
Hardin, D. Armstead, and A. M. Donald, who recently
modeled the structure and polarization of 2-dimensional
cross-sections of spherulites composed of the protein β-
lactoglobulin [1]. The simulation process began with
looking at and improving their methods.

Modeling a 2-dimensional spherulite cross-section is
relatively easy when working with polar coordinates. An
overview of the polar coordinate system can be seen in
Fig. 3; any point in the polar coordinate system can
be mapped using the two variables R, the distance from
the origin, and ϕ, the angle that a line drawn from the
point to the origin makes with the x-axis. Using the unit
vectors r̂, and ϕ̂, a unit vector pointing in any direc-
tion can be created. A perfectly radial spherulitic cross-
section is simply a map of r̂ at every (x, y) point when√

x2 + y2 < 1. The same idea is used to model a 3-
dimensional spherulite, except that it is a map of r̂ at ev-
ery (x, y, z) point when

√
x2 + y2 + z2 < 1. Screenshots

of the simulations of these perfectly radial spherulites can
be seen in Fig. 4.
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FIG. 3: Diagram of the Polar Coordinate system. Any point
can be represented by a distance, R, from the origin, and the
angle, ϕ, that a line drawn from the point to the origin makes
with the x-axis. This coordinate system is especially use-
ful when graphing objects that exhibit circular or cylindrical
symmetry. Generalized to three dimensions, this coordinate
is useful for modeling or graphing objects displaying spherical
symmetry.

FIG. 4: 2- and 3-dimensional models of a perfectly radial
spherulite. These models are simply plots of the unit vector
r̂ at different points in space with parameters in place so that
they form a sphere.

B. Irregular Spherulites and their Parameters:
Tilt, Curl, and Nucleation Points

However, as previously discussed, not all spherulites
are perfectly radial. There are several different kinds
of possible spherulites, and this project modeled two:
spherulites with curled fibrils and spherulites with multi-
ple (two) nucleation points. Furthermore, a method was
developed in which the spherulites could be tilted and
therefore viewed at different angles. This becomes im-
portant when the simulated polarizers are put in place.

The first and easiest to model variation of the radial

spherulite is the curled spherulite. Instead of being a
map of r̂s, it combines both the polar unit vectors in a
function so that the fibrils begin radially at the center
and then curl more and more towards the edges. This is
accomplished through creating a “curl” parameter. Also,
the value R =

√
x2 + y2 was used in the equation so

that the curling happens stronger as the fibrils radiate
outwards from the center. The direction of the vectors
used to model these “single curled” spherulites is given
by the equation

V ector[x, y, z] = (1 − cR)r̂ + cRϕ̂ (3)

where c is the curl parameter and R governs the strength
of the curl through space. When R is zero, the ϕ̂ compo-
nent is eliminated, resulting in a perfectly radial middle.
When R is one, the r̂ component is minimized, result-
ing in maximum curl around the edges. Subtracting cRϕ̂
instead of adding it results in a curl in the opposite direc-
tion. This vector is then divided by its length in order to
insure that the vector field is composed entirely of unit
vectors. These equations were generalized to 3 dimen-
sions by adding the z-component to the R value. This
type of spherulite has fibrils that curl one way around
the spherulite.

Also modeled were spherulites with opposite curls on
top and bottom. These were created due to the thinking
that it would be less likely to find a spherulite in nature
that only curled one way than it would be to find one that
curled two. A twist at one end would create a double
curled spherulite, but what, physically, would cause a
spherulite with only one curl direction?

The double curled spherulites were modeled using the
Unit Step function in Mathematica, which allowed the
two halves of the spherulite to be governed by different
equations. The top half of the spherulite was governed
by the same equation that was used to model the single
curled spherulite, and the bottom half was governed by
its sister equation, where cRϕ̂ is subtracted from (1 −
cR)r̂ instead of added. This resulted in a spherulite with
an opposite curl on the top than is present on the bottom.
Screenshots of spherulites with both types of curls can be
seen in Fig. 5.

Another irregular type of spherulite that was modeled
was one with multiple nucleation points. This was done
by creating a spherulite that has an origin offset by cer-
tain values in the x, y, and z directions, and then su-
perimposing it on a spherulite with the origin centered
at zero. For unknown reasons, the resulting spherulites
were asymmetrical, but this was not resolved due to time
constraints. An image of a spherulite produced using this
method can be found in Fig. 6.

The way the simulation is set up, the spherulites can
only be viewed through the polarizers in one direction;
however, in reality one cannot always guarantee that a
spherulite will be in a certain orientation, so a method
was developed to tilt the spherulites in different ways so
that they can be viewed from different angles. This was
done using the Mathematica function Rotation Trans-
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FIG. 5: 3-dimensional models of spherulites curled two dif-
ferent ways. On the left is a spherulite with one curl, and on
the right is a spherulite that is curled opposite directions on
the top and bottom half. Both have curl strengths of 0.5 on
a scale of 0 to 1.

form. This function rotates a function or vector about
the origin by the angle θ in the direction of a given vec-
tor. The simulation can then be performed at several
different angles to see if certain structures correspond
better to experimental pictures at different angles. Fig.
7 shows a double curled spherulite tilted at an angle of
π/6 along the x axis. Notice that the division between
the hemispheres of the spherulite is not parallel to any of
the axes– this is due to the tilt.

C. Adding the Polarization Element

The purpose of modeling the spherulites is so that we
can place them between simulated polarizers and create
images which can be compared to those of experiment.

FIG. 6: Computer simulation of a spherulite with multiple
nucleation points. Actual spherulites would not have such a
large distance between the nucleation points, but this image
illustrates the method of simulation nicely. The spherulite
was duplicated, translated, and superimposed on the first.
There is a lack of symmetry for unknown reasons.

FIG. 7: Image of a tilted spherulite. This spherulite was tilted
π/6 degrees using the Mathematica function Rotation Trans-
form. The division between the hemispheres is not parallel to
any of the axis; theoretically this spherulite should produce a
different image than one viewed straight down the z axis.

In order to simulate the way light passes through the
system, we modeled both the way light acts when it is
passed through polarizers and the way it interacts with
the spherulite.

Instead of having simulated light pass through a sim-
ulated polarizer, the experiment begins with light polar-
ized as if it had just passed through the first polarizer.
So, the “polarizers” are actually simulations of the way
the light acts directly after it passes through each polar-
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izer. The angle at which these “polarizers” are crossed
can be changed in order to produce different images.

Similarly, we did not simulate light interacting directly
with the spherulite fibrils, but instead simulated what the
magnitude and the direction of the light would be after
passing through the spherulite.

In order to do this, the spherulite was divided into cross
sections which were vertically flattened so that they had
no z-components and the cross sections are then rotated
90◦ in order to simulate how the light would exit the
fibrils.

The spherulites are divided into cross sections because
it is easier to calculate the polarization in parts than to
compute how the light interacts with the entire spherulite
at once. They were divided in this manner to best model
what is happening physically. The light is propagating
in the z-direction, and has so electric field component in
the z-direction. So, theoretically, the light should not be
affected in the z-direction. The light is rotated 90◦ to
the fibrils because all light with electric fields parallel to
the fibrils is absorbed by them in this model.

All these components, the first polarizer, the spherulite
cross sections, and the final polarizer, are dotted with and
projected onto the next plane in order. For example, in
the two dimensional model, there is only one cross section
of spherulite, so the equation used to calculate the final
image is

~E = ( ~P1 · ~SCS)( ~SCS · ~P2) ~P2 (4)

where P1 and P2 are the first and second polarizers and
SCS is the spherulitic cross section. Each dot product
between layers creates a scalar at each point, which are
the magnitudes of light let through. Each multiplication
by a layer projects the scalars into the directions of the
vectors in the next cross section, modeling the magnitude
and orientation of the light after exiting the layer.

In order to perform this process in 3 dimensions, a
product was inserted in the equation, resulting in the
equation

~E = ~P1 · ~SCS(
∆z∏
1

( ~SCSz · ~SCSz−∆z)) · ~P2 ∗ ~P2. (5)

The product allows for a variable, ∆z, which controls the
thickness and number of cross sections the spherulite is
divided into.

The intensity of the light as it leaves the final polarizer
is the magnitude of the electric field squared. It is this
intensity that is used in order to create the final image of
what a modeled spherulite would look like when viewed
through crossed polarizers.

D. Mimicking Realistic Polarizers

The model above assumes perfect polarizers. However,
even the best physical polarizers aren’t perfect, allowing

a small amount of unpolarized light through. In order
to achieve more realistic results, an efficiency parameter
was added to the simulation. With this parameter in
place, each polarizer and cross section was only the per-
cent efficient that the parameter allowed. Each layer let
through x amount of light that it was expected to and
x−1 amount of the component of the lightwaves perpen-
dicular in direction. For instance, if a polarizer with a
80% efficiency parameter was meant to let through light
oriented in the horizontal direction, it would really let
through 80% of the horizontal light and 20% of the ver-
tically oriented light. This parameter could be altered to
produce different images.

IV. RESULTS

A. Polarization Problems

Initial images produced using low resolution and a
small number of cross sections within the spherulite were
promising, crudely matching the experimental photos
available. However, as the the number of cross sections
the spherulite was divided into was increased, more and
more light was let through, and the images strayed far-
ther and farther from experimental images. Theoreti-
cally, as the cross sections become so thin that the sys-
tem approaches a continuum, the images should become
more realistic, not less.

It was thought that perhaps this was due to the angles
of the vectors in the adjacent cross sections becoming
more and more similar. If there is not a great change in
the angle between cross sections, almost all the light is
let through. It was for this reason that we decided to try
to implement an efficiency coefficient. However, images
of similar resolution using and not using the efficiency co-
efficient did not show much difference. If anything, the
images produced using the efficiency factor were less sim-
ilar to experimental photos than images produced with-
out the efficiency coefficient. Due to time constraints,
this problem could not be solved, and it was decided
that dividing the spherulites into two cross sections, or
cutting them in half, produced the most realistic images.
A continuum of images with different numbers of cross
sections can be seen in Fig. 8. These images were created
using a single curled spherulite with a curl factor of 0.5
(on a scale of 0 to 1) and polarizers crossed at an angle of
π/2. An image produced using the efficiency factor and
same parameters can be found in Fig. 9. It was hard-
wired into the efficiency programming that the number
of cross sections is proportional to the number of pixels
in the resulting image, so that this image was created us-
ing significantly more cross sections than those created
using the original programming. This may or may not
be why the images created using the efficiency factor are
so different than experimental images.
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FIG. 8: Images produced by computer simulation. For all
images, the spherulites have a curl value of 0.5 and the polar-
izers are crossed by π/2. The numbers underneath each image
indicate the number of cross sections the spherulite was di-
vided into. As more cross sections are taken, more light is
let through, and the image produced correlates less to ex-
perimental photos. The image correlating most to available
experimental images is the top center, when the spherulite is
divided into two cross sections.

FIG. 9: Image produced with a polarizer efficiency factor of
90% taken into account. In order to better mimic physical
polarizers, the simulated polarizers did not completely polar-
ize the light. How efficient the polarizers were was governed
by an efficiency parameter. Notice that almost all of the light
is let through. This does not correspond with experimental
photos available.

B. Radial and Curled Spherulites

With this knowledge, many simulations were per-
formed on spherulites with different parameters using
two cross sections. The images produced by the com-
pletely radial and single curled spherulites appeared
as expected– they matched images produced using 2-
dimensional modeling and were very similar to experi-
mental photos. What was unexpected was the similarity
of the images produced using the double curled model
and the images using the single curled model. When cre-
ated using the same parameters and compared side, the
images using the double curled model and the images
using the single curled model were exactly the same.

FIG. 10: A series of images created using progressively
stronger curl values. As expected, the curl becomes stronger
as the curl value is increased. The curl values are on a scale
from 0 to 1, with 0 being completely radial and 1 resulting in
the edges being completely curled.

So, how curl affects the images was explored further
using the single curl model. While the single and dou-
ble curl models produce identical images, the single curl
model results in a faster simulation. Various curl values
were used, and, as expected, the curl in the images be-
came stronger as the curl value increased. A sampling of
images created with different curl values can be found in
Fig. 10.

How the tilt of the spherulite affects the images pro-
duced was not able to be explored due to time con-
straints. The first simulations to be performed would
have been tilted double curled spherulites; it is unknown
what would happen at the hemisphere line of tilted dou-
ble curled spherulites. However, although there was one
successful modeling of a double curled spherulite tilted
at the angle π/6 along the x axis, the tilt simulation
promptly stopped working when a new angle was tried,
and was unable to be restored to full function.

C. Multiple Nucleation Points

Modeling the image of a spherulite with multiple nu-
cleation points as it would be seen when viewed between
crossed polarizers presented a challenge. The circular
shape of the images produced by the other spherulites is
due to the limitation in the programming that light only
interacts with the region where

√
x2 + y2 + z2 < 1. How-

ever, spherulites with multiple nucleation points do not
have a spherical shape, and therefore running the simu-
lation results in parts of the image missing. Due to time
constraints, this problem was not resolved, and no com-
plete images of the multiple-nucleation-point spherulites
between crossed polarizers were created.
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V. CONCLUSION AND FUTURE WORK

After modeling many different types of regular and ir-
regular spherulites and calculating the image they would
produce when viewed between crossed polarizers, it has
been concluded that our version of 3 dimensional mod-
eling does not produce images that match experimental
photos much better than images produced using 2 dimen-
sional modeling. In fact, as the number of spherulitic
cross sections goes up and their thickness goes down, the
images produced stray farther and farther from reality.
This was thought to be because the magnitude of light
let through is governed by the dot product of two vectors,
which is proportional to the cosine of the angle between
them. The cosine function is not a linear function, and
when the cosine of the angle is reduced enough, nearly
all the light is let through.

The images were not improved by adding an efficiency
factor to the polarization process.

Much knowledge was gained from this project, but
there is still much that can be done. Although mod-
eling the spherulites themselves was generally successful,
there are a few points at which it can be strengthened.
First, the spherulites with multiple nucleation points
were asymmetrical when they shouldn’t be. Why this
is needs to be figured out, and a way to make them sym-
metrical needs to be found. Also, that the spherulites

with opposite curls produce the same images as single
curled spherulites is troubling. A new model for double
curled spherulites, with different curl parameters for each
side, could be modeled and analyzed. One last task that
could be performed is the mending of the tilt parameter.

The modeling of how light is polarized as it passes
through the spherulites needs to be improved. More cross
sections should result in more realistic images. Future
projects could involve perfecting the method of which
the light is affected as it goes through each layer; making
this process both more realistic and more efficient. Also,
the model needs to be improved so that we can look at
non-spherical objects, such as spherulites with multiple
nucleation points, through the crossed polarizers in their
entirety.

Furthermore, in order to find the best models for
spherulitic structure, a qualitative method must be de-
veloped to relate the computer simulated images to ex-
perimental photos. This project focused on the modeling
of spherulites and polarizers, not on the comparison to
experimental photos. Whether a certain model was con-
sidered realistic was determined by visually comparing
the images to those taken experimentally. Qualitatively
analyzing these images and those of experiment may re-
sult in better simulations of the spherulite’s inner struc-
ture.
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